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Abstract

Tutorial videos play an increasingly important role in
professional development and self-directed education. For
users to realise the full benefits of this medium, tutorial
videos must be efficiently searchable. In this work, we fo-
cus on the task of moment detection, in which the goal is
to localise the temporal window where a given event occurs
within a given tutorial video. Prior work on moment de-
tection has focused primarily on short videos (typically on
videos shorter than three minutes). However, many tutorial
videos are substantially longer (stretching to hours in dura-
tion), presenting significant challenges for existing moment
detection approaches.

To study this problem, we propose the first dataset
of untrimmed, long-form tutorial videos for the task of
Moment Detection called the Behance Moment Detection
(BMD) dataset. BMD videos have an average duration
of over one hour and are characterised by slowly evolv-
ing visual content and wide-ranging dialogue. To meet
the unique challenges of this dataset, we propose a new
framework, LONGMOMENT-DETR, and demonstrate that
it outperforms strong baselines. Additionally, we introduce
a variation of the dataset that contains YouTube Chapter
annotations and show that the features obtained by our
framework can be successfully used to boost the perfor-
mance on the task of chapter detection. Code and data
can be found at https://github.com/ioanacroi/
longmoment-detr.

1. Introduction

Enabled by cheaper disk storage and networking tech-
nology, long-form videos of tutorial content are proliferat-
ing. As such, there is a pressing need to develop effective
tools for searching within videos. In this work, we consider
this problem through the lens of moment detection— given
a video and a natural language query, our task is to find the
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Figure 1. LONGMOMENT-DETR. Our framework performs mo-
ment detection and unlike previous state of the art methods, it
works on long tutorial videos.

temporal span of the video that best matches the query (as
shown in Fig. 1). Beyond tutorial content, this task also has
applications in domains such as security and entertainment.

To study moment detection in the long-form setting, we
introduce, the first database of long tutorial videos with
manual annotations for validation and testing, called Be-
hance Moment Detection (BMD). The videos, which are
collected from the Behance platform1, consist of tutorial
videos that teach skills with various creative tools such as
drawing, movie editing, animation and photo editing.

Existing moment detection datasets predominantly fea-
ture short videos centered on human activities, such as
cooking or swimming. In contrast, our BMD dataset em-
phasizes long tutorial videos that explore the use of soft-
ware tools for digital artistry. Typically, these tutorials in-
volve screen-sharing sessions detailing creative processes,
often spanning several hours. Efficiently localizing specific
segments in such long videos can greatly enhance user nav-

1https://behance.net
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igation experience. This makes the BMD dataset unique
for the task of moment detection. Moreover, to scale up
training beyond costly manual annotation, we propose a
framework for moment detection that leverages weak super-
vision derived from ASR (Automatic Speech Recognition)
and video segmentation. In this new long video setup, using
the timings from ASR, similar to previous works [24, 17],
produces poor results, as we will show experimentally. So,
in order to adjust for long videos setup, we rely on a mix
of using video segmentation methods [36, 37] and summa-
rization [50, 27, 5, 3] in order to generate good timings and
textual descriptions to use for training.

Lastly, in order to further validate our approach, we pro-
pose a second dataset, called YouTube Chapters (YTC) that
contains full chapter annotation for all splits. In this way,
we are able to assess the quality of the learnt features on
BMD on the downstream task of chapter detection.

We summarise our contributions as: (1) we introduce the
first two long tutorial video datasets: Behance Moment De-
tection (BMD) a multi-modal dataset, suitable for weak su-
pervision with manual annotations for validation and test-
ing and YouTube Chapters (YTC) with chapters annotations
for all splits (2) we propose an effective way to automati-
cally generate moments for the training split of BMD that
leverages Automatic Speech Recognition (ASR) and em-
ploys large language models (LLMs) to eliminate the in-
herent noise that appears in ASR. (3) we show the effec-
tiveness of using BMD to improve the performance on the
downstream task of YouTube chapter detection.

Leveraging the multi-modal features of our new
dataset and utilizing automatic annotations, we present
LONGMOMENT-DETR, the first framework for moment de-
tection in long tutorial videos consisting of the segment tim-
ing generator and query generator.

2. Related work
Moment detection from video. Many works have been
proposed for the task of moment localization [17, 24, 14,
12, 19]. There are two popular families of approaches
for moment detection on short videos: two-stage ap-
proaches and one-stage approaches. In the two-stage ap-
proaches [28, 39, 51, 14, 9, 49, 47, 46], firstly a list of po-
tential candidates is generated and then the candidates are
ranked according to various scores. In the one-stage ap-
proaches [17, 24, 18, 19, 48], the methods directly process
the entire video and output the moment localization. The
most recent methods are based on the transformer encoder-
decoder architecture. Additionally, the methods [24, 17] are
designed to jointly predict moment detection and highlight
detection, while [28] tackles zero-shot moment detection.
[28] is tailored for short videos and it consists of various
modules (temporal event proposal, object detector, pseudo-
query generation module). For our use case, running an

object detector is highly expensive, since the videos are
very long. Moreover, the produced results are usually of
poor quality for tutorial videos since general object detec-
tors are not tailored for this type of content where the host
shares their screen and presents how to use specific soft-
ware applications. Very recently, [29, 30] propose archi-
tectural changes to accommodate for long-formed videos,
specifically within the movie domain. However, given
the scarcity of datasets dedicated to long videos, particu-
larly those with lengthy segments, this area remains under-
explored. To address this issue, we are the first to propose
the task of moment detection in long tutorial videos, along
with two datasets containing very long untrimmed tutorial
videos: one having manual segments annotations for eval-
uation (Behance Moment Detection) and the other having
YouTube Chapters annotations for all splits.
Large Language Models (LLMs). These models are
trained on vastly large corpora of text consisting of tens of
TB of data and have shown surprising zero-shot capabil-
ities on a variety of NLP tasks [50, 3, 27, 40, 34, 6]. No-
table among these are OPT175B [50], Bloom175B [38], and
GPT3 [3], each boasting roughly 175B parameters. While
GPT3 is available only through a paid API, OPT and Bloom
models are open-source and are freely accessible to the re-
search community. Even without task-specific finetuning,
they exhibit strong zero-shot performance on multiple NLP
benchmarks [20, 35, 10]. A distinguishing trait of LLMs
is their prompt-driven adaptability to varied tasks. In our
case, for tutorial videos, the available transcripts, although
informative, can be noisy. These transcripts, generated us-
ing efficient automatic speech recognition tools [32, 2], are
refined by LLMs, which we employ to extract relevant in-
formation and eliminate noise.
Video segmentation. The task of temporal video segmen-
tation aims to split the whole video into smaller sub-videos
based on the semantic content. This is an important task in
computer vision, being an essential pre-processing step for
various other video understanding downstream tasks, such
as video retrieval, moment detection or video summariza-
tion. In our case, we aim to use such models for segment
timing generation. Various methods have been proposed
for this task [44, 37, 36, 45], however they are designed
and trained on short videos databases [42, 13]. Because of
this, we have chosen to use unsupervised temporal video
segmentation methods [36, 37, 15], that do not require re-
training for our particular case.

3. Dataset
Both datasets, Behance Moment Detection (BMD) and

YouTube Chapters (YTC), consist of long tutorial videos
and are collected from the Behance platform. These are the
first two datasets containing untrimmed, long-form tutorial
videos for the tasks of moment detection and chapters detec-
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Figure 2. Behance Moment Detection example. We propose a moment retrieval dataset containing long tutorial videos. Each video is
split into multiple segments and each segment has an associated query. We highlight with green the moment associated to the given query.

tion, respectively. While these tasks are important in videos
of any duration, moment localization in long-form tutorial
videos can add extra value since it improves the user ex-
perience and eases video navigation by saving significant
searching time (for example a user can only be interested
where a specific character is drawn, but it is time-consuming
to find that part in a long video).

The validation and testing splits of BMD are manu-
ally annotated, while the training split is automatically cu-
rated. For YTC, we sourced human-annotated chapters
from YouTube. All data is publicly accessible online.

3.1. Behance Moment Detection

We collected videos from Behance Livestream, a plat-
form for creative users who share their work, having over
30 million users. The videos from our dataset were
livestreamed and then made publicly available on the plat-
form. We choose Behance since the videos are of high qual-
ity with relatively little noise and the type of the videos are
aligned with our target videos, namely long tutorial videos.
The usual flow for these videos is: 1) the host greets the
viewers and talks about what they will showcase in the
video (usually they show how to use different creative apps
such as Adobe Fresco or Photoshop), 2) the host shares their
screen and 3) they start using the chosen app while talking
and giving useful tips and details about the creative pro-
cess. For example, the host can use drawing tools for cre-
ating cartoon characters or can showcase how to use video
editing tools for creating a movie, how to add shadows, etc.
One such example can be seen in Fig. 2. These tutorial
livestreams are usually very long, the majority being over
one hour long, as presented in Fig. 3. The videos repre-
sent source materials that teach skills for educational pur-
poses. There are thousands of long tutorial videos available
on Behance and there are thousands more on other video
platforms such as YouTube, which can directly benefit from
our method of moment detection in long videos.

In Tab. 1 we present a comparison with other moment
detection datasets. There is a striking difference when com-
paring the average length of the videos and of the segments
with other existing datasets. There is only one other dataset
which contains long videos, namely the MAD [41] dataset.

Figure 3. Histogram of video duration. The majority of the
videos in the BMD dataset are longer than one hour.

MAD contains videos extracted from movies and leverages
the audio descriptions of movies for visually impaired audi-
ences, having the average length of the segment of around
4.1s, while ours has a much longer segment duration of over
17 minutes. This makes our dataset more suitable for down-
stream tasks, such as chapter detection. Another major dif-
ference is that the videos from our datasets are untrimmed,
while for some other datasets such as QVHighlights [17],
the videos are automatically split into 3-minute segments.
This can result in loss of context or some actions being
trimmed in an unnatural way, which can lead to annotations
issues. The BMD dataset contains over 13, 000 hours of
videos (with over 630 hours of human-annotated videos).
There are 7.9k videos used for training, 117 for validation
and 171 for testing. While other moment retrieval datasets
suffer from temporal biases [14, 9, 19] where the segments
tend to occur in the beginning of the video, our dataset con-
tains segments that span the entire video. All the videos in
the dataset have transcripts, extracted with Azure speech-to-
text. On average each transcript contains 1500 sentences.
Validation and testing split. For the validation and test-
ing splits we outsourced the annotation task to a specialised
company having a team of qualified and experienced an-
notators. The annotators were asked to watch the tutorial
video, segment it into high-level chapters and write a natural
language description for each segment. The description is a
brief summary of what happens in the segment and should
contain no more than a few sentences. The cost for an-
notating the validation and testing split was approximately
$10, 000 and took around 3 months for the 288 videos.
Training split. Due to the high cost of collecting the an-
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Dataset Domain #videos #queries Avg len videos(sec) Avg len segment Total number of hours
DiDeMo [14] Flickr 10.6k 41.2K 29.3 6.5 88

ActivityNet [16] Activity 15K 72K 117.6 36.2 490
CharadesSTA [12] Activity 6.7k 16.1K 30.6 8.1 57

TVR [19] TV show 21.8K 109K 76.2 9.1 461
QVHighlights [17] Vlog/News 10.2K 10.3K 150 24.6 425

MAD [41] Movies 650 384.6K 6646(1.8 hours) 4.1 1207.3
BMD-Train† Livestream 7.9K 35.9K 5768 (1.6 hours) 1022 (17 mins) 12.7k
BMD-Eval Livestream 288 1499 7957 (2.2 hours) 1537 (25.6 mins) 638

YouTube Chapters Livestream 467 4391 6472 (1.8 hours) 687 (11.5 mins) 840

Table 1. Comparison between BMD and YTC to existing moment retrieval datasets. The segments from our datasets are significantly
longer than the ones from any other existing datasets. Moreover, in our datasets the segments span the entire duration of the video
eliminating potential biases. †BMD-Train contains automatically curated annotation.

notations, the training set was annotated automatically by
leveraging the transcript together with pretrained large lan-
guage models. Since the videos are livestreamed, the host
interacts with the viewers and verbally explains the steps
involved in the creative process for making digital art, in-
cluding a detailed description of what they create or how
to efficiently use the tools to obtain the desired outcome.
While parts of the transcripts are extremely informative re-
garding what is happening in the video, there is also a lot of
noise, which includes redundant information or information
that is irrelevant to the tutorial (for example chit-chat about
events that happened lately). Because the average length of
the transcript is around 1500 sentences, we need an efficient
way of condensing and extracting the relevant information.
We achieve this by using GPT3 through the API provided
by OpenAI. This incurs an additional cost of approximately
$1, 000 for all training videos. More details about the sum-
marization procedure and a detailed comparison between
different LLMs can be found in Sec. 4.3.

While this gives us the ability to generate high-quality
queries for the segments, another challenge is how to gen-
erate timings and split the video into meaningful parts. This
step is equally important and affects the final performance
of the model as we will show later. In order to address this
challenge, we considered various state-of-the-art methods
for video segmentation [36, 37] in order to generate seg-
ment timings. As the final model, we use the OSG [36]
method. More details can be found in Sec. 4.3.

3.2. YouTube Chapters

Recently, YouTube introduced the functionality to add
video chapters as a way to improve the user experience,
especially for long videos. The creator of the video has
the possibility to segment the video into several sections
and to add a short description to each section. This facil-
itates easy rewatching or skipping to the desired content in
the video. Some of the videos from our Behance Moment
Detection dataset are also published on the YouTube plat-
form and contain manual chapter labels. In order to further

test the quality of our method, we collected chapter anno-
tations from almost 500 videos (379 in training, 17 in val-
idation and 71 in the testing split). Most of the visual con-
tent of the videos from YouTube Chapters already exists in
the Behance Moment Detection dataset, which assures the
fact that the videos are from the domain we are interested
in (namely tutorial videos). However, there are clear dif-
ferences between the two annotations. Firstly, the queries
from YouTube Chapters are very brief and consist of just
a few words (such as How to remove chromatic aberration
or Creating GIFs in Photoshop) while the annotations from
BMD dataset are fully formed sentences describing the ac-
tions happening in that segment of the video, as presented
in Fig. 4. Secondly, the temporal segmentation of the video
is different (the average segment length in BMD is approx.
20 minutes long, while in YTC is approx. 11 minutes long,
as illustrated in Tab. 1), thus being a domain gap between
the BMD and YTC annotations.

4. Method

We first define the task of moment retrieval in long tu-
torial videos (Sec. 4.1). Then, we introduce our full frame-
work (Sec. 4.2), providing additional insights about our au-
tomatic moment generation pipeline (Sec. 4.3). Finally, we
present architecture details (Sec. 4.4) and elaborate about
our design choices.

4.1. Task definition

Given a video v = {f1, f2, ..., fV } (where fi represents
the i-th frame of the video) and a query q in natural lan-
guage, the objective of moment detection is to find the pair
(i, j), i < j so that the video segment starting at fi and fin-
ishing at fj is best described by the query q. Our goal is to
train a model that receives as input the whole video v and
query q and outputs the start and end time (i, j).

Let D = {vl|l = 1..N} be a dataset of N videos with
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segment annotations A =
N⋃
l=1

Al where

Al = {(qk, (ik, jk))|fik , fjk ∈ vl, ik < jk, k = 1..Ql}

denotes the segment annotations for video vl. Ql represents
the number of segments in vl while qk represents the query
written in natural language for the segment starting at ik and
finishing at jk. In order to train the model M for the task
of moment detection we use a similar setup as Moment-
DETR [17], which is described in more detail in Sec. 4.4.

4.2. The LONGMOMENT-DETR framework

In Algorithm 1 we present the process for our
LONGMOMENT-DETR framework. Since the cost (both
time and financial resources) of collecting manual annota-
tions for thousands of videos is high, an effective way of
decreasing this cost is to curate automatic annotations for
the training split D. After gathering the videos from the
Behance platform, the first step is to automatically gener-
ate the transcripts from the audio modality using the Azure
speech recognition tool. Next, the videos are split into sev-
eral segments representing different key parts of the video.
After having the timings for the segments, we use the cor-
responding transcript for that timespan and we summarize
it in order to extract the essential information. We then pro-
ceed to train our final model M using a standard approach
for this task, similarly to [17].

Algorithm 1 LONGMOMENT-DETR framework
1: Phase 1: generateMomentAnnotations(D) → A
2: A = ∅
3: for video vl in D do
4: Generate transcript sl for vl
5: Tl = segmentsGeneration(vl)
6: Al = ∅
7: for timing (ik, jk) ∈ Tl do
8: qk = queryGeneration((ik, jk), sl)
9: Add (qk, (ik, jk)) to Al

10: end for
11: A = A ∪Al

12: end for
13: Phase 2: Train the final model, M
14: for minibatch of paired samples (v, a), a =

(qk, (ik, jk)) ∈ A, v ∈ D do
15: Extract video features x from v
16: Extract text features pk from qk
17: Feed x and qk to M and get output o.
18: Compute the loss between o and (ik, jk).
19: Update M base on loss
20: end for

4.3. Moment generation

Our approach has two steps: segments timing generation
and query generation which will be discussed next.
Segment timing generation. Temporally segmenting the
video according to topics is an important step in our pipeline
which affects the final performance of the system. We con-
sidered and compared various potential solutions: starting
directly from using the timings given by the speech recog-
nition tool or splitting the video into random segments to us-
ing state of the art unsupervised methods such as OSG [36]
and ONG [37]. The last two video segmentation meth-
ods receive as input the video features (in our case, Slow-
Fast [11] features) and a parameter s, representing the num-
ber of segments to split the video in. For choosing the pa-
rameter s, we tested two approaches: estimate the number
of segments based on SVD (as described in [36]) or us-
ing a constant. Based on the results of these experiments
(for full results, see Sec. 5.2) for the final method we use
OSG [36] with five scenes per video. This step acts as the
segmentsGeneration function in Algorithm 1.
Query generation. For this task, the simplest approach is
to use directly the transcript. However, while parts of the
transcript are quite informative, it also contains noise and
information that is not relevant to the visual content or to
the tutorial (for example the host may converse about the
weather). It would therefore be useful to have an automatic
method to extract a condensed version of the relevant infor-
mation from the transcript associated with a video segment.
For this, we considered various techniques such as ex-
tractive summarization [5] or using large language models
(LLMs). Models such as Bloom175B [27], OPT175B [50]
and GPT3 [3] are able to perform a large variety of tasks,
including summarization and information extraction from
large chunks of text. We begin by concatenating all the
sentences from the transcript that span during the start and
end time of a segment proposal and feed it to the language
model along with the instructions to summarize the text.
We used the following prompt: ”Summarize this tutorial
transcript:”. In Sec. 5.2 we present detailed ablations stud-
ies between different summarization methods. For the final
model, we used GPT3 (Curie model) to obtain the query for
each generated segment. In cases where the segment tran-
script is too long to be processed by GPT3, the final query
is the concatenation of several splits of the transcript, each
processed by GPT3 independently. This step acts as the
queryGeneration function in Algorithm 1.

4.4. Architecture details

We start from the Moment-DETR [17] architecture
which uses an encoder-decoder transformer [43] and is
based on the DETR architecture [4]. The model receives as
input the concatenation between the video and text features
and outputs the center and width of the predicted moment.
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Method #scenes Precision Recall F1
Transcript timing 200 97.8 8.7 15.0

Random split 5 54.5 71.6 53.5
ONG [37] SVD 48.19 86.70 43.42
OSG [36] SVD 67.08 76.45 57.18
ONG [37] 5 45.95 89.21 42.69
OSG [36] 5 62.17 83.37 59.51

Table 2. Comparison of different video segmentation methods.
Using directly the timings from the transcript has very poor results,
while OSG performs the best in terms of F1 score.

Segmentation Method R1@0.5 ↑ R1@0.7 ↑
Transcript timing 3.1±0.4 0.5±0.2

Random 9.4±1.6 2.6±0.8

ONG 7.1±0.6 1.7±1.4

OSG 13.4±0.5 6.3±0.3

Table 3. Comparison between different video segmentation
methods combined with LONGMOMENT-DETR. The timings
generation has a direct impact on performance. The number of
scenes considered as input parameter for OSG and ONG is 5.

One limitation of [17] is that it assumes the video has a
length of 3 minutes. In order to make it suitable for running
on longer videos, we adjust the meta-parameters and make
low-level changes to the model implementation such as re-
moving hard-coded constraints. Please see Suppl.Mat. for
more details. This modified version becomes the architec-
ture used in our whole LONGMOMENT-DETR framework.
For features, we employ SlowFast [11] video understand-
ing features extracted every 8 seconds and GPT2-xl [33]
features for the text.
Implementation details. Our model is trained in PyTorch,
using the AdamW optimizer [25] with a learning rate of 1e-
4 and weight decay of 1e-4. All the models were trained
on an NVIDIA A100 GPU. Due to memory limitations, we
trained the model with a batch size of 16.

5. Experiments
5.1. Metrics

We report the standard metrics used in moment detec-
tion: R1@0.5 and R1@0.7, where a prediction is consid-
ered correct if it has an intersection over union (IoU) with
the ground truth ≥ 0.5, respectively ≥ 0.7. When it comes
to assessing the performance of video segmentation meth-
ods we report the standard metrics for this task: precision,
recall and F1-score, while for comparing query generations
we report the ROUGE metrics [22] which are commonly
used for the task of summarization [26, 8, 1] and are proven
to have a good correlation with the human judgment [23].

5.2. Ablations

For all the ablation experiments, we report results on the
validation split, unless otherwise stated.
Segment timing generation. We begin by testing several

Method R-1 R-2 R-L
Transcript 2.31 0.34 1.85

Captioning BLIP [21] 7.56 0.5 6.8
Extractive [5] 8.54 0.59 6.17

Bloom175B [38] 9.09 0.52 7.36
OPT175B [50] 10.99 0.74 8.23

GPT3 [3] 15.49 1.36 11.85

Table 4. Evaluation of query generation using ROUGE metrics.
We assess the performance of different query generation methods.
The transcript, being significantly longer than the human annota-
tion, has a low score, while the LLMs perform the best.

methods and assess their video segmentation performance
in Tab. 2. This performance correlates with the moment de-
tection results shown in Tab. 3. Moreover, we observe that
following prior works [17, 24] and using only the timings
from the transcripts gives poor results. This is expected,
since for BMD the average segment length is considerably
longer than the segment obtained from transcript timing. In
fact, just by randomly splitting the video into 5 segments,
the performance improves significantly. We obtain the best
results using the OSG [36] video segmentation method us-
ing five scenes.
Query generation. Another important step in our method
is automatic query generation. Since the image and video
captioning systems are trained on visual data that is out of
domain as compared to our tutorial videos, we expect those
systems to perform worse than the systems based on textual
information. In Tab. 4 we present summarization results as
compared to the human annotation for the validation split
and observe that GPT3 obtains the best results. Also, in
Fig. 4 we present a qualitative example for the query gener-
ation task using LLMs.

In Tab. 5 we present results for LONGMOMENT-DETR
using various query generation techniques. The best score
is obtained using the GPT3 model which correlates with the
results from Tab. 4. However, while there is a correlation
between the results, we notice that there is a significantly
smaller gap between the performance of using LLMs such
as Bloom175B or OPT175B and using the raw transcript
for the task of moment detection. An explanation for this, is
that even though the transcript is very long, which directly
affects the ROUGE score, for the task of moment detection
it contains enough relevant information in order to make up
for the differences in performance. For the final model, we
use the GPT3 model as the query generation method.
Influence of pre-trained features. Our model receives at
input pre-trained features for both the visual and textual
component. For this ablation study, we assess the influ-
ence of such features on the final performance as seen in
Tab. 6. For the visual side, we consider the SlowFast [11]
and CLIP [31] features while for the textual side, we con-
sider GPT2-xl [33], DiffCSE [7] and CLIP [31]. The best
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Figure 4. Comparison of summaries generated by GPT3, OPT175B and Bloom175B. During the summarization process no human
annotation was used. In this figure, the human description and video frames are shown only for reference. While the AI generated
summaries are obtained only from the transcript, the human had access to the whole video and audio when making the annotation.

Summ Method R1@0.5 ↑ R1@0.7 ↑
Transcript 13.6±0.5 6.3±0.3

Bloom175B 13.4±0.6 7.0±0.2

OPT175B 14.0±0.6 6.7±0.8

GPT3 16.8±0.5 9.2±1.0

Table 5. Comparison between different LLM query genera-
tion methods in conjunction with LONGMOMENT-DETR. As
it can be seen, GPT3 performs the best. What is interesting is
that by using the raw transcript, the performance is only slightly
worse than using other power full summarization methods such as
Bloom175B and OPT175B.

Video feats Text feats R1@0.5 ↑ R1@0.7 ↑
SlowFast GPT2-xl 16.8±0.5 9.2±1.0

SlowFast DiffCSE 13.1±1.5 6.5±1.2

SlowFast CLIP 11.2±0.7 4.9±0.9

CLIP CLIP 12.7±0.6 6.2±0.3

CLIP GPT2-xl 13.8±1.2 7.1±1.8

CLIP DiffCSE 13.8±1.9 7.5±0.7

Table 6. Influence of pre-trained features on performance. The
best performance is obtained using SlowFast features for the visual
side and GPT2-xl features for the textual side.

results are obtained using SlowFast for the visual side and
GPT2-xl for the textual side.
Influence of different components. In Tab. 7 we present
an overview of the influence of different components on
the testing split (the results on validation split are presented
previously in each corresponding section). We start with a
Moment-DETR [17] model as Baseline. We observe that
both the segment timing generation and the query genera-
tion have a strong impact on performance. We obtain the
best results by combining the timing generation from OSG
with the GPT3 query generation which represents our final
LONGMOMENT-DETR framework.

Component Segments Queries R1@0.5 ↑ R1@0.7 ↑
Baseline [17] No No 2.7±0.6 0.3±0.1

Random seg Random No 9.2±1.8 2.6±0.4

Summarize Random GPT3 13.2±0.3 5.6±0.6

ShotDetect OSG No 12.6±0.4 5.5±0.4

LONGMOMENT-DETR OSG GPT3 16.3±0.3 8.3±0.5

Table 7. Effect of different components on performance. Both
the segment timing generation and query generation have a strong
impact on performance. Hence, in the final model, we use OSG
and GPT3, thus obtaining our final model LONGMOMENT-DETR.
The results are presented on the testing split.

5.3. Comparison with others

In this section, we compare our method against two re-
cent methods: Moment-DETR [17] and UMT [24] adjusted
for ingesting long videos. For UMT we use the video only
version as introduced in the paper [24]. This comparison
can be seen in Tab. 8. By training using the raw transcripts,
which is similar to the pre-training stage of [17], the results
in our case for long tutorial videos are poor. However, by
adjusting the base architecture and use the automatic gener-
ated segments tailored for long videos, the results improve
significantly for Moment-DETR as observed in the table.
Moreover, if we use our full LONGMOMENT-DETR frame-
work, as described in Sec. 4.2, the results are significantly
better than previously published methods.

5.4. YouTube Chapters

To further evaluate the quality of our features obtained
using the automatic annotations, we have collected new data
from YouTube Chapters as described in Sec. 3.2.
Experimental setup. We initially train the network us-
ing BMD. Once trained, these weights serve as the founda-
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Figure 5. Qualitative examples for BMD (A) and YTC (B). Along with the query, we show several video frames, the prediction results
in orange and the ground truth in green. We also specify the overlap between the prediction and ground truth segments. Please note how
different the queries between BMD and YTC are. Also, while the prediction results have an offset from the ground truth, we want to
highlight how subtle is the change in scenery for our proposed datasets.

Model R1@0.5 ↑ R1@0.7 ↑
Moment-DETR [17] 2.7±0.6 0.3±0.1

UMT [24]† 11.5±1.0 4.6±1.3

Moment-DETR [17]† 12.6±0.4 5.5±0.4

LONGMOMENT-DETR 16.3±0.3 8.3±0.5

Table 8. Comparison with other methods. As it can be seen,
LONGMOMENT-DETR achieves better results than other moment
detection methods. †denotes training the models with the timings
obtained by our proposed method using OSG. The results are pre-
sented on the testing split.

tion for fine-tuning on the subsequent task of chapter detec-
tion. While the BMD training data is automatically curated,
when we transition to training on the manually annotated
data from the YTC dataset, we distinguish this model by re-
ferring to it as CHAPTER-DETR. This model uses the same
architecture as LONGMOMENT-DETR.
Results. The results for chapter detection are presented in
Tab. 9. We observe that when only pre-training on BMD
and directly assessing performance, the performance is low,
the main reason being the distribution shift between the
queries and segments in BMD and the ones in YTC. The
queries from BMD are often composed of several sentences
while the chapter annotation only contains a few words (as
showcased in Fig. 5). However, if we first pre-train on BMD
and then finetune with chapter annotations, there is a ma-
jor boost in performance. These results prove that not only
LONGMOMENT-DETR can be used on its own for moment
detection, but it can be used to significantly improve the
performance for the task of chapter detection.
Limitations. Since our method relies on automatic annota-
tion generation, various problems such as text hallucination

Model Pre-training Training R1@0.5 ↑ R1@0.7 ↑
LONGMOMENT-DETR BMD - 5.0±2.4 2.2±1.5

CHAPTER-DETR - YTC 12.6±0.3 5.8±0.6

CHAPTER-DETR BMD YTC 16.1±0.5 6.6±0.3

Table 9. Results on YouTube-Chapters. If we evaluate
LONGMOMENT-DETR trained with BMD directly on the task of
chapter detection on the YTC dataset, the performance is low.
However, if we use BMD as pre-training data and then train fully
supervised for the task of chapter detection, there is a signifi-
cant boost in performance as opposed to randomly initializing the
model (4th line vs 3rd line).

or incorrect segment timing generation directly affect the
results of our system. Other limitations regarding particular
components are discussed throughout the paper.
Societal impact. Moment retrieval systems enable efficient
content discovery for learning. However, these systems can
exhibit biases towards particular groups or they can be used
for spreading misinformation. Another aspect is the notable
cost and carbon footprint required to train modern models.

6. Conclusions
In this paper we presented the LONGMOMENT-DETR

framework which tackles the task of moment detection in
long tutorial videos. We introduced, the first two long tuto-
rial video datasets, Behance Moment Detection (BMD) and
YouTube Chapters (YTC). BMD has human annotations for
testing and validation splits and we propose a novel system
to automatically curate the annotations for the training split
by leveraging the information from the transcript. Lastly,
we introduced YTC, a dataset containing human annotated
chapters, and we further test and prove the effectiveness of
the features obtained from BMD for chapter detection.
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