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Abstract

Large-scale text-to-image diffusion models have signif-
icantly improved the state of the art in generative image
modeling and allow for an intuitive and powerful user inter-
face to drive the image generation process. Expressing spa-
tial constraints, e.g. to position specific objects in particular
locations, is cumbersome using text; and current text-based
image generation models are not able to accurately follow
such instructions. In this paper we consider image gener-
ation from text associated with segments on the image can-
vas, which combines an intuitive natural language interface
with precise spatial control over the generated content. We
propose ZestGuide, a “zero-shot” segmentation guidance
approach that can be plugged into pre-trained text-to-image
diffusion models, and does not require any additional train-
ing. It leverages implicit segmentation maps that can be ex-
tracted from cross-attention layers, and uses them to align
the generation with input masks. Our experimental results
combine high image quality with accurate alignment of gen-
erated content with input segmentations, and improve over
prior work both quantitatively and qualitatively, including
methods that require training on images with corresponding
segmentations. Compared to Paint with Words, the previous
state-of-the art in image generation with zero-shot segmen-
tation conditioning, we improve by 5 to 10 mloU points on
the COCO dataset with similar FID scores.

1. Introduction

The ability of diffusion models to generate high-quality
images has garnered widespread attention from the research
community as well as the general public. Text-to-image
models, in particular, have demonstrated astonishing capa-
bilities when trained on vast web-scale datasets [16, 33, 35,
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Figure 1. In ZestGuide the image generation is guided by the gra-
dient of a loss computed between the input segmentation and a
segmentation recovered from attention in a text-to-image diffusion
model. The approach does not require any additional training of
the pretrained text-to-image diffusion model to solve this task.

]. This has led to the development of numerous image
editing tools that facilitate content creation and aid creative
media design [17, 25, 36]. Textual description is an intuitive
and powerful manner to condition image generation. With
a simple text prompt, even non-expert users can accurately
describe their desired image and easily obtain correspond-
ing results. A single text prompt can effectively convey in-
formation about the objects in the scene, their interactions,
and the overall style of the image. Despite their versatility,
text prompts may not be the optimal choice for achieving
fine-grained spatial control. Accurately describing the pose,
position, and shape of each object in a complex scene with
words can be a cumbersome task. Moreover, recent works
have shown the limitation of diffusion models to follow spa-
tial guidance expressed in natural language [, 7].

On the contrary, semantic image synthesis is a condi-
tional image generation task that allows for detailed spatial
control, by providing a semantic map to indicate the desired
class label for each pixel. Both adversarial [29, 38] and
diffusion-based [43, 44] approaches have been explored to
generate high-quality and diverse images. However, these
approaches rely heavily on large datasets with tens to hun-
dreds of thousands of images annotated with pixel-precise
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Figure 2. ZestGuide generates images conditioned on segmenta-
tion maps with corresponding free-form textual descriptions.

label maps, which are expensive to acquire and inherently
limited in the number of class labels.

Addressing this issue, Balaji et al. [2] showed that se-
mantic image synthesis can be achieved using a pretrained
text-to-image diffusion model in a zero-shot manner. Their
training-free approach modifies the attention maps in the
cross-attention layers of the diffusion model, allowing both
spatial control and natural language conditioning. Users can
input a text prompt along with a segmentation map that indi-
cates the spatial location corresponding to parts of the cap-
tion. Despite their remarkable quality, the generated images
tend to only roughly align with the input segmentation map.

To overcome this limitation, we propose a novel ap-
proach called ZestGuide, short for ZEro-shot SegmenTation
GUIDancE, which empowers a pretrained text-to-image
diffusion model to enable image generation conditioned on
segmentation maps with corresponding free-form textual
descriptions, see examples presented in Fig. 2. ZestGuide
is designed to produce images which more accurately ad-
here to the conditioning semantic map. Our zero-shot ap-
proach builds upon classifier-guidance techniques that al-
low for conditional generation from a pretrained uncondi-
tional diffusion model [13]. These techniques utilize an ex-
ternal classifier to steer the iterative denoising process of
diffusion models toward the generation of an image cor-
responding to the condition. While these approaches have
been successfully applied to various forms of conditioning,
such as class labels [13] and semantic maps [3], they still
rely on pretrained recognition models. In the case of seman-
tic image synthesis, this means that an image-segmentation
network must be trained, which (i) violates our zero-shot
objective, and (ii) allows each segment only to be condi-
tioned on a single class label. To circumvent the need for
an external classifier, our approach takes advantage of the
spatial information embedded in the cross-attention layers

of the diffusion model to achieve zero-shot image segmen-
tation. Guidance is then achieved by comparing a segmen-
tation extracted from the attention layers with the condition-
ing map, eliminating the need for an external segmentation
network. In particular, ZestGuide computes a loss between
the inferred segmentation and the input segmentation, and
uses the gradient of this loss to guide the noise estimation
process, allowing conditioning on free-form text rather than
just class labels. Our approach does not require any training
or fine-tuning on top of the text-to-image model.

We conduct extensive experiments and compare our
ZestGuide to various approaches introduced in the recent
literature. Our results demonstrate state-of-the-art perfor-
mance, improving both quantitatively and qualitatively over
prior approaches. Compared to Paint with Words, the previ-
ous state-of-the art in image generation with zero-shot seg-
mentation conditioning, we improve by 5 to 10 mIoU points
on the COCO dataset with similar FID scores.

In summary, our contributions are the following:

¢ We introduce ZestGuide, a zero-shot method for im-

age generation from segments with text, designed to
achieve high accuracy with respect to the condition-
ing map. We employ the attention maps of the cross-
attention layer to perform zero-shot segmentation al-
lowing classifier-guidance without the use of an exter-
nal classifier.

* We obtain excellent experimental results, improving

over existing both zero-shot and training-based ap-
proaches both quantitatively and qualitatively.

2. Related work

Spatially conditioned generative image models. Follow-
ing seminal works on image-to-image translation [20], spa-
tially constrained image generation has been extensively
studied. In particular, the task of semantic image synthesis
consists in generating images conditioned on masks where
each pixel is annotated with a class label. Until recently,
GAN-based approaches were prominent with methods such
as SPADE [29], and OASIS [38]. Alternatively, autoregres-
sive transformer models over discrete VQ-VAE [28] repre-
sentations to synthesize images from text and semantic seg-
mentation maps have been considered [14, 16, 34], as well
as non-autoregressive models with faster sampling [8, 21].

Diffusion models recently emerged as a powerful class
of generative image models, and have also been explored
for semantic image synthesis. For example, PITI [43] fine-
tunes GLIDE [27], a large pretrained text-to-image genera-
tive model, by replacing its text encoder with an encoder of
semantic segmentation maps. SDM [44] trains a diffusion
model using SPADE blocks to condition on the input seg-
mentation. LayoutDiffusion [47], instead, trains a diffusion
model conditioned on bounding-box layouts.

The iterative decoding process of diffusion models can
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be biased by so called “guidance” techniques to strengthen
the input conditioning. Classifier guidance [13] uses the
gradient of a pretrained classifier to guide the generation
process for class-conditional image generation. For seman-
tic image synthesis, the gradient of a pretrained semantic
segmentation network can be used as guidance [3]. This
approach, however, suffers from two drawbacks. First, only
the classes recognized by the segmentation model can be
used to constrain the image generation, although this can
to some extent be alleviated using an open-vocabulary seg-
mentation model like CLIPSeg [23]. Second, this approach
requires a full forwards-backwards pass through the exter-
nal segmentation network in order to obtain the gradient at
each step of the diffusion process, which requires additional
memory and compute on top of the diffusion model itself.

While there is a vast literature on semantic image syn-
thesis, it is more limited when it comes to the more gen-
eral task of synthesizing images conditioned on masks with
free-form textual descriptions. SpaText [ 1] finetunes a large
pretrained text-to-image diffusion model with an additional
input of segments or free-form texts. This representation is
extracted from a pretrained multi-modal CLIP encoder [31]:
using visual embeddings during training, and swapping to
textual embeddings during inference. GLIGEN [22] adds
trainable layers on top of a pretrained diffusion models
to extend conditioning from text to bounding boxes and
pose. Similarly, SceneComposer [45] conditions a diffu-
sion model on a multi-scale text-layout pyramid, and trains
using automatically detected image regions. T2I [26] and
ControlNet [46] propose to extend a pretrained and frozen
diffusion model with small adapters for task-specific spa-
tial control using pose, sketches, or segmentation maps. All
these methods require to be trained on a large dataset with
segmentation annotations, which is computationally costly.

Train-free adaptation of text-to-image diffusion models.
Several recent studies [9, 15, 17, 30] found that the position-
ing content in generated images from large text-to-image
diffusion models correlates with the cross-attention maps,
which diffusion models use to condition the denoising pro-
cess on the conditioning text. This correlation can be lever-
aged to adapt text-to-image diffusion at inference time for
various downstream applications. For example, [9, 15] aim
to achieve better image composition and attribute binding.
Feng et al. [15] design a pipeline to associate attributes to
objects and incorporate this linguistic structure by modify-
ing values in cross-attention maps. Chefer et al. [9] guide
the generation process with gradients from a loss aiming at
strengthening attention maps activations of ignored objects.

Zero-shot image editing was explored in several
works [12, 17, 25, 30]. SDEdit [25] consists in adding
noise to an input image, and denoising it to project it to
the manifold of natural images. It is mostly applied on
transforming sketches into natural images. Different from

SDEdit, in which there is no constraint on which part of
the image to modify, DiffEdit [12] proposes a method to
automatically find masks corresponding to where images
should be edited for a given prompt modification. Prompt-
to-Prompt [17] and pix2pix-zero [30] act on cross-attention
layers by manipulating attention layers and imposing a
struture-preserving loss on the attention maps, respectively.

Closer to our work, eDiff-I [2] synthesizes images from
segmentation maps with local free-form texts by rescaling
attention maps at locations specified by the input semantic
masks. DirectedDiffusion [24] similarly modifies the atten-
tion maps to control object positions. In our experiments we
find that this approach is complementary to our gradient-
guided approach, but that it is worse than ours when used
in isolation. MultiDiffusion [4] fuses multiple local gener-
ations each conditioned by the text associated with a seg-
ment. Thus, unlike our approach, requiring as many de-
noising steps as there are segments. In [3] the gradient of a
pretrained class-based segmentation or detection net guides
image generation to respect a spatial layouts during the de-
noising process. In concurrent work similar to ours, Chen et
al. [11] also explore attention-based guidance for zero-shot
spatial layout conditioning, albeit using a different type of
loss which is applied per layer. Their work is evaluated us-
ing bounding box layouts, but could in principle be applied
to segmentation layouts as we use in our paper as well.

3. Method

We first briefly introduce diffusion models before pre-
senting our training-free extension of text-to-image models
enabeling conditioning on segments with associated text. In
Fig. 3 we provide an overview of ZestGuide.

3.1. Preliminaries

Diffusion models. Diffusion models [19] approximate a
data distribution by gradually denoising a random variable
drawn from a unit Gaussian prior. The denoising function is
trained to invert a diffusion process, which maps sample x,
from the data distribution to the prior by sequentially adding
a small Gaussian noise for a large number of timesteps
T. In practice, a noise estimator neural network eg(xy, t)
is trained to denoise inputs X; = /a;Xg + /1 — e,
which are data points X corrupted with Gaussian noise €
where «; controls the level of noise, from ag = 1 (no
noise) to awr =~ 0 (pure noise). Given the trained noise
estimator, samples from the model can be drawn by sam-
pling Gaussian noise x7 ~ N(0,I), and iteratively apply-
ing the denoising Diffusion Implicit Models (DDIM) equa-
tion [40]. Rather than applying diffusion models directly in
pixel space, it is more efficient to apply them in the latent
space of a learned autoencoder [35].

Text-conditional generation can be achieved by provid-
ing an encoding p(y) of the text y as additional input to the
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Figure 3. ZestGuide extracts segmentation maps from text-
attention layers in pretrained diffusion models, and uses them to
align the generation with input masks via gradient-based guidance.

noise estimator €y (Xt, t, p(y)) during training. The noise es-
timator €g is commonly implemented using the U-Net archi-
tecture, and the text encoding takes the form of a sequence
of token embeddings obtained using a transformer model.
This sequence is usually processed with cross-attention lay-
ers in the U-Net, where keys and values are estimated from
the text embedding.

Classifier guidance. Classifier guidance is a technique for
conditional sampling of diffusion models [39, 41]. Given
a label ¢ of an image X(, samples from the posterior dis-
tribution p(Xg|c) can be obtained by sampling each transi-
tion in the generative process according to p(X¢|X¢11,¢) X
p(X¢|x¢+1)p(c|x;) instead of p(x;|x;11). Dhariwal and
Nichol [13] show that DDIM sampling can be extended to
sample the posterior distribution, with the following modi-
fication for the noise estimator €y:

€o(xt,t, p(y)) = €a(xXe, L, p(y)) — V1 — e Vx, p(c[xy).

6]
Classifier guidance can be straightforwardly adapted to gen-
erate images conditioned on semantic segmentation maps
by replacing the classifier by a segmentation network which
outputs a label distribution for each pixel in the input image.
However this approach suffers from several weaknesses: (i)
it requires to train an external segmentation model; (ii) se-
mantic synthesis is bounded to the set of classes modeled
by the segmentation model; (iii) it is computationally ex-
pensive since it implies back-propagation through both the
latent space decoder and the segmentation network at ev-
ery denoising step. To address these issues, we propose to
employ the cross-attention maps computed in the denoising

Generated U-Net input Lion attn. Book attn.

Lion

Book

Figure 4. Top, from left to right: image generated from the prompt
“A lion reading a book.”, the noisy input to the U-Net at ¢ = 20,
cross-attention averaged over different heads and U-Net layers for
“Lion” and “Book”. Bottom: individual attention heads.

model €y of text-to-image diffusion models to achieve zero-
shot segmentation. This has three major advantages. First,
there is no need to decode the RGB image at each denoising
step. Second, our zero-shot segmentation process is a low-
cost method for incorporating segmentation guidance: the
additional computational cost almost entirely comes from
backpropagation through the U-Net. Third, relying on at-
tention to the text input, our approach naturally supports
free-text inputs for the user-provided segments.

3.2. Zero-shot segmentation with attention

To condition the image generation, we consider a text
prompt of length N denoted as 7 = {T3,...,Tn}, and
a set of K binary segmentation maps S = {Si,...,Sk}.
Each segment S; is associated with a subset 7; C T.
Attention map extraction. We leverage cross-attention
layers of the diffusion U-Net to segment the image as it
is generated. The attention maps are computed indepen-
dently for every layer and head in the U-Net. For layer [, the
queries Q; are computed from local image features using a
linear projection layer. Similarly, the keys K; are computed
from the word descriptors 7~ with another layer-specific lin-
ear projection. The cross-attention from image features to
text tokens, is computed as

(@)

K7
A; = Softmax (Ql ! ) ,

Vd

where the query/key dimension d is used to normalize the
softmax energies [42]. Let A]" = A;[n] denote the attention
of image features w.r.t. specific text token 7;, € 7 in layer
l of the U-Net. To simplify notation, we use [ to index over
both the layers of the U-Net as well as the different attention
heads in each layer. In practice, we find that the attention
maps provide meaningful localisation information, but only
when they are averaged across different attention heads and
feature layers. See Fig. 4 for an illustration.
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Since the attention maps have varying resolutions de-
pending on the layer, we upsample them to the highest res-
olution. Then, for each segment we compute an attention
map S; by averaging attention maps across layers and text
tokens associated with the segment:

L N

Si=12 Y e TIAL 3)

=1 j=1

where [[-] is the Iverson bracket notation which is one if the
argument is true and zero otherwise.

Spatial self-guidance. We compare the averaged attention
maps to the input segmentation using a sum of binary cross-
entropy losses computed separately for each segment:

K ~

) S,
Lzes = Z <£BCE(Si7 Si) + LBCE(W» Sz)) 4

i=1

In the second loss term, we normalized the attention maps
S independently for each object. This choice is motivated
by two observations. Firstly, we found that averaging soft-
max outputs across heads, as described in Eq. (3), gener-
ally results in low maximum values in S:. By normalizing
the attention maps, we make them more comparable with
the conditioning S. Secondly, we observed that estimated
masks can have different maximum values across different
segments resulting in varying impacts on the overall loss.
Normalization helps to balance the impact of each object.
However, relying solely on the normalized term is insuffi-
cient, as the normalization process cancels out the gradient
corresponding to the maximum values.

We then use DDIM sampling with classifier guidance
based on the gradient of this loss. We use Eq. (1) to com-
pute the modified noise estimator at each denoising step.
Interestingly, since x;_1 is computed from €y (x;), this con-
ditional DDIM sampling corresponds to an alternation of
regular DDIM updates and gradient descent updates on x;
of the loss £, with a fixed learning rate 7 multiplied by a
function A(¢) monotonically decreasing from one to zero
throughout the generative process. In this formulation, the
gradient descent update writes:

VXt »CZest
||th£’ZeslHoo .
Note that differently from Eq. (1), the gradient is normal-
ized to make updates more uniform in strength across im-
ages and denoising steps. We note that the learning rate
1 can be set freely, which, as noted by [13], corresponds
to using a renormalized classifier distribution in classifier
guidance. As in [2], we define a hyperparameter 7 as the
fraction of steps during which classifier guidance is applied.
Preliminary experiments suggested that classifier guidance
is only useful in the first 50% of DDIM steps, and we set
7 = 0.5 as our default value, see Sec. 4.3 for more details.

Xe—1 =X—1 — 1 A(t) )

In the supplementary material we compare attention
masks obtained with and without spatial self-guidance, and
show that guidance leads to significantly sharper masks.

4. Experiments

We present our experimental setup in Sec. 4.1, followed
by our main results in Sec. 4.2 and ablations in Sec. 4.3.

4.1. Experimental setup

Evaluation protocol. We use the COCO-Stuff validation
split, which contains 5k images annotated with fine-grained
pixel-level segmentation masks across 171 classes, and five
captions describing each image [5]. We adopt three differ-
ent setups to evaluate our approach and to compare to base-
lines. In all three settings, the generative diffusion model is
conditioned on one of the five captions corresponding to the
segmentation map, but they differ in the segmentation maps
used for spatial conditioning.

The first evaluation setting, Eval-all, conditions im-
age generation on complete segmentation maps across all
classes, similar to the evaluation setup in OASIS [38] and
SDM [44]. In the Eval-filtered setting, segmentation maps
are modified by removing all segments occupying less than
5% of the image, which is more representative of real-world
scenarios where users may not provide segmentation masks
for very small objects. Finally, in Eval-few we retain be-
tween one and three segments, each covering at least 5% of
the image, similar to the setups in [1, 4]. It is the most re-
alistic setting, as users may be interested in drawing only a
few objects, and therefore the focus of our evaluation.
Evaluation metrics. We use the two standard metrics to
evaluate semantic image synthesis [0, 29, 38]. Fréchet In-
ception Distance (FID) [ | 8] captures both image quality and
diversity. The mean Intersection over Union (mloU) met-
ric measures to what extent the generated images respect
the spatial conditioning. We additionally compute a CLIP
score [31] that measures alignment between captions and
generated images.

Baselines. We compare to baselines that are either trained
from scratch, finetuned or training-free. The adversarial
OASIS model [38] and diffusion-based SDM model [44]
are both trained from scratch and conditioned on segmen-
tation maps with classes of COCO-Stuff dataset. For SDM
we use T' = 50 diffusion decoding steps. T2I-Adapter [26]
and SpaText [!] both fine-tune pre-trained text-to-image
diffusion models for spatially-conditioned image genera-
tion by incorporating additional trainable layers in the dif-
fusion pipeline. Similar to Universal Guidance [3], we
implemented a method in which we use classifier guid-
ance based on the external pretrained segmentation network
DeepLabV2 [10] to guide the generation process to respect
a semantic map. We also compare ZestGuide to other zero-
shot methods that adapt a pre-trained text-to-image diffu-
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Method Free-form Zero- Eval-all Eval-filtered Eval-few
mask texts shot |[FID tmloU 1CLIP |[FID TmloU 1CLIP |FID tmloU 1CLIP

OASIS [38] X X 150 52.1 — 182 537 — 46.8 414 —
SDM [44] X X 172 493 — 286 41.7 — 653 293 —
SD w/ T2I-Adapter [20] X X 172 333 315 17.8 351 313 192 316 30.6
LDM w/ External Classifier X X 24.1 14.2 30.6 232 17.1 30.2 237 205 30.1
SD w/ SpaText [1] v X 198 16.8 300 189 192 30.1 16.2 23.8 30.2
SD w/ PwW [2] v v 36.2 212 294 350 235 29.5 258 238 29.6
SD w/ MultiDiffusion[4] v v 69.3 158 249 484 223 249 229 248 294
LDM w/ MultiDiffusion v v 599 158 239 467 18.6 258 21.1 19.6 29.0
LDM w/ PwW v v 229 279 315 234 318 314 203 363 31.2
LDM w/ ZestGuide (ours) v v 22.8 331 319 231 433 313 21.0 469 30.3

Table 1. Comparison of ZestGuide to other methods in our three evaluation settings. OASIS and SDM are trained from scratch on COCO,
other methods are based on pre-trained text-to-image models: StableDiffusion (SD) or our latent diffusion model (LDM). Methods that do
not allow for free-form text description of segments are listed in the upper part of the table. Best scores in each part of the table are marked
in bold. For OASIS and SDM the CLIP score is omitted as it is not meaningful for methods that don’t condition on text prompts.

sion model during inference. MultiDiffusion [4] decom-
poses the denoising procedure into several diffusion pro-
cesses, where each one focuses on one segment of the image
and fuses all these different predictions at each denoising
iteration. In [2] a conditioning pipeline called “paint-with-
words” (PwW) is proposed, which manually modifies the
values of attention maps. For a fair comparison, we eval-
uate these zero-shot methods on the same diffusion model
used to implement our method. SpaText, MultiDiffusion,
PwW, and our method can be locally conditioned on free-
form text, i constrast Universal Guidance, OASIS, SDM and
T2I-Adapter only condition on COCO-Stuff class names.
Text-to-image model. Due to concerns regarding the train-
ing data of Stable Diffusion [35] (such as copyright in-
fringements and consent), we refrain from experimenting
with this model and instead use a large diffusion model
(2.2B parameters) trained on a proprietary dataset of 330M
image-text pairs. We refer to this model as LDM. Similar
to [35] the model is trained on the latent space of an image
autoencoder, and we use an architecture for the diffusion
model based on GLIDE [27], with a T5 text encoder [32].
With an FID score of 19.1 on the COCO-stuff dataset, our
LDM model achieves image quality similar to that of Stable
Diffusion, whose FID score was 19.0, while using an order
of magnitude less training data.

Implementation details. For all experiments that use our
LDM diffusion model, we use 7' = 50 steps of DDIM sam-
pling with classifier-free guidance strength set to 3. For
ZestGuide results, unless otherwise specified, we use classi-
fier guidance in combination with the PwW algorithm. We
review this design choice in Sec. 4.3. More details on the
experimental setup can be found in the supplementary.

4.2. Main results

We present our evaluation results in Tab. 1. Compared to
other methods that allow free-text annotation of segments
(bottom part of the table), our approach leads to marked im-

provements in mloU in all settings. For example improving
by more than 10 points (36.3 to 46.9) over the closest com-
petitor PwW, in the most realistic Eval-few setting. Note
that we even improve over SpaText, which finetunes Stable
Diffusion specifically for this task. In terms of CLIP score,
our approach yields similar or better results across all set-
tings. Our approach obtains the best FID values among the
methods based on our LDM text-to-image model. SpaText
obtains the best overall FID values, which we attribute to the
fact that it is finetuned on a dataset very similar to COCO,
unlike the vanilla Stable Diffusion or our LDM.

In the top part of the table we report results for methods
that do not allow to condition segments on free-form text,
and all require training on images with semantic segmenta-
tion maps. We find they perform well in the Eval-all set-
ting for which they are trained, and also in the similar Eval-
filtered setting, but deteriorate in the Eval-few setting where
only a few segments are provided as input. In the Eval-
few setting, our ZestGuide approach surpasses all methods
in the top part of the table in terms of mloU. Compared to
LDM w/ External Classfier, which is based on the same dif-
fusion model as ZestGuide but does not allow to condition
segments on free text, we improve across all metrics and
settings, while being much faster at inference: LDM w/ Ex-
ternalClassifier takes 1 min. for one image while ZestGuide
takes around 15 secs.

We provide qualitative results for the methods based
on LDM in Fig. 5 when conditioning on up to three seg-
ments, corresponding to the Eval-few setting. Our Zest-
Guide clearly leads to superior aligment between the condi-
tioning masks and the generated content. In the supplemen-
tary material we also provide qualitative examples of gen-
erations conditioned on rough non-realistic shape masks.

4.3. Ablations

In this section we focus on evaluation settings Eval-
filtered and Eval-few, which better reflect practical use
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Figure 5. Qualitative comparison of ZestGuide to other methods based on LDM, conditioning on COCO captions and up to three segments.

cases. To reduce compute, metrics are computed with a sub-
set of 2k images from the COCO val set.

Ablation on hyperparameters 7 and n. Our approach has
two hyperparamters that control the strength of the spatial
guidance: the learning rate ) and the percentage of denois-
ing steps 7 until which classifier guidance is applied. Vary-
ing these hyperparameters strikes different trade-offs be-
tween mloU (better with stronger guidance) and FID (better
with less guidance and thus less perturbation of the diffu-
sion model). In Fig. 6 we show generations for a few values
of these parameters. We can see that, given the right learn-
ing rate, applying gradient updates for as few as the first
25% denoising steps can suffice to enforce the layout con-
ditioning. This is confirmed by quantitative results in the
Eval-few setting presented in the supplementary material.
For n =1, setting 7 = 0.5 strikes a good trade-off with an

mloU of 43.3 and FID of 31.5. Setting 7 = 1 marginally
improves mloU by 1.3 points, while worsening FID by 3.2
points, while setting 7 = 0.1 worsens mloU by 9.1 points
for a gain of 1 point in FID. Setting 7 = 0.5 requires ad-
ditional compute for just the first half of denoising steps,
making our method in practice only roughly 50% more ex-
pensive than regular DDIM sampling.

Guidance losses and synergy with PwW. In Fig. 7 we ex-
plore the FID-mloU trade-off in the Eval-filtered setting, for
PwW and variations of our approach using different losses
and both with and without including PwW. We consider
both our loss Lz from Eq. (4), as well as Lgcg which ig-
nores the second normalized loss. For PwW, the FID-mloU
trade-off is controlled by the constant W that is added to
the attention values to reinforce the association of image
regions and their corresponding text. For ZestGuide, we
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“On the moon”

“ A horse”

“An astronaut”

Figure 6. ZestGuide outputs when varying the two main hyperpa-
rameters 7 (learning rate) and 7 (percentage of steps using classi-
fier guidance). Our default configuration is n=1, 7=0.5.

//‘

LBCE
£BCE + PwW
Lyest
o Lz, + PwW (ours)
PwW
] unconstrained
generation

MIoU

) 32 34 36 38 40 42 14 46
FID

Figure 7. Trade-off in Eval-filtered setting between FID (lower is
better) and mloU (higher is better) of PWW and ZestGuide us-
ing different losses. In dotted green is shown the FID for uncon-
strained text-to-image generation. Using Lz« in combination with
PwW (our default setting) gives the best trade-off.

vary 7 to obtain different trade-offs, with 7 =0.5. We find
that all versions of our approach provide better mIoU-FID
trade-offs than PwW alone. Interestingly, using the Lzeq
and PwW separately only marginally improve the mloU-
FID trade-off w.r.t. using the BCE loss, but their combi-
nation gives a much better trade-off (Lzesy + pWW). This
is possibly due to the loss with normalized maps helping
to produce more uniform segmentation masks, which helps
PwW to provide more consistent updates.

In the remainder of the ablations, we consider the sim-
plest version of ZestGuide with the Lpcg loss and without
PwW, to better isolate the effect of gradient guiding.
Attention map averaging. As mentioned in Sec. 3.2, we

Components JFID tmloU 1CLIP

Loss for each attention head 33.6 32.1 29.9

Loss for each layer 31.6 42.7 30.5

Loss for global average (ours)  31.5 433 30.4
Table 2. Evaluation of ZestGuide on Eval-few setting, with dif-
ferent averaging schemes for computing the loss. Averaging all
attention heads before applying the loss gives best results.

found that averaging the attention maps across all heads
of the different cross-attention layers is important to obtain
good spatial localization. We review this choice in Tab. 2.
When we compute our loss on each head separately, we can
see a big drop in mloU scores (-11 points). This reflects
our observation that each attention head focuses on different
parts of each object. By computing a loss on the averaged
maps, a global pattern is enforced while still maintaining
flexibility for each attention head. This effect is much less
visible when we average attention maps per layer, and ap-
ply the loss per layer: in this case mloU deteriorates by 1.6
points, while FID improves by 0.9 points.

Gradient normalization. Unlike standard classifier guid-
ance, ZestGuide uses normalized gradient to harmonize gra-
dient descent updates in Eq. (5). We find that while Zest-
Guide also works without normalizing gradient, adding it
gives a boost of 2 mloU points for comparable FID scores.
Qualitatively, it helped for some cases where the gradient
norm was too high at the beginning of generation process,
which occasionally resulted in low-quality samples.

Additional ablations are provided in the supplementary.

5. Conclusion

We presented ZestGuide, a zero-shot method for pre-
cise spatial control over generated images by conditioning
on segmentation masks annotated with free-text descrip-
tions. Our approach leverages implicit segmentation maps
extracted from text-attention in pretrained text-to-image dif-
fusion models to align the generation with input masks. Ex-
perimental results demonstrate that our approach achieves
high-quality image generation while accurately aligning the
generated content with input segmentations. Our quanti-
tative evaluation shows that ZestGuide is even competitive
with methods trained on large image-segmentation datasets.
Despite this success, the current approach, like many other
existing approaches, tends to overlook small objects in the
input conditioning maps. Further work is required to ad-
dress this limitation which may be related to the resolution
of the attention maps in the diffusion model.
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