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Abstract

“Search for” or “Navigate to”? When we find a spe-
cific object in an unknown environment, the two choices al-
ways arise in our subconscious mind. Before we see the
target, we search for the target based on prior experience.
Once we have seen the target, we can navigate to it by re-
membering the target location. However, recent object nav-
igation methods consider using object association mostly to
enhance the “search for” phase while neglecting the im-
portance of the “navigate to” phase. Therefore, this paper
proposes a dual adaptive thinking (DAT) method that flexi-
bly adjusts thinking strategies in different navigation stages.
Dual thinking includes both search thinking according to
the object association ability and navigation thinking ac-
cording to the target location ability. To make navigation
thinking more effective, we design a target-oriented memory
graph (TOMG) (which stores historical target information)
and a target-aware multi-scale aggregator (TAMSA) (which
encodes the relative position of the target). We assess our
methods based on the AI2-Thor and RoboTHOR datasets.
Compared with state-of-the-art (SOTA) methods, our ap-
proach significantly raises the overall success rate (SR) and
success weighted by path length (SPL) while enhancing the
agent’s performance in the “navigate to” phase.

1. Introduction
Object navigation [27, 20, 23, 40] is a challenging task

that requires an agent to find a target object in an unknown
environment with first-person visual observations. Some
researchers [29, 13, 17] recently introduced scene prior
knowledge into end-to-end navigation networks. These
methods have been applied to address various issues, in-
cluding object associations [37], object attention bias [5],
and the lack of universal knowledge [14]. However, these
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methods improve the efficiency of only the “search for”
phase (start→the target is first seen) while neglecting the
“navigate to” phase (the target is first seen→end). Our ex-
periments show that for the current SOTA end-to-end meth-
ods, the “navigate to” steps account for 62.75% of the whole
path, while only 45.78% for humans; the success rate after
seeing the target is only 81.09%, while humans can reach
99.92%. Therefore, the primary issue with current end-to-
end object navigation techniques is the low navigation effi-
ciency in the “navigate to” phase.

Some modular approaches [4, 30] model the environ-
ment by using top-down semantic maps [28, 32]. With the
help of detailed semantic maps, the object navigation task
can be decoupled into two training subtasks: predicting the
subtarget point and navigating to the subtarget point, thus
optimizing the agent navigation ability after seeing the tar-
get. However, these methods depend strongly on semantic
maps, which are hypersensitive to sensory noise and scene
changes. Furthermore, generating high-quality semantic
maps requires considerable computational resources.

To address the above issues, we aim to integrate this task
decoupling concept in modular methods into end-to-end
methods. Therefore, we propose the dual adaptive thinking
(DAT) method. As shown in Figure 1, the agent’s think-
ing modes are divided into search thinking and navigation
thinking. Search thinking guides the agent to quickly lo-
cate the target according to prior knowledge. Navigation
thinking assists the agent in efficiently navigating to the tar-
get position after locating the target. The agent adaptively
adjusts the dominance of the two thinking methods in an
end-to-end network according to the navigation progress.

Specifically, we develop different designs for the search
thinking network and navigation thinking network. For the
search thinking network, we adapt the directed object atten-
tion (DOA) graph method proposed in [5] to design object
association and attention allocation strategies. For the navi-
gation thinking network, we propose a target-oriented mem-
ory graph (TOMG) to store the simplified agent state and

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

8250



Target:Book

First See Target

The agent needs to search for and navigate to a book

“Navigate to” Phase

Search Thinking Search Thinking
Navigation Thinking

Fu
si

on

“Search for” Phase

Figure 1. The first target-visible frame divides the agent’s naviga-
tion process into two phases: “search for” (pink) and “navigate to”
(blue). During the “search for” phase, the agent uses only search
thinking to search for the target. During the “navigate to” phase,
navigation thinking assists the agent in quickly navigating to the
target location.

target orientation information. Furthermore, we design a
target-aware multi-scale aggregator (TAMSA) to refine the
features in the TOMG to guide the agent’s navigation.

Extensive experiments on the AI2-Thor [18] and
RoboTHOR [6] datasets show that our DAT method not
only optimizes the “navigate to” phase in the end-to-end
network but also outperforms the state-of-the-art (SOTA)
method [5] by 8.07% and 8.66% in the success rate (SR)
and success weighted by path length (SPL). Moreover, we
propose three new metrics, search success rate (SSR), navi-
gation success rate (NSR) and navigation success weighted
by navigation path length (NSNPL), to respectively assess
the agent’s search ability during the “search for“ phase and
the navigation ability during the “navigate to” phase. As
a general concept, the proposed multiple-thinking strategy
can be applied in various other embodied artificial intelli-
gence tasks. Our contributions can be summarized as fol-
lows:

• We propose a dual adaptive thinking (DAT) method
that allows the agent to flexibly use different modes
of thinking during navigation.

• We carefully design a navigation thinking network
with a selective memory module (TOMG) and a fea-
ture refinement module (TAMSA) to implicitly encode
the target location into the end-to-end network.

• We demonstrate that our DAT method not only ad-
dresses inefficiencies in the “navigate to” phase but
also substantially outperforms existing object naviga-
tion models.

2. Related Works
2.1. Object Navigation

Object navigation tasks [2, 35, 33] require an agent to
navigate to a target object in an unknown environment while
considering only visual inputs. Recently, the relationships
between objects have been introduced into navigation net-
works, allowing agents to locate targets more quickly by
considering object associations. Zhang et al. [39] pro-
posed the hierarchical object-to-zone (HOZ) graph to guide
an agent in a coarse-to-fine manner. Moreover, Dang et al.
[5] utilized a directed object attention (DOA) graph to ad-
dress the object attention bias problem. These works allow
agents to locate targets faster but do not address how to nav-
igate to these targets more quickly. Our dual adaptive think-
ing (DAT) method divides agents’ thinking into two types:
search thinking and navigation thinking, which can collab-
orate adaptively to make every navigation stage efficient.

2.2. Modular Navigation

Modular navigation methods [4, 30] have been proposed
to solve the generalizability problem of end-to-end models
in complex environments. It has been proven that using a
top-down semantic map to predict distant subgoal points [4]
is feasible on the Habitat dataset. The PONI [30] method
trains two potential function networks by using supervised
learning to determine where to search for an unseen ob-
ject. These modular methods require considerable com-
puting and storage resources to generate semantic maps in
real time and are sensitive to image segmentation quality.
Our method implicitly incorporates different thinking dur-
ing navigation into an end-to-end network without relying
on semantic maps.

3. Necessity of Dual Thinking
3.1. Dual Thinking in Humans

Embodied AI [10] is a challenging research topic that
requires agents to use well-developed intuitive tasks (e.g.,
classification [34] and detection [22]) to complete complex
logical tasks (e.g., navigation [41] and interaction [31]) in
real-world environments. Humans often use multiple ways
of thinking when completing these complex logical tasks.
For example, when we need an object, we first use asso-
ciative thinking to locate the object and then use naviga-
tional thinking to reach the object location; when we an-
swer a question about an object, we first use exploratory
thinking to fully understand the object and then use reason-
ing and language-organized thinking to draw conclusions.
Therefore, multiple thinking approaches can be introduced
in end-to-end networks to develop interpretable hierarchical
models that are more consistent with how humans address
complex logic problems.
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Figure 2. Model overview. TOMG: target-oriented memory graph. TAMSA: target-aware multi-scale aggregator. Our model includes three
modules: search thinking, navigation thinking and adaptive fusion. In the search thinking network, we endow the model with an object
association ability according to the directed object attention (DOA) graph method proposed in [5]. In the navigation thinking network, we
provide the model with the ability to remember the target orientation. In the adaptive fusion network, we make the dual thinking work in
harmony according to the navigation progress.

3.2. Repeated Target Search Problem

In current methods, if the agent loses the target in view,
the target must still be searched for again to locate it. Conse-
quently, the agent wastes considerable time in re-searching
for the target, potentially leading to constant loops. This
problem is especially common in environments with many
obstacles. A clear orientation memory for the target is the
key to solve this problem. Therefore, we design a target-
oriented memory graph (TOMG) and a target-aware multi-
scale aggregator (TAMSA) in the navigation thinking net-
work to ensure that the agent navigates to the target effi-
ciently without repeatedly re-searching.

4. Dual Adaptive Thinking Network

Our goal is to endow agents with both search and navi-
gation thinking and to adjust their status based on the nav-
igation process. To achieve this goal, we design three net-
works, as illustrated in Figure 2: (i) search thinking net-
work; (ii) navigation thinking network; (iii) adaptive fusion
network. (i) and (ii) are connected by (iii) to form the dual
adaptive thinking (DAT) network.

4.1. Task Definition

The agent is initialized to a random state s = {x, y, θ, β}
and random target object p. Here, (x, y) represents the
coordinates of the agent, (θ, β) represents the yaw and
pitch angles of the agent. At each timestamp t, according
to the single view RGB image ot and target p, the agent
learns a navigation strategy π(at|ot, p), where at ∈ A =
{MoveAhead; RotateLeft; RotateRight; LookDown;
LookUp; Done} and Done is the output if the agent be-
lieves that it has navigated to the target location. Ultimately,
if the agent is within a threshold (i.e., 1.5 meters [8]) of the
target object when Done is output, the navigation episode

is considered successful.

4.2. Search Thinking Network

Search thinking aims to enable the agent to quickly cap-
ture the target with the fewest steps when the target is not in
view. To use efficient object association, we adopt the un-
biased directed object attention (DOA) graph method pro-
posed in [5]. As shown in the green box in Figure 2, accord-
ing to the object-target association score Gt calculated by
the DOA method, we redistribute the attention to the object
features St (from DETR [3]) and image features It (from
ResNet18 [15]) to ensure that the agent pays attention to
objects and image regions that are more relevant to the tar-
get.

In the object attention redistribution process, the object-
target association score of each object q is multiplied by the
object features St to generate the final object embedding Ŝt:

Ŝq
t = Sq

tG
q
t q = 1, 2, · · · , N (1)

where Ŝt = {Ŝ1
t , Ŝ

2
t , · · · , ŜN

t }, and N is the number of
objects.

In the image attention redistribution process, we assign
attention to image features It according to the object se-
mantic embeddings generated by the one-hot encodings.
Initially, the semantic embeddings are weighted by Gt ∈
RN×1 to obtain the attention-aware object semantics D. We
use D as the query and It as the key and value in the multi-
head image attention to generate the final image embedding
Ît:

Qi = DWQ
i Ki = ItW

K
i Vi = ItW

V
i i = 1, · · · , NH (2)

headi = softmax(
QiK

T
i√

HD
)Vi (3)

Ît = Concat(head1, · · · , headNH)WO (4)
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where HD and NH denote the hidden dimensionality and
number of heads in the multi-head attention.

Finally, the attention-aware object features Ŝt and image
features Ît are concatenated with the previous action em-
bedding PA to obtain the output ST of the search thinking
network.

4.3. Navigation Thinking Network

Target-Oriented Memory Graph (TOMG) Different
from search thinking, navigation thinking requires the abil-
ity to memorize, locate and navigate to the target. Thus,
we design a target-oriented memory graph (TOMG) as the
input feature M . There are two types of nodes in the his-
tory route map (see the purple box in Figure 2): (i) visited
target-visible nodes where the agent detects the target in
view; (ii) visited target-invisible nodes where the agent
does not detect the target in view. Navigation thinking only
focuses target-related information; thus the TOMG is com-
posed of the visited target-visible nodes. Previous histori-
cal memory methods [12, 42] which store both the images
mi ∈ R7×7×512 and objects mo ∈ RN×256 features contain
too much redundant noise. In contrast, our TOMG node
only stores high-level features m ∈ R1×9 which is con-
catenated by three parts: the target bounding box, the tar-
get confidence and the agent’s coordinates. By eliminating
redundant inputs, our target-oriented storing method uses
3000× less storage than previous methods [12, 42].

Since the agent cannot obtain its own absolute position
and orientation in unknown environments, the stored coor-
dinates (xi, yi, θi, βi) are calculated relative to the starting
coordinate (x0, y0, θ0, β0) . Target-visible nodes are filtered
by a confidence threshold cf of target recognition. Finally,
to ensure the reliability of target orientation prediction, only
the L closest target-visible nodes to the current node in the
path are stored.

Egocentric Coordinate Transformation As the agent
navigates during each step, the decisions (e.g., rotate right)
are made relative to the current agent’s own coordinate sys-
tem. Therefore, before using the TOMG features, we con-
vert the coordinates of each node in the TOMG to the co-
ordinate system of the current node (xc, yc, θc, βc) (see the
orange box in Figure 2):

(x̃i, ỹi) = (xi, yi)− (xc, yc)

(θ̃xi , β̃
x
i ) = sin((θi, βi)− (θc, βc))

(θ̃yi , β̃
y
i ) = cos((θi, βi)− (θc, βc)) i ∈ ∆M

(5)

where ∆M represents the index collection of target-visible
nodes. To ensure that the angle and position coordinates
have the same order of magnitude, we use sin and cos
to normalize the angle coordinates to [−1, 1]. After this

FC

TCN

Dilation rate = 1

TCN

Dilation rate = 2

Aggregator Kernel

Flatten

Target

Pool

Circle Padding

Dilation rate = 0 Matrix multiply
Element-wise multiply

FC
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Figure 3. A detailed explanation of the target-aware multi-scale
aggregator (TAMSA). We first use the multi-scale TCNs to ob-
tain aggregator kernels that aggregate the target-oriented memory
graph (TOMG) with L nodes into graph with £ nodes. Then, the
aggregated features allocate attention to the channel dimension us-
ing the target semantics. We describe the circle padding method
applied in our TCNs below the figure.

egocentric coordinate transformation, we obtain egocentric
TOMG features M̃ ∈ RL×11.

Target-Aware Multi-Scale Aggregator (TAMSA) To
encode navigation thinking into the network, we design a
target-aware multi-scale aggregator (TAMSA) to aggregate
the egocentric TOMG feature M̃ into an implicit represen-
tation NT . In contrast to typical methods that use trans-
formers or temporal convolutions as encoders, we devise a
unique dynamic encoder that better leverages the memory
graph features, as described below.

First, to improve the feature expression ability of the
navigation thinking network, we use fully connected (FC)
layers to map the features M̃ to higher dimensional spaces.
Inspired by some advanced works [7, 24] on vision trans-
formers, we add layer normalization between the two FC
layers to stabilize the forward input distribution and back-
propagation gradient [36]. The encoding details can be for-
mulated as follows:

Y = δ(LN(M̃WM1)WM2) (6)

where δ denotes the ReLU function, LN denotes layer nor-
malization, and WM1 ∈ R11×16 and WM2 ∈ R16×32 are
learnable parameters.

Then, a multi-scale dynamic kernel is calculated to refine
the target orientation features into implicit nodes. As shown
in Figure 3, we use three temporal convolution networks
(TCNs) with different dilation rates d to generate three dy-
namic kernels with distinct scales. It is worth noting that the
TCN with d = 0 degenerates to an FC layer. In the early
stages of the “navigate to” phase, the TOMG contains fewer
valid nodes; thus, the boundary degradation caused by zero
padding has a greater impact. To avoid padding with zero,
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Table 1. Ablation results on each module in the three sub-networks: search, navigate and fusion.

ID
Search Thinking Navigation Thinking Fusion ALL (%) Episode

Time (s)↓Associate Pretrain TOMG Egocentric TAMSA AF LN SR↑ SPL↑ SSR↑ NSR↑ NSNPL↑
1 71.34 40.36 92.41 76.19 43.74 0.258
2 ✓ 74.43 40.93 95.82 77.67 44.11 0.334
3 ✓ ✓ 76.78 43.88 94.19 81.40 47.09 0.334
4 ✓ ✓ ✓ 76.02 43.15 93.41 80.21 47.12 0.336
5 ✓ ✓ ✓ ✓ 78.12 42.01 95.12 82.13 45.80 0.336
6 ✓ ✓ ✓ ✓ 78.04 45.67 94.83 82.29 48.44 0.345
7 ✓ ✓ ✓ ✓ ✓ 80.88 45.71 95.46 84.72 48.31 0.346
8 ✓ ✓ ✓ ✓ ✓ ✓ 81.34 47.53 96.38 84.39 49.74 0.350
9 ✓ ✓ ✓ ✓ ✓ ✓ ✓ 82.39 48.93 97.25 84.71 50.32 0.352

inspired by [38], we design the circle padding (CP) which
fills the sequence edge with the features at the other end
of the sequence (Figure 3). The different scale kernels are
added after multiplying by the learnable parameter wd:

H(l) =

2∑
d=0

wd(
∑
j∈Ψ

Y (l + j ∗ d) ∗ fd(j) + bd) (7)

where H = {H(1), · · · , H(L)}, l is the central node of
the convolution kernel, Ψ refers to the set of offsets in
the neighborhood considering convolution conducted on the
central node, Y (·) takes out the node features in Y , and
fd and bd denote the weights and biases in the convolution
kernel with dilation rate d. The multi-scale dynamic kernel
H ∈ RL×£ refines Y ∈ RL×32 to Ỹ ∈ R£×32.

Intuitively, the mappings between the observation data
and target azimuth differ when searching for different tar-
gets. For example, when looking for a TV, even if the TV
is located far from the agent, the agent can clearly identify
the target and obtain a larger target bounding box; however,
when looking for a mobile phone, the agent can only obtain
a smaller target bounding box, even if the agent is close to
the mobile phone. Therefore, we enhance the TAMSA rep-
resentation by considering the target semantic information.
To achieve this goal, the one-hot target index E is encoded
to the same channel dimension as Ỹ through two FC layers,
whose result is channel-wise multiplied with Ỹ to get the
target-aware feature representation Ŷ :

Ŷ = HTY ⊙ δ(δ(EWE1)WE2) (8)

Finally, to obtain the final output NT of the navigation
thinking network, we flatten Ŷ from R£×32 to R1×32£ and
use an FC layer to reduce the output dimension. Further-
more, we add residual connections to ensure the stability of
the feature transfer process.

NT = δ(Flatten(Ŷ )WY ) +
1

£

£∑
l=1

Ŷ (l) (9)

A dropout layer is added before the output to reduce over-
fitting in the navigation thinking network.

4.4. Adaptive Fusion (AF) of Dual Thinking Net-
works

Search thinking and navigation thinking have different
work strategies according to the navigation progress. Dur-
ing the “search for” phase, since there are no visited target-
visible nodes, NT is an all-zero matrix. Therefore, the nav-
igation thinking network does not affect the action decision
when the target has not yet been seen. During the “navigate
to” phase, to ensure navigation robustness, search thinking
and navigation thinking work together to guide the action
decision. As the number of visited target-visible nodes in-
creases, navigation thinking gradually dominates. The fu-
sion process of the two thinking methods can be expressed
as:

DT = (LN(Concat(NT, ST )))W (10)

where W is a learnable parameter matrix that adaptively ad-
justs the proportion of the two thinking networks, and LN is
demonstrated to be significantly beneficial to the generaliz-
ability of the model.

Finally, the dual adaptive thinking output DT is used to
learn an LSTM [16] action policy π(at|DTt, p).

4.5. Policy Learning

Following the previous works [25, 11], we treat this
task as a reinforcement learning problem and utilize the
asynchronous advantage actor-critic (A3C) algorithm [26].
However, in the search thinking network, the complex
multi-head attention calculations are difficult to directly
learn by reinforcement learning [9]; thus, we use imita-
tion learning to pretrain the search thinking network. We
divide the continuous action process into step-by-step ac-
tion predictions and teach the agent to rely on only object
associations to determine actions without considering his-
torical navigation information. After pretraining, we obtain
a search thinking network with a basic object association
ability. Finally, the search thinking network and the naviga-
tion thinking network are jointly trained via reinforcement
learning.
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Figure 4. We compare the metrics in paths with L ≥ 5 while storing different features and path lengths for navigation thinking. The red
five-pointed star indicates the choices that optimize the given indicator.

5. Experiment
5.1. Experimental Setup

Datasets AI2-Thor [18] is our main experimental plat-
form, which includes 30 different floorplans for each of 4
room layouts: kitchen, living room, bedroom, and bath-
room. For each scene type, we use 20 rooms for training,
5 rooms for validation, and 5 rooms for testing. Addition-
ally, we employ the RoboTHOR [6] dataset, which has 2.4
times larger area and 5.5 times longer trajectory length than
AI2-Thor.

Evaluation Metrics We use the success rate (SR) and
success weighted by path length (SPL) [1] metrics to eval-
uate the overall performance of our method. Our proposed
matrics, search success rate (SSR), navigation success rate
(NSR) and navigation success weighted by navigation path
length (NSNPL), are used to clearly reflect the agent’s abil-
ity in the “search for” phase and “navigate to” phase.

SR is formulated as SR = 1
F

∑F
i=1 Suci, where F

is the number of episodes and Suci indicates whether
the i-th episode succeeds. SPL considers the path
length more comprehensively and is defined as SPL =
1
F

∑F
i=1 Suci

L∗
i

max(Li,L∗
i )

, where Li is the path length taken
by the agent and L∗

i is the theoretical shortest path.
SSR is the success rate for the “search for” phase and

is formulated as SSR = 1
F

∑F
i=1 Navi, where Navi in-

dicates whether the i-th episode enters the “navigate to”
phase. NSR is the success rate for the “navigate to”
phase and is formulated as NSR = 1

FNav

∑F
i=1 SuciNavi,

where FNav is the number of episodes that enter the “navi-
gate to” phase. NSNPL considers the navigation efficiency
during the “navigate to” phase and is defined as:

NSNPL =
1

FNav

F∑
i=1

SuciNavi
L∗Nav
i

max(LNav
i ,L∗Nav

i )

(11)
where LNav

i is the path length in the “navigate to” phase and
L∗Nav
i is the theoretical shortest path length in the “navigate

to” phase. During testing, we calculate L∗Nav
i in real time

according to the starting position of the “navigate to” phase

Table 2. Ablation experiments on each module in the target-aware
multi-scale aggregator (TAMSA). Dynamic: dynamic aggregator
kernel, TA: target-aware, MS: multi-scale, CP: circle padding.

Method
ALL (%)

SR↑ SPL↑ SSR↑ NSR↑ NSNPL↑
Average Pooling 79.67 45.14 97.29 81.88 47.89

Transformer 77.23 43.24 96.31 80.06 46.34
TCN 78.66 43.41 96.16 81.52 46.61

TAMSA

A1 Dynamic 80.15 44.26 97.04 82.59 47.31
A2 A1+TA 81.20 46.71 97.17 83.56 48.93
A3 A1+MS 81.14 47.28 96.93 83.64 49.51
A4 A2+MS 81.32 47.41 97.42 83.47 49.28
A5 A4+CP 82.39 48.93 97.25 84.71 50.32

(the position where the agent first recognizes the target) in
each task path. Intuitively, NSNPL can be conceptualized
as the SPL of “navigate to” phase.

Implementation Details We train our model with 18
workers on 2 RTX 2080Ti Nvidia GPUs. The dropout
rate and target-visible filter cf in our model are set to 0.3
and 0.4, respectively. The number of implicit nodes £ in
TAMSA is set to 3. We report the results for all targets
(ALL) and for a subset of targets (L ≥ 5) with optimal tra-
jectory lengths greater than 5.

5.2. Ablation Experiments

Baseline Similar to [8, 39, 5], our baseline model adopts
the features concatenated from the image branch (from
ResNet18 [15]), object branch (from DETR [3]) and pre-
vious action branch as the environment perception encod-
ing. Next, an LSTM network is used to model the temporal
implicit features. The first row in Table 1 shows the perfor-
mance of our baseline.

Dual Thinking As shown in Table 1, the model with
search thinking outperforms the baseline with the gains of
5.44% and 3.52% in SR and SPL. The search thinking net-
work enables the agent to quickly locate the object through
object associations. Incorporating our proposed navigation
thinking directly improves the NSR and NSNPL by 3.32%
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Figure 5. Compare the NSNPL of DOA[5] method and our pro-
pose DAT method target-by-target on the AI2-Thor. After using
the DAT method, red target objects improve significantly and blue
target objects decrease. Pie chart summarizes the contributions of
all scenes. The right side of the pie chart shows common objects
in each scene.

and 1.22%, demonstrating that the navigation thinking im-
proves the agent’s navigation ability after seeing the target.

Navigation Thinking Network The navigation thinking
network includes three key modules: the target-oriented
memory graph (TOMG), the egocentric coordinate transfor-
mation module and the target-aware multi-scale aggregator
(TAMSA). Rows 4 through 7 in Table 1 show the ablation
results on the three modules. The navigation thinking net-
work without the TAMSA increases the SR by 1.34% but
decreases the SPL by 1.87%. TAMSA improves the SPL
back by refining the introduction of navigation thinking.

The simplified and highly abstract storage features in
the TOMG facilitate the subsequent feature refinement and
thinking integration. Figure 4 displays various metrics and
computation speeds while using different storage features
(TOMG, object and image) and maximum stored steps L.
Image features perform the worst. Compared with object
features, our TOMG considerably improves the NSNPL.
Most importantly, the TOMG is substantially less complex

than other storage methods. In terms of computational effi-
ciency, when the number of stored steps is set to 40, com-
pared with storing object and image features, the TOMG
improves the computational speed by 41.43% and 47.69%,
respectively. In terms of memory usage, the TOMG re-
quires only 0.64% and 0.29% of the memory required by
the object and image features. Furthermore, as the number
of stored steps increases, the computational burden of the
TOMG storage method remains essentially constant.

Target-Aware Multi-Scale Aggregator (TAMSA) Our
proposed TAMSA uses a dynamic kernel to achieve auto-
matic sequence length reduction without applying global
pooling at the end. As shown in Table 2, the use of ei-
ther TCNs or transformers exhibits worse performance than
using average pooling directly. This finding suggests that
our navigation thinking network is incompatible with these
widely used encoders. Based on the initial aggregator
model (A1), the target-aware (TA) property brings improve-
ments of 0.97%, 1.62%, and the multi-scale (MS) property
brings improvements of 1.05%, 2.20% in NSR and NSNPL.
Furthermore, we utilize circle padding (CP) to prevent seri-
ous information loss in limited target-visible nodes, thereby
optimizing the path during short-distance navigation.

Fusion of Dual Thinking Modules Our proposed adap-
tive fusion module (rows 8 and 9 in Table 1) effectively in-
tegrates the two separately designed thinking networks and
improves the SR, SPL and SSR metrics by 1.51%, 3.22%
and 1.79%. Fundamentally, adaptive fusion and layer norm
decouple diverse thinking and increase the specificity of
varied thinking.

5.3. Comparative Analysis of Different Targets

Figure 5 visualizes the NSNPL for different targets using
the DOA [5] model and our DAT model. Obviously, the ob-
jects with the highest NSNPL belong to the kitchen scene,
and the objects with the lowest NSNPL belong to the bed-

Table 3. Comparison with SOTA methods on the AI2-Thor [18] / RoboTHOR [6] datasets.%indicates unacceptable resource consumption.

ID Method ALL (%) Episode Time (s)↓SR↑ SPL↑ SSR↑ NSR↑ NSNPL↑

I SSCNav [21] 77.14 / 38.12 31.09 / 14.10 89.14 / 61.37 86.54 / 62.13 51.72 / 35.14 1.342 / 4.145%
PONI [30] 78.58 / 38.42 33.78 / 16.30 89.48 / 58.46 87.81 / 65.72 52.39 / 39.83 1.591 / 4.582%

II OMT [12] 71.13 / 32.17 37.27 / 20.09 93.17 / 61.77 76.34 / 52.08 41.36 / 24.51 0.645 / 2.011
VGM [19] 73.95 / 35.82 40.69 / 23.71 94.42 / 62.93 78.32 / 56.92 42.62 / 25.80 0.731 / 2.458

III

ORG [8] 67.32 / 30.51 37.01 / 18.62 91.07 / 59.64 73.88 / 51.15 40.24 / 20.64 0.241 / 0.769
HOZ [39] 68.53 / 31.67 37.50 / 19.02 91.44 / 60.11 74.94 / 52.68 40.83 / 21.02 0.283 / 0.808
VTNet [9] 72.24 / 33.92 44.57 / 23.88 94.18 / 63.29 76.62 / 53.59 46.74 / 28.26 0.321 / 1.325
DOA [5] 74.32 / 36.22 40.27 / 22.12 95.73 / 64.18 77.63 / 56.43 44.11 / 25.88 0.334 / 1.247

IV Ours (DAT) 82.39 / 41.72 48.93 / 27.91 97.25 / 67.24 84.71 / 62.04 50.32 / 34.27 0.352 / 1.211
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Figure 6. We show the navigation routes of three different models to complete the same task in the same environment. The baseline (ORG
[8]) fails to navigate in the “search for” phase. The search thinking method (DOA [5]) and our DAT method diverge at the decision key
frame in the “navigate to” phase.

room scene. The bedroom has more complex obstacles than
the kitchen, which leads to the gap in difficulty of the “nav-
igate to” phase. The NSNPL of most objects has improved
thanks to our DAT method, notably those in the intricate
bedroom scene and the small, challenging-to-identify tar-
get objects. However, our approach yields a minor decline
for several items, such as plates and coffee machines, in the
simple kitchen scene. This may be improved by predicting
scene complexity in real time during navigation.

5.4. Comparisons with the State-of-the-Art

Our DAT method is compared with three categories of
relevant SOTA methods, as shown in Table 3. (I) Modular
methods based on active SLAM. An agent with a seman-
tic map can directly use the path planning method to quickly
navigate to the target after locating it; thus, these methods
obtain a higher NSNPL. Nevertheless, these methods re-
quire considerable efforts to explore the environment which
makes finding targets ineffective. The SPL of the current
state-of-the-art modular method PONI [30] is 15.15/11.61
lower (AI2-Thor/RoboTHOR, %) than that of our DAT
method. More seriously, maintaining the semantic map at
all times causes each step to consume several times as long
as our method. (II) Long-term memory methods. These
methods theoretically depend on historical information to
model environments more clearly; however, methods such
as OMT [12] and VGM [19] store overcomplicated features,
increasing the difficulty of network learning. Therefore, the
current memory modules do not exert their full strength.
(III) Search thinking methods. These methods enhance
search capabilities through object association. Compared to
the best search thinking model DOA [5], our DAT model
brings 8.07/5.50, 8.66/5.79 and 6.21/8.39 improvements in
SR, SPL and NSNPL (AI2-Thor/RoboTHOR, %).

5.5. Qualitative Analysis

Routes of different methods are visualized in Figure 6.
The baseline model is stuck in the wrong room due to its

(b) Failure (Initially Trapped)

Desk Lamp

Start

1 2 3 4 5

6 7 Cycle. . .
16 17

18 Cycle. . .
20

Rotate. . .
21 27

Turn Right Turn Left Move Ahead DoneAction:

(a) Failure (Recognition Error)

Start

Book

Recognition Error Frame

Error:Book

1 2 3 4 5

6 7 8 Repetitive
Action. . .

14

15 16

3

Figure 7. Failure cases with the first-person views. For brevity, the
camera’s up-and-down motion has been omitted.

limited capability to search for targets. The search thinking
model is disturbed by extraneous objects in the “navigate
to” phase, leading it to choose the wrong direction at the
keyframe. In contrast, our DAT method chooses the appro-
priate left room based on the representation of the target
relative position generated by navigation thinking.

6. Limitations and Failure Cases
Some potential limitations are observed in testing. (i)

The model is sensitive to object detection accuracy (Fig-
ure 7(a)). How to improve the robustness to error recogni-
tion is worth exploring. (ii) The agent sometimes gets stuck
in narrow and complex initial environments without histor-
ical information (Figure 7(b)). Endowing agents with the
ability to escape from the deadlock in end-to-end learning
may be the key to solving this problem and we leave this for
future works.

7. Conclusion
In this paper, we propose the dual adaptive thinking

(DAT) method, such innovation enables agents to efficiently
and reliably reach the target position after locating the tar-
get. Dual thinking includes the search thinking respon-
sible for searching the target and the navigation thinking
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responsible for navigating to the target. Extensive experi-
ments prove that dual adaptive thinking flexibly adjusts the
thinking methods according to the navigation stage, thereby
improving the success rate and navigation efficiency. It is
worth noting that beyond the current object navigation task,
multiple adaptive thinking can theoretically be applied to
various time-series embodied AI tasks.
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