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Abstract

Traditional and deep Structure-from-Motion (SfM) meth-
ods typically operate under the assumption that the scene
is rigid, i.e., the environment is static or consists of a sin-
gle moving object. Few multi-body SfM approaches ad-
dress the reconstruction of multiple rigid bodies in a scene
but suffer from the inherent scale ambiguity of SfM, such
that objects are reconstructed at inconsistent scales. We
propose a depth and camera pose estimation framework to
resolve the scale ambiguity in multi-body scenes. Specifi-
cally, starting from disorganized images, we present a novel
multi-view scale estimator that resolves the camera pose
ambiguity and a multi-body plane sweep network that gen-
eralizes depth estimation to dynamic scenes. Experiments
demonstrate the advantages of our method over state-of-
the-art SfM frameworks in multi-body scenes and show that
it achieves comparable results in static scenes. The code
and dataset are available at https://github.com/
andreadalcin/MultiBodySfM .

1. Introduction
Real-world environments often contain independently

moving objects, and their reconstruction is fundamental for
safe robot navigation and augmented reality in complex dy-
namic environments. Unfortunately, traditional and deep
learning Structure-from-Motion (SfM) algorithms assume
that the scene is static and treat moving objects as outliers,
missing important information and producing suboptimal
results when the scene is dynamic. In Fig. 1-left, the depth
reconstructed by the state-of-the-art DeepSfM [36] shows
artifacts in the image region of a moving object (in red).

In this work, we go one step further and enable consis-
tent 3D reconstruction (Fig. 1-right) of a scene with multi-
ple rigidly moving objects. This task, also known as Multi-
Body Structure-from-Motion (MBSfM), is still open and
far from being solved in practice. Traditional MBSfM at-
tempts [1, 26] segment rigid motions to obtain partial re-
constructions of individually moving objects in the scene.
However, these methods are hampered by the relative scale
problem, namely that the 3D structure of each indepen-
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Figure 1: Two-views of a multi-body scene (top-row). Depth esti-
mation networks (e.g. [36]) yield inconsistent depths (bottom-left)
for moving objects. Our method explicitly accounts for moving
objects to produce geometrically consistent depths (bottom-right).

dently moving object is estimated up to a similarity, so
that each object is reconstructed in its own scale. There-
fore, a unified reconstruction of all objects up to a common
global scale factor is impossible without additional infor-
mation. Similarly, deep methods for SfM that leverage ex-
plicit multi-view constraints [34, 36, 13, 29, 4] are affected
by the relative scale problem and cannot regress a unified
depth map of a multi-body scene since their underlying ar-
chitecture cannot handle multiple motions.

Recent monocular depth estimators [9, 2] use learned
priors to regress dense depth maps from images without
exploiting multi-view constraints. Thus, monocular meth-
ods implicitly avoid the relative scale problem by regress-
ing consistent depth maps across the entire image. How-
ever, monocular depth estimation is inherently ill-posed and
these models do not provide the same generalization capa-
bilities of multi-view methods when scenes are static. Fur-
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thermore, the 3D structures inferred from different images
of the same scene are not guaranteed to be consistent. Thus,
this inconsistency eventually manifests in alignment prob-
lems that are not trivial to solve.

In this work, we present a novel deep learning frame-
work for depth and camera pose estimation designed specif-
ically for multi-body scenes. Following consolidated MB-
SfM pipelines, we perform motion segmentation to recover
a set of relative camera poses up to a scale factor and the
corresponding sparse 3D reconstructions of each moving
object. Then, we depart from existing MBSfM approaches
by directly solving the relative scale problem and regressing
geometrically consistent depth maps and refined poses.

Specifically, our main contributions are twofold:
(1) a robust scale estimation to fix the scale ambiguity,
(2) a multi-body plane sweep network to regress refined

camera poses and depth maps in multi-body scenes.
Our scale estimator uses monocular depth maps to unify

the 3D structures and camera poses under a global scale fac-
tor. This is based on a robust voting scheme that mitigates
the impact of inaccuracies in monocular depth estimates.

We adopt a deep neural network for multi-body depth
estimation and pose refinement. The network adopts our
novel multi-body plane sweep algorithm, which uses all the
rigid motions in the scene, now devoid of scale ambigu-
ity, to compute dense depth maps and refined camera poses.
Notably, the estimated depth maps are geometrically con-
sistent even in image regions covered by moving objects.
Plane sweep has never been extended to support multiple
rigid motions to the best of our knowledge. Our network
also includes a pose estimation module that refines camera
poses based on current depth estimates.

We demonstrate the effectiveness of our approach on
both static and multi-body scenes. On static scenes, our
method performs on par with traditional and deep SfM
methods. On multi-body scenes, it significantly outper-
forms SOTA deep learning SfM methods in the depth es-
timation task and achieves comparable camera pose results.

2. Problem Formulation
Multi-body depth and camera pose estimation is framed

as follows. The input is a set of n unstructured images
{Ii}ni=1 captured by a moving camera and depicting a multi-
body scene in which µ objects B = {βi}µi=1 independently
move according to their rigid motions. Without loss of
generality, we consider the object β1 to be static w.r.t. to
the camera motion. Our goal is to estimate depth maps
{Di}ni=1 for each image Ii and the absolute camera poses
{Ri, ti}ni=1 in the reference frame of β1. We assume that:
i) an upper bound M on the maximum number µ of moving
objects in the scene is given, ii) the camera is perspective
and its intrinsic parameters K are known.

Consider that our problem is different from non-rigid

SfM [16, 14]. Non-rigid SfM handles a wider class of object
deformations but does not assume unstructured input im-
ages, typically exploiting dense temporal information, and
is restricted to orthographic cameras.

3. Related Work
Depth and camera pose estimation from unstructured im-

ages of multi-body scenes is largely unexplored, and most
SfM methods either consider static scenes only (µ = 1) or
treat moving objects as outliers. This section focuses on
the few SfM methods that address the multi-body scenario
(µ > 1) from unstructured images acquired by perspective
cameras. Also, we discuss monocular depth estimation, a
component of our solution, and relevant deep multi-view
static SfM methods.

3.1. Multi-body Structure-from-Motion (MBSfM)

A few works have addressed MBSfM from unstructured
images {Ii}ni=1 as a generalization of traditional SfM to
multi-body scenes. We identify two main research direc-
tions. First, early factorization methods [32, 6] segment
rigidly moving objects B and perform sparse 3D reconstruc-
tion in a single step. However, factorization methods rely on
restrictive assumptions on camera models and require com-
plete feature tracks, which are seldom available in practice.
Due to its lack of robustness, factorization has yet to see
practical applications beyond short, unrealistic sequences.

The second, more recent, research direction separates
motion segmentation of objects B and their 3D reconstruc-
tion. [1, 26] cluster sparse correspondences based on their
rigid motion and then recover the 3D structure of each ob-
ject independently using a SfM pipeline [27]. As discussed
in [23, 24, 17], the relative scale problem affects these meth-
ods because each object is reconstructed in its own scale. In
SLAM, the relative scale problem has been addressed un-
der specific assumptions: [23] assumes objects move in a
one-parameter family of motions, and [17] works only with
video input and continuous object motion. Our method also
decouples motion segmentation and reconstruction. How-
ever, we explicitly address the relative scale problem using
a learning-based approach without further assumptions on
the input images or the motions in the scene.

3.2. Monocular Depth Estimation

Recent works [9, 2] recover a dense depth map D1 from
a single image I1. These methods learn priors to regress
depth maps, allowing consistent scale reconstruction of
moving objects B without scale ambiguity. However, due
to the ill-posed nature of monocular depth estimation, gen-
eralization is limited and multi-view approaches remain the
benchmark for SfM in deep learning.

In [20, 38], monocular depth maps are estimated from
video frames, and then a network is fine-tuned on the entire
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Figure 2: The three main steps of our method: i) motion segmentation: produces a set of essential matrices describing the rigid motion of
objects between view pairs. ii) robust scale estimation: uses monocular depth cues to fix the scale ambiguity of each moving object. iii)
multi-body plane-sweep network based on our novel multi-body plane-sweep regress refined depth maps and camera poses.

video sequence. These methods do not assume unstructured
images and require many frames for depth and pose tracking
and fine-tuning. In addition, depth estimation for moving
objects still relies solely on depth priors, which can lead to
inaccuracies as in standard monocular depth estimation.

3.3. Deep Learning for SfM

Deep learning methods for SfM from unstructured im-
ages regress camera poses and dense depth maps using
multi-view stereo matching. DeMoN [33] works on im-
age pairs using stacked encoder-decoder networks but lacks
explicit multi-view constraints and has limited accuracy.
More recent architectures [29, 4, 36, 34, 13, 31] replace
the generic encoder-decoder architecture with layers that
explicitly enforce multi-view constraints. Other works
achieve better results by taking inspiration from traditional
Bundle Adjustment: DeepSfM [36] introduces depth and
pose cost volumes for iterative refinement, and [29] uses a
BA-layer for regression from basis depth maps. Wang et al.
[34] propose a scale-invariant network for depth and pose
estimation for view pairs. Specifically, camera poses are es-
timated from essential matrices robustly fitted on fine-tuned
optical flow matches, thus treating all moving objects as
outliers. Then, depth maps are regressed end-to-end using a
CNN similar to DeepSfM. Finally, [4] optimizes non-linear
cost functions in SfM using recurring neural networks.

As the above deep methods embed explicit multi-view
geometric constraints in their optimization layers, they are
affected by the scale ambiguity of traditional MBSfM and
cannot generalize to multi-body scenes, as shown in Fig. 1.

4. Method

Our method, illustrated in Fig. 2, is structured in three
steps. First, given the unstructured images {Ii}ni=1, we per-
form motion segmentation from image pairs α to estimate
essential matrices {Eα

k}
µ
j=1 that encode the µ rigid mo-

tions in the scene. Second, we fix the scale ambiguity of
each Eα

k by exploiting cues provided by monocular depth
maps {Mi}ni=1 in a robust scale estimation module. Finally,
a multi-view depth and camera pose estimation network
leverages our novel multi-body plane sweep algorithm to
regress geometrically-consistent depth maps {Di}ni=1 and
camera poses {Ri, ti}ni=1 by considering all the µ motions.

4.1. Motion segmentation

The goal of motion segmentation is to recover the essen-
tial matrices {Eα

k}
µ
k=1 that encode all rigid motions in the

scene in any image pair α = (Ii, Ij). To this end, we com-
bine traditional sparse motion segmentation, based on SIFT
[19], with dense deep optical flow matches.

For each image Ii, we extract {xi,u}pi

u=1 SIFT keypoints
and match them across image pairs. Then, for each pair α,
we fit µ essential matrices {Eα

k}
µ
k=1 to the matches using

RPA [21], a multi-model fitting algorithm. RPA provides a
labeling ℓα that assigns a matched keypoint to the motion
it belongs to. Labels assigned to different image pairs may
be inconsistent, thus we use permutation synchronization
[1] to enforce a global labelling ℓ that assigns to keypoints
belonging to the same motion the same label in all views.

In multi-body scenes, moving objects can be supported
by only a few keypoints. Therefore, to refine the essential
matrices, we augment the set of sparse matches with dense
ones computed from the optical flow. Similarly to [34], we
consider the dense matches at keypoint locations and, thus,
avoid the typical inaccuracies of the optical flow caused by
illumination changes and texture-less regions. In particular,
given an image pair α = (Ii, Ij), for each object βk ∈ B,
we consider U i

k = {xi,u : ℓ(xi,u) = k} the sparse key-
points in Ii labelled as k. Around each keypoint x ∈ U i

k we
consider a squared neighborhood N(x) of 3×3 pixels. The
union of neighborhoods Si

k =
⋃

x∈Ui
k
N(x) defines a mask

in Ii as illustrated in Fig. 2. We refine Eα
k by RANSAC

equipped with the 5-point algorithm [22, 18] on the set of all
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Figure 3: (left) In a multi-body scene, the scale of triangulated structures (orange) differs from the true object scale (cyan), leading to
inconsistent relative object scales, i.e., cube bigger than pyramid. The tentative scale factor λ1

i,u of X1
u ∈ β1 is the ratio of the monocular

depth m1
i,u and its triangulated depth d1i,u. (right) Traditional plane sweep [5] vs. our novel multi-body plane sweep.

the dense matches corresponding to the mask Si
k. The opti-

cal flow is computed using the DICL-Flow network [35].

4.2. Robust Scale Estimation

We factorize each essential matrix Eα
k = [t̃αk ]×R̃

α
k to

obtain the relative camera pose as a rotation R̃α
k and transla-

tion t̃αk . Since each t̃αk is recovered only up to an unknown
scale-factor λk, each moving object in a multi-body scene
is reconstructed in its own arbitrary scale λk. Specifically,
given an image pair α, we can triangulate from matched im-
age points a set of 3D points {Xk

u}
pk

u=1 belonging to object
βk from the up-to-scale camera pose {R̃α

k , t̃
α
k}. However,

these 3D points are expressed in the scale λk of t̃αk , meaning
that different objects refer to inconsistent scales. Fig. 3-left
depicts a multi-body scene where the scale ambiguity man-
ifests as an inconsistent relative scale between objects λ1β1

and λ2β2 in the triangulated scene (orange) w.r.t. the actual
3D scene (cyan). Thus, the cube λ1β1 appears larger than
the pyramid λ2β2 in the reconstruction.

We estimate the unknown scale factor λk for each object
βk by first regressing a monocular depth map Mi from each
image Ii using AdaBins [2]. This network processes each
Ii individually and, thus, is not affected by the multi-view
scale ambiguity. We denote by dki,u and by mk

i,u the trian-
gulated and monocular depths respectively of the u-th 3D
point Xk

u w.r.t. Ii. Then, for each object βk and image Ii,
we compute the point-wise scale factor λk

i,u = dki,u/m
k
i,u

that approximates the real λk according to the triangulated
and monocular depths of Xk

u .
As monocular depth maps generally lack in accuracy, we

devise a voting scheme to robustly aggregate the scale fac-
tors from all images {Ii}ni=1 and unify all the µ camera
poses under a global scale factor λ. First, we partition the
point-wise scale factors computed from all the images into
µ sets Λk = {λk

i,u}
n,pk

i=1,u=1 according to their object βk.
Then, to promote robustness, we adopt a Kernel Density
Estimator and derive a probability density function ϕk from
each Λk. We use a Gaussian Kernel K with bandwidth h set

at 5% of the median of the elements in Λk and define the
kernel ϕk as follows:

ϕk(x) =
∑

λk
i,u∈Λk

K(λk
i,u − x)

h
. (1)

The highest peak of ϕk is denoted by λ̂k and represents
the estimate of the k-th object scale factor λk. The esti-
mated {λ̂k}µk=1 are used to scale the pairwise relative cam-
era poses [R̃α

k , λ̂
−1
k t̃αk ] by multiplying the translation com-

ponent. Now, camera poses are aligned to a global scale
factor λ. As depths Mi are regressed in real-world unit of
measurement, λ ≈ 1, i.e., camera poses should be approx-
imately in their real-world scale. We denote the correctly
scaled camera poses as [R̂α

k , t̂
α
k ] and use this unified cam-

era configuration as the initialization for the next step.

4.3. Multi-body Plane Sweep Network

Although the poses {R̂α
k , t̂

α
k} are now aligned to a sin-

gle scale factor, the depths are only estimated from monoc-
ular maps Mi which ignore the multi-view constraints. In
principle, it could be possible to use camera poses to initial-
ize a multi-view iterative scheme where depths and poses
are refined, as in [36], but this would regress inconsis-
tent depths in regions corresponding to moving objects.
Thus, we design a novel multi-body depth and pose esti-
mation network that takes the unordered images {Ii}ni=1

and the scale-consistent poses {R̂α
k , t̂

α
k} to jointly estimates

geometrically consistent depth maps {Di}ni=1 and refined
poses {Ri, ti}ni=1 in the reference frame of object β1. As
shown in Fig. 4, we include two separate branches for depth
and pose estimation, which are used alternatively in an iter-
ative scheme using the output of the other branch as input.

4.3.1. Multi-body Depth Estimation Branch
As depicted in Fig. 4, our depth estimation branch is based
on our novel multi-body plane sweep and concatenates the
following modules.
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Figure 4: Multi-body Plane Sweep network. We extract CNN features from input images and build a cost volume using our multi-body
plane sweep algorithm. Depth and camera poses are regressed from separate cost volumes with a series of 3D CNN and refinement layers.

Feature Extraction. A multi-scale CNN with spatial pyra-
mid pooling [12] extracts features {Fi}ni=1 from images
{Ii}ni=1. Each Fi has dimension C × W × H, where C,
W, H are feature channels, width and height respectively.

Multi-body Plane Sweep for Cost Volume Construction.
Let us briefly recall how the traditional plane sweep works
before describing our contributions. The traditional plane
sweep algorithm [5] takes as input an image pair α of a
source Ii and target Ij and their relative pose [Rα, tα].
The algorithm samples a set of virtual planes parallel to
Ij at fixed depths {dl}Ll=1. Then, for each depth dl, the
source Ii is warped onto the target Ij through the homogra-
phy induced by the plane at dl and the relative camera pose
[Rα, tα], as in Fig. 3-right. A dense depth map is obtained
by selecting, for each pixel, the depth dl that minimizes
a pixel-wise photometric dissimilarity between the target
Ij and the warped source Ii. Deep methods [13, 36, 34]
revisited this framework, but measure featuremetric con-
sistency between latent features {Fi}ni=1 instead of photo-
metric dissimilarity. To this end, warped source and tar-
get features are aggregated in a single depth cost volume
from which depths are regressed through convolutional lay-
ers. Unfortunately, both traditional and deep plane sweep
methods assume static scenes with a single relative camera
pose [Rα, tα] between the pair α. As a result, any point
belonging to a moving object has an inconsistent depth.

We propose instead a multi-body plane sweep that con-
siders all the µ relative poses {R̂α

k , t̂
α
k}

µ
k=1 to warp a source

feature Fi onto a target Fj and construct the depth cost vol-
ume. Given a source-target pair α = (Ii, Ij), we uniformly
sample L 3D virtual planes at depths {dl}Ll=1 parallel to the
source Ii. Then, we sequentially assign each depth plane
to one of the µ relative camera poses by cycling through
the {R̂α

k , t̂
α
k}

µ
k=1. Thus, the individual features Fi of the

object βk are warped onto Fj in a geometrically consistent
manner when considering any depth plane assigned to the
camera pose [R̂α

k , t̂
α
k ] relative to βk. This is depicted in

Fig. 3-right, utilizing color to illustrate the cyclic assign-
ment of the k-th and h-th rigid motions to planes at dl and
dl+1, respectively, and to subsequent planes. Finally, each
point u in the source feature Fi is first back-projected onto
the virtual planes at dl and then re-projected as ũlk on the
target Fj as follows:

F̃k
il(u) = Fi(ũlk), ũlk ∼ K

[
R̂α

k |t̂αk
] [(K−1u)dl

1

]
, (2)

where F̃k
il is the warped source feature through the homog-

raphy induced by the plane at dl and the motion [R̂α
k , t̂

α
k ].

Cost volume Construction. Given the set of virtual depth
planes {dl}Ll=1, for each dl, we obtain a warped source fea-
ture F̃k

il using Eq. 2 and concatenate it to the target fea-
ture Fj . This yields a set of L feature blocks, each sized
2C × W × H, that we arrange into a 4D depth cost vol-
ume sized 2C × L × W × H, as illustrated in Fig. 5. Since
the number of virtual planes is significantly higher than the
number of motions, all the µ motions are assigned to some
virtual planes. Thus, our cost volume jointly incorporates
all the motions in the scene, unlike traditional plane-sweep
methods that assume a single motion.
Cost volume Regularization. Regularizing the cost vol-
ume is fundamental to cope with imperfect latent feature
matching, which is especially common in image regions
corresponding to texture-less objects or uniform pixel in-
tensity. To this end, we use a sequence of 3D convolutional
layers consisting of L/2 filters of size 3×3×3 with stride 1,
and residual connections. Then, we apply a 3D convolution
with a single 3× 3× 3 filter to obtain a 3D cost volume of
size L×W×H. Since the order of the stacked features in the
cost volume follows the correct virtual plane sequence, 3D
convolutional layers can capture the 3D dependencies in the
scene to enable consistent depth map estimation. Finally,
we apply edge-preserving filtering to the resulting cost vol-
ume as in [13, 11]. In the case of multiple source-target
image pairs, the final 3D cost volume is obtained by aver-
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aging the 3D cost volumes from each pair. Further details
on the cost volume can be found in the supplementary.
Depth Regression. We denote as cl each slice of the ag-
gregated cost volume, which corresponds to a plane at dl.
Then, we convert the aggregated cost volume to a probabil-
ity volume as in [15] and use the softmax operation σ to nor-
malize the probability volume across the depth dimension.
We estimate the depth map Di for a view Ii as follows:

Di =
L× dmin

l̃
, l̃ =

L∑
l=1

l × σ(cl), (3)

where l̃ is the map corresponding to the average of virtual
plane depths l ∈ {1, . . . , L}, weighted by the probabilities
σ(cl). In (3), dmin denotes the depth of the closest plane to
the source image.

4.3.2. Pose Estimation Branch
We describe our pose estimation branch, which optimizes
current camera pose estimates through feature-metric con-
sistency. To this purpose, we use a network architecture
akin to the one in [36]. The network receives a pair α =
(Ii, Ij), the depth map Di of Ii and [R̂α

1 , t̂
α
1 ], the current

camera pose estimate in the reference frame of β1, to regress
a refined [Rα

1 , t
α
1 ]. We uniformly sample P tentative cam-

era poses {R̂α
1p, t̂

α
1p}Pp=1 by perturbing the rotation and the

translation of the initial poses [R̂α
1 , t̂

α
1 ]. The P poses are

used to construct a pose cost volume by warping each point
u in the source feature Fi to a point ũp on the target feature
Fj as follows:

ũp ∼ K
[
R̂α

1p | t̂α1p
] [(K−1u)Di(u)

1

]
. (4)

Finally, a sequence of 3D convolutional layers is applied to
the pose cost volume to regress the camera pose [Rα

1 , t
α
1 ].

...

4D Cost Volume Feature blocks

Figure 5: Cost volume construction by multi-body plane sweep.
For each virtual depth plane at dl ∈ {dl}Ll=1, we generate a
2C × W × H feature map by concatenating the target feature Fj

(gray) to the warped source feature F̃γ
il (in color) at depth dl us-

ing motion [R̂α
γ , t̂

α
γ ]. The 4D cost volume is constructed through

concatenation of these L feature blocks. F̃k
il (in blue) indicates

a source feature Fi warped onto Fj through the homography in-
duced by the generic plane at dl and its relative camera motion
[R̂α

k , t̂
α
k ]. Instead, F̃h

il is induced by the motion [R̂α
h , t̂

α
h ] (in pink).

lower is better ↓ higher is better ↑
view Method Abs Rel Sq Rel RMSE RMSElog δ1 δ2 δ3

E
ig

en
Sf

M
(s

)

sv
DORN [9] 0.067 0.295 2.929 0.108 0.949 0.988 0.995
AdaBins [2] 0.054 0.182 2.341 0.087 0.966 0.995 0.999

mv

DeepV2D [31] 0.050 0.212 2.483 0.089 0.973 0.992 0.997
Wang et al. [34] 0.034 0.103 1.919 0.057 0.989 0.998 0.999
Ours 0.044 0.148 2.125 0.068 0.974 0.996 0.999

E
ig

en
(s

&
m

)

sv
DORN [9] 0.072 0.307 2.727 0.120 0.932 0.984 0.994
AdaBins [2] 0.058 0.190 2.360 0.088 0.964 0.995 0.999

mv

SfMLearner [39] 0.208 1.768 6.856 0.283 0.678 0.885 0.975
CCNet [25] 0.140 1.070 5.326 0.217 0.826 0.941 0.975
BANet [29] 0.083 - 3.640 0.134 - - -
DeepV2D [31] 0.064 0.350 2.946 0.120 0.946 0.982 0.991
Wang et al. [34] 0.055 0.224 2.273 0.091 0.956 0.984 0.993
Ours 0.054 0.186 2.269 0.086 0.966 0.991 0.996

E
ig

en
M

B
(m

)

sv
DORN [9] 0.072 0.307 2.727 0.120 0.932 0.984 0.994
AdaBins [2] 0.062 0.201 2.372 0.092 0.959 0.994 0.999

mv

DeepV2D [31] 0.089 0.401 3.278 0.152 0.931 0.965 0.989
Wang et al. [34] 0.063 0.242 2.347 0.109 0.948 0.971 0.991
Ours 0.057 0.197 2.301 0.090 0.962 0.991 0.994

Table 1: Depth evaluation on KITTI Depth. Results from single-
view (sv) and multi-view (mv) depth estimation methods evalu-
ated under two-view SfM setting. Best results in bold.

4.3.3. Training and Inference
We train the feature extractor, 3D convolutions and regres-
sion layers in a end-to-end supervised manner. We denote
as D the depth regressed from the refined cost volume, and
as Dgt the ground-truth depth. To improve the learning pro-
cess, we also regress a depth map D̃ from the cost volume
before applying edge-preserving filtering. The loss func-
tion is defined as Ldepth =

∑
i λH(D̃,Dgt) + H(D,Dgt),

where λ = 0.7 is a weight and H(·) is the Huber loss. The
pose losses Lrot and Ltrans are defined as the ℓ1 distance be-
tween the predicted and ground-truth absolute poses. Our
final loss is then: L = λrLrot + λtLtrans + λdLdepth. All the
weights are specified in the supplementary.

The multi-body plane sweep component of the network
has no learnable parameters and is not trained. Our network
does not require any form of motion annotation for depth
estimation, even in multi-body scenes. For this reason, we
train our model on static frames from KITTI [10] and De-
MoN [33]. The training and inference are performed in an
iterative fashion in four steps, where the regressed depth
maps and camera poses are fed to the next iteration.

5. Experiments
We evaluate our method on static (s) and multi-body

(m) datasets for depth and pose estimation against state-of-
the-art single-view (sv) and multi-view (mv) methods. In
Sec. 5.4 we discuss the limitations of our method and pos-
sible countermeasures. Additional experiments and imple-
mentation details are provided in the supplementary.

5.1. Datasets, Competitors and Metrics

KITTI Depth (s & m) [10] is designed for depth evalua-
tion in autonomous driving and contains several image se-
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Figure 6: Multi-body Unstructured Extract. Three view pairs extracted from our proposed dataset for illustration purposes. The dataset
contains indoor sequences that depict varied scenarios in which objects of several different sizes move in the scene.

MVS Scenes11 SUN3D

Depth Pose Depth Pose Depth Pose

Method L1-inv Sc-inv L1-rel Rerr terr L1-inv Sc-inv L1-rel Rerr terr L1-inv Sc-inv L1-rel Rerr terr

AdaBins [2] 0.048 0.236 0.291 - - 0.020 0.382 0.270 - - 0.021 0.127 0.161 - -
DeMoN [33] 0.047 0.202 0.305 5.156 14.447 0.019 0.315 0.248 0.809 8.918 0.019 0.114 0.172 1.801 18.811
LS-Net [4] 0.051 0.221 0.311 4.653 11.122 0.010 0.410 0.210 4.653 8.210 0.015 0.189 0.650 1.521 14.347
BA-Net [29] 0.030 0.150 0.080 3.499 11.238 0.080 0.210 0.130 3.499 10.370 0.015 0.110 0.060 1.729 13.260
DeepSfM [36] 0.021 0.129 0.079 2.824 9.881 0.007 0.112 0.064 0.403 5.828 0.013 0.093 0.072 1.704 13.107
Wang et al. [34] 0.015 0.102 0.068 2.417 3.878 0.005 0.097 0.058 0.276 2.041 0.010 0.081 0.057 1.391 10.757

Ours (M = 1) 0.016 0.107 0.068 2.538 4.538 0.005 0.099 0.058 0.321 3.649 0.011 0.084 0.061 1.470 12.018
Ours (M = 2) 0.019 0.121 0.073 2.681 7.340 0.007 0.102 0.069 0.401 4.619 0.013 0.092 0.071 1.625 13.402
Ours (M = 3) 0.025 0.132 0.075 2.892 9.530 0.009 0.124 0.078 0.542 5.782 0.014 0.095 0.079 1.769 15.231
Ours (M = 4) 0.026 0.134 0.076 2.931 9.741 0.009 0.128 0.081 0.571 5.803 0.016 0.107 0.084 1.830 15.904

Table 2: Depth and pose evaluation on MVS, Scenes 11, SUN3D. (s). For all metrics lower is better. Best results are in bold.

quences where objects move rigidly. We consider the Eigen
[7] split (697 frames) and the Eigen SfM split [34] (256
frames), a subset of the Eigen split without moving objects.
In addition, we introduce the Eigen MB split, a subset of
the Eigen split that includes 90 frames in which dynamic
objects appear and camera motions are well-conditioned.
MVS, Scenes11, SUN3D. (s) MVS [33] includes outdoor
sequences with large baselines. Scenes11 [33] contains
fairly realistic frames from rendered scenes with accurate
ground truth depth and camera poses. SUN3D [37] is an in-
door dataset with sometimes inaccurate ground truth depth
and camera poses. For SUN3D, we consider the split by
[33] to exclude frames with high photoconsistency errors.
ETH3D SLAM. (m) [28] contains SLAM sequences with
ground truth depth and camera poses. We consider the
dynamic sequences motion1-2-3-4 and, specifically, a 32
frames split where camera motions are well-conditioned.
Multi-body Unstructured. (m) We capture multi-body in-
door sequences using a Kinect with ground truth depth. The
dataset is meant for evaluation in varied conditions, for in-
stance, when image sets are unstructured or when both large
and big objects move in the scene. We use RGB-D SLAM
[8] to fuse visual information and data from the Kinect IMU
and annotate accurate camera poses. The dataset includes
42 frames with either one or two moving objects. Samples
scenes are reported in Fig.6 and additional details are pro-
vided in the supplementary.

Competitors. We compare against state-of-the-art single-
view methods (sv) DORN [9] and AdaBins [2], and multi-
view methods (mv) DeMoN [33], LS-Net [3], CCNet [25],
BANet [29], DeepV2D [31] and Wang et al. [34]. De-

MoN estimates depth and poses from image pairs, CCNet
and SfMLearner mask moving objects before depth and
pose estimation, LS-Net, BANet and DeepV2D optimize
multi-view differentiable cost functions to minimize photo-
or feature-metric errors, and Wang et al. [34] proposes a
deep, scale-invariant estimator for depth and camera poses
that robustly identify the dominant background motion β1.

Metrics. To evaluate the quality of depth maps in KITTI
Depth, we adopt the metrics in [7], i.e., the depth abso-
lute (Abs Rel) and squared (Sq Rel) relative difference, the
RMSE, the RMSElog, and the thresholds {δi}3i=1. For other
datasets, we adopt the metrics in [33], i.e., scale-invariant
depth error (sc-inv), relative error to ground truth depth (L1-
rel), relative error w.r.t. inverse depth (L1-inv). The defini-
tions of these metrics are in the supplementary. As for pose
estimation, we report the angle (in deg) between predicted
and ground truth translations (terr) and rotations (Rerr) of
the cameras with respect to the background motions β1.

Implementation Details. We fine-tune the optical flow net-
work on KITTI Depth for a fair comparison to [34]. Oth-
erwise, we train the optical flow on synthetic scenes, as in
[35], and let the proposed framework refine initial camera
poses. We implement our framework using PyTorch. The
batch size is set to 32. The learning rate is set to 1 × 10−4

and is halved after 2 epochs. For KITTI Depth, the feature
extractor is initialized with pre-trained weights, which are
frozen for the first epoch. For other datasets, we train the
network from randomly initialized weights. Training takes
approximately 3 days on 2 NVIDIA RTX A6000 GPUs.
Further details are reported in the supplementary.
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Figure 7: Qualitative comparisons on ETH3D and Multi-body Unstructured. (m) The yellow boxes highlight moving objects recon-
structed by our method but not by DeepSfM [36].

5.2. Static evaluation (s)

KITTI Depth. The Eigen SfM block of Tab. 1 reports
quantitative results for static depth estimation. Our method
beats the single-view methods [9, 2] and also the multi-view
DeepV2D [31] in all metrics and with a clear margin. Yet
Wang et al. [34] achieves better performance on this static
scenes, although it recovers only up-to-scale depth maps.
MVS, Scenes11, SUN3D. Quantitative results are shown in
Tab. 2. Our method beats the single-view [9, 2] and multi-
view [33, 4, 29] in most metrics, but achieves results that
are on par or slightly worse compared to DeepSfM [36],
since we rely on monocular depth cues that are less accu-
rate than the DeMoN depths used in DeepSfM. The best
results are achieved by [34]. In the supplementary, we show
that our method beats geometric SfM baselines. By set-
ting M = 1 and leveraging the static scene assumption, we
outperform [36] and are similar to [34]. However, when
the scene is static and M ≥ 2 motions are considered, our
method produces outlying essential matrices that may neg-
atively impact depth estimation. Nonetheless, we achieve
good results for M ≥ 2 and even outperform [36] in the
multi-body configuration M = 2. For M ≥ 2, the per-
formance drop is limited, indicating that M can be larger
without affecting depth accuracy substantially.

5.3. Multi-body evaluation (m)

KITTI Depth. The Eigen MB and Eigen blocks of Tab. 1
report quantitative results for depth estimation in the multi-
body setting. As opposed to the static case, our method
beats its multi-view competitors in both the considered
splits. Specifically, we observe the most significant mar-
gin in the Eigen MB split, in which dynamic objects neg-
atively affect the quality of static multi-view depth estima-
tors [30, 34]. This is evident in the highlighted portion of
Fig. 8, where our method accurately reconstructs the mov-
ing vehicle, whereas the state-of-the-art Wang et al. [34]
exhibits significant artifacts. As in the static evaluation, our
framework beats monocular approaches [2, 9] in most met-
rics, showing it effectively leverage multi-view constraints
for improved depth estimation accuracy. Less strict thresh-
olds δ2, δ3 generally see better results for single-view meth-
ods compared to multi-view due to better handling of occlu-
sions and image regions with uniform pixel intensity. How-
ever, monocular methods perform worse on the most strict
threshold δ1 and the other accuracy-oriented metrics.
ETH3D and Multi-Body Unstructured. Results on these
multi-body datasets are reported in Tab. 3. Our method pro-
duces more accurate depth and camera pose estimates than
its competitors in all metrics. Specifically, our method out-
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Figure 8: Qualitative results on KITTI (m). The yellow box highlights a moving vehicle that is captured more accurately by our method.

ETH3D Multi-body Unstructured

Depth Pose Depth Pose

Method L1-inv Sc-inv L1-rel Rerr terr L1-inv Sc-inv L1-rel Rerr terr

DeMoN[33] 0.38 0.41 0.33 5.63 12.04 0.52 0.71 0.41 4.90 9.26
AdaBins[2] 0.35 0.39 0.27 - - 0.48 0.63 0.38 - -
DeepSfM[36] 0.12 0.14 0.10 2.80 9.64 0.22 0.22 0.18 2.38 5.03
Wang et al.[34] 0.21 0.19 0.17 3.26 9.04 0.27 0.22 0.19 2.79 7.67

Ours (M=1) 0.11 0.14 0.10 2.98 9.58 0.21 0.22 0.18 2.21 5.01
Ours (M=2) 0.09 0.12 0.08 2.91 8.53 0.19 0.20 0.17 1.99 4.91
Ours (M=3) 0.08 0.11 0.08 2.94 8.28 0.17 0.19 0.16 1.94 4.72
Ours (M=4) 0.09 0.11 0.09 2.94 8.23 0.17 0.20 0.17 1.94 4.70

Table 3: Depth and pose evaluation on multi-body datasets (m).
For all metrics, lower is better. Best results are in bold.

performs DeMoN [33] by a significant margin and, when
compared to DeepSfM [36], attains better results in depth
estimation in both datasets. This is shown by the quali-
tative results of Fig. 7, where depth maps from DeepSfM
exhibit noticeable break-ups in the areas corresponding to
the moving objects. Our pose estimation is also more ac-
curate, except for the Rerr over the ETH3D dataset [28].
Overall, we attribute this difference to: i) DeepSfM suffers
from poor initialization from DeMoN, which is not accu-
rate in multi-body scenes and hinders the overall quality of
the reconstruction, ii) the plane sweep algorithm adopted
by DeepSfM constructs cost volumes that do not satisfy the
geometric constraints for the moving objects. Our method
also beats Wang et al. [34] in all metrics by a clear margin.
As expected, the performance of Wang et al. suffers signifi-
cantly in multi-body scenes. The moving objects are treated
as outliers and negatively impact the accuracy of the esti-
mated camera poses, which, in turn, undermine the quality
of depth estimation. By segmenting the rigid motions in the
scene before computing camera poses, our method exploits
and is robust to the moving objects and achieves state-of-
the-art performance in multi-body depth estimation. The
effectiveness of multi-body plane sweep (PS) is evidenced
by the uplift in performance for M ≥ 2 in Tab. 3. Note
that for M = 1, a single motion is considered and MBPS
specializes to traditional PS, with similar results to [36].

5.4. Discussion and Limitations

Our method inherits some known limitations of the
multi-view approaches. In this section we discuss their pos-
sibile mitigations.

Small camera motions may hinder initial pose estimates.
Our pose refinement network mitigates poor initializations,
but it may not recover in particularly challenging cases.

Occlusions are mitigated, as in [13, 36], by aggregating cost
volumes from multiple image pairs, if available. However,
with only two images, occlusions result in noisy depth maps

in the region of the occluded objects, as seen in the second
sequence of Fig. 7.

Monocular depth inaccuracies may hinder the estimation
of object scale factors. However, we observed our KDE vot-
ing scheme can isolate outlying measurements and return
accurate results when enough (∼ 10) factors are computed.

Non-rigid scenes. Our method is not designed for non-rigid
scenes, for which different assumptions are used, e.g. tem-
poral coherence or complete reliance on monocular depth
for moving objects. Nevertheless, as shown in the supple-
mentary, our method can reconstruct articulated motions,
provided that a sufficient number of motions is considered.

Virtual depth planes. Our multi-body plane sweep assigns
L/M depth planes to each motion, meaning that the more
motions considered, the fewer depth planes are assigned to
each motion. As stated in the supplementary, we consider
up to four motions in our evaluation, as increasing the num-
ber of depth planes worsens training and inference times.

Inference times are on average ∼ 20% higher in KITTI
Depth with respect to [34] due to the required motion seg-
mentation step, as discussed in the supplementary.

6. Conclusion

In this paper, we have addressed the problem of multi-
body depth and camera pose estimation. We overcome
the scale-ambiguity problem typical of all the MBSfM
approaches by introducing a learning-based robust voting
scheme to unify the scales of all independently moving ob-
jects in the scene. In addition, we overcome the static-
scene assumption of deep SfM approaches thanks to a novel
multi-body plane sweep network that explicitly supports the
additional multi-view geometric constraints derived from
the multiple bodies. Extensive experiments on multi-body
datasets show that our method outperforms state-of-the-art
deep learning methods qualitatively and quantitatively.
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