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Abstract

Neural Radiance Field (NeRF) approaches learn the un-
derlying 3D representation of a scene and generate photo-
realistic novel views with high fidelity. However, most pro-
posed settings concentrate on modelling a single object or
a single level of a scene. However, in the real world, we
may capture a scene at multiple levels, resulting in a lay-
ered capture. For example, tourists usually capture a mon-
ument’s exterior structure before capturing the inner struc-
ture. Modelling such scenes in 3D with seamless switch-
ing between levels can drastically improve immersive ex-
periences. However, most existing techniques struggle in
modelling such scenes. We propose Strata-NeRF, a single
neural radiance field that implicitly captures a scene with
multiple levels. Strata-NeRF achieves this by conditioning
the NeRFs on Vector Quantized (VQ) latent representations
which allow sudden changes in scene structure. We evalu-
ate the effectiveness of our approach in multi-layered syn-
thetic dataset comprising diverse scenes and then further
validate its generalization on the real-world RealEstate10K
dataset. We find that Strata-NeRF effectively captures
stratified scenes, minimizes artifacts, and synthesizes high-
fidelity views compared to existing approaches. https:
//ankitatiisc.github.io/Strata-NeRF/

1. Introduction
Novel view synthesis is an ill-posed problem widely en-

countered in various areas such as augmented reality [24,
28], virtual reality [11], etc. A paradigm change for solving
these kinds of problems was brought by the introduction
of Neural Radiance Fields (NeRF) [34]. NeRFs are neu-
ral networks that take in the spatial coordinates and camera
parameters as input and output the corresponding radiance
field. Earlier version of NeRFs enable the generation of
high-fidelity novel views for bounded scenes, significantly
improving over existing techniques like Structure From Mo-
tion [47]. Further, the capability of NeRFs have been re-
cently extended to model unbounded scenes by Mip-NeRF
360 [2]. This enabled NeRFs to model complex real-world
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Figure 1. Top, wireframe view of a multi-layered stratified scene
with three levels (monkey head inside sphere inside a cube). The
camera colors indicate views of a specific level. Strata-NeRF en-
ables high-quality reconstruction of such stratified scenes using a
single neural network.

scenes, where the scene content can exist at any distance
from the camera.

However, similar to unboundedness in scenes, hierar-
chies in scenes are also natural. For example, images cap-
tured in a house can be categorized into images captured
outside and inside across various rooms. Modelling such hi-
erarchical scenes jointly for all levels through a NeRF could
be particularly useful in cases of Virtual Reality applica-
tions. As it would not require switching to a different NeRF
for each level, reducing memory requirement and latency in
switching. Further, as the different hierarchies of a scene
usually share texture and architectural commonalities, it
could lead to effective knowledge sharing and reduce the re-
quirement of training independent models. For tackling the
above novel objective, we introduce a paradigm of scenes
that can be deconstructed into several tiers, termed “Strat-
ified Scenes”. A “stratified” scene has several levels or
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Figure 2. Novel views for stratified scene in Figure 1, from Mip-
NeRF 360 [2] (left) and our method “Strata-NeRF” (right). Ex-
isting methods struggle to capture stratified scenes with a single
network while ours produces sharp results.

groupings of structure (Figure 1). In our work, we first pro-
pose a synthetic dataset of stratified scenes, i.e. scenes hav-
ing multiple levels. This dataset comprises scenes from two
categories: (i) Simpler geometry, such as spheres, cubes,
or tetrahedron meshes, and (ii) Complex geometry, which
closely emulates a real-world setup.

On such datasets, we find methods such as Mip-NeRF
360 perform well for each level of the hierarchy indepen-
dently, but produce unsatisfactory results when images from
all hierarchical levels are used together for training (Fig-
ure 3). This can be attributed to the continuous nature
of NeRFs, which is unsuitable for modelling the sudden
changes in scenes with shifts in hierarchical levels. Hence,
in this work, we introduce Strata-NeRF that explicitly aims
to model the hierarchies by conditioning [22, 38, 39, 66, 43]
the NeRF on Vector Quantized (VQ) latents. The VQ la-
tents enable the modelling of discontinuities and sudden
changes in the scene, as they are discrete and less corre-
lated with others [56]. In practice, the VQ conditioning is
achieved by introducing two lightweight modules: the “La-
tent Generator” module that compresses the implicit infor-
mation in encoded 3D positions to generate VQ latent code,
which is directed through the “Latent Routing” module to
condition various layers of radiance field. The additional
parameters introduced through these modules are signifi-
cantly less than training an independent NeRF model for
each level, leading to a significant reduction in memory.

For evaluating the proposed Strata-NeRF we first test on
the proposed synthetic Stratified Scenes dataset, where we
find that Strata-NeRF learns the structure in scenes across
all levels. In contrast, other baselines produce cloudy and
sub-optimal novel views (Figure 2). Further, to test the gen-
eralizability of the proposed method on real-world scenes,
we utilize the high-resolution RealEstate10K dataset. We
find that Strata-NeRF significantly outperforms other base-
lines and produces high-fidelity novel views without arti-
facts compared to baselines. This is also observed quantita-
tively through improvement in metrics, where it establishes

a new state-of-the-art. In summary,

• We first introduce the task of implicit representation
for 3D stratified (hierarchial) scenes using a single ra-
diance field network. For this, we introduce a novel
synthetic dataset comprising of scenes ranging from
simple to complex geometries.

• For implicit modelling of the stratified scenes, we pro-
pose Strata-NeRF, which conditions the radiance field
based on discrete Vector-Quantized (VQ) latents to
model the sudden changes in scenes due to change in
hierarchical level (i.e. strata).

• Strata-NeRF significantly outperforms the baselines
across the synthetic dataset and generalizes well on the
real-world scene dataset of RealState10k.

2. Related Work
Generating photo-realistic novel views from densely

sampled images is a classical problem. Earlier methods
solved this issue using light-field-based interpolation tech-
niques [10, 18, 27]. These techniques interpreted the input
images as 2D slices of a 4D function - the light field. The
only caveat in these methods is their overreliance on dense
views. Another popular technique is Structure From Motion
(SFM) which reconstructs 3D structure of a scene or an ob-
ject by using a sequence of 2D images. We suggest readers
to read survey papers [47, 37] to understand SFM methods
in detail. Shum et al. [49] also provides an excellent review
on traditional image based rendering techniques.
Neural Volume Reconstruction. NeRF [34] has shown re-
markable results in encoding the 3D geometry of a scene
implicitly using the multi-layer perceptron (MLP). Specifi-
cally, it trains an MLP, which takes 3D position and a view-
ing direction to predict colour and occupancy. Many papers
have extended this idea to solve different scenarios such
as dynamic scenes, low-light scenes, synthesis from fewer
views, accelerating the performance etc. Mip-Nerf [1] mit-
igates the problem of aliasing when a novel view is gen-
erated at a different resolution. MVSNeRF [7] generalizes
across all the scenes and optimizes the geometry and radi-
ance field using only a few views. NerfingMVS [61] uti-
lizes conventional SFM reconstruction and learning-based
priors to predict the radiance field. UNISURF [36] com-
bines implicit surface models and radiance fields to render
both surface and volume rendering.

AR-NeRF [24] replaced pin-hole based camera ray-
tracing with aperture camera based ray-tracing. DiVeR [62]
uses a voxel based representation to learn the radiance field,
Mip-NeRF 360 [2] improves view synthesis on the un-
bounded scenes and also proposed an online distillation
scheme which significantly reduced the training and infer-
ence time. Neural Rays [31] solves the occlusion prob-
lem by predicting the visibility of the 3D points in their
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representation. Scene Representation Transformers [46]
uses Vision Transformers [13] to infer latent represen-
tations to render the novel views. Further, many meth-
ods [30, 17, 44, 65, 51, 21, 58] have been proposed to im-
prove the slow training and inference time for neural radi-
ance field based methods. Despite many works, no work
has focused on modelling the stratified scenes.
NeRF Extensions. Relighting discusses how to model
different types of light and then using this model to re-
light a scene [32, 3, 50, 57, 20]. Breaking the myth
that radiance field can only be used in small and bounded
scenes, recent methods [52, 55, 45] have scaled it to large-
scale city scenes. Another line of work focuses on mod-
elling the dynamic scenes with presence of moving ob-
jects [38, 63, 29, 41, 14, 54, 16, 39] through NeRFs.
Neural Radiance Fields and Latents. Recently, a lot of
methods have made use of the latents to bring generative
capabilities to neural radiance fields. GRAF [48] uses dis-
entangled shape and appearance latent codes to generalize
on an object category. For viewpoint invariance, they used
typical GAN based training. Pi-GAN [5] uses volumetric
rendering equations for consistent 3D views in a generative
framework. Pixel-NeRF [66] learns a scene prior to gen-
eralize across different scenes. GSN [12] decomposes the
radiance field of a scene into local radiance fields by con-
ditioning on a 2D grid of latent codes. Code-NeRF [22]
learns the variation of object shapes and textures across by
learning separate latent embeddings. LOLNeRF [43] uses a
shared latent space which conditions a neural radinace field
to model shape and appearance of a single class. PixN-
erF [4] extends Pi-GAN [5] and maps images to a latent
manifold allowing object-centric novel views given a single
image of an object. NeRF-W [33] optimizes latent codes
to model the scene variations to produce temporally consis-
tent novel view renderings. In contrast to these methods, we
propose conditioning NeRF on learnable Vector Quantized
latents.

Vector Quantized Variational Autoencoders (VQ-
VAE) [56]: VQ-VAE uses vector quantization to represent
a discrete latent ditribution. VQ-VAE has shown applica-
tions in Image Generation [42, 40], speech and audio pro-
cessing [19, 59]. Further, it’s extension like VQ-VAE2 [42]
uses hierarchical latent space for high-quality generation.

3. Preliminaries
NeRF represents a scene as an implicit function f :

(X, d) → (c, σ) which maps a 3D position X = (x, y, z)
and d = (θ, ϕ) to a color c = (r, g, b) and occupancy den-
sity σ. An MLP parametrizes this implicit function f . Be-
fore sending the inputs X and d through the network, a po-
sitional encoding is used to project them in a high dimen-
sional space [53]. Finally, the volume rendering [23] proce-
dure enables NeRF to represent scenes with photo-realistic
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Figure 3. Analysis on “Dragon in pyramid” scene. The top row
shows the layout of the levels in 3D scene. Observe that baseline
works fine on the scenes when trained individually. Artefacts oc-
cur when the baseline is trained on views from the entire scene.

rendering from novel camera viewpoints.
Volume Rendering. At the crux of NeRF lies the volume
rendering equation. A ray r(t) = o + td is cast from the
camera center o through the pixel along direction d. The
pixel’s color value is estimated by integrating along the ray
r(t) as described in Eq. 1

c(r) =

∫ tf

tn

T (t)σ(r(t))c(r(t), d) dt (1)

where transmittance T (t) = exp(−
∫ t

tn
σ(r(s)) ds) is the

probability that a ray passes unhindered from the near plane
(tn) to plane (t) and use this probability to integrate till far
plane (tf ). In Mip-NeRF [1], a ray r(t) is divided into in-
tervals Ti = [ti, ti+1) which corresponds to a conical frus-
tum. For each interval Ti, it computes the mean and vari-
ance (µ,Σ) and uses it for integrated position encoding as
illustrated in Eq. 2.

γ(µ,Σ) =

{[
sin(2lµ)exp(−22l−1diag(Σ))

cos(2lµ)exp(−22l−1diag(Σ))

]}L−1

0
(2)

This solves the aliasing issue in the original NeRF. Mip-
NeRF 360 [2] proposed coarse-to-fine online distillation for
proposal sampling, which efficiently reduces the training
time as the proposed MLP only predicts density. They also
proposed ray parametrization and regularisation techniques
to alleviate hanging artifacts in unbounded scenes. We’ll re-
fer Mip-NeRF 360 [2] as mip360 in all our discussions. We
choose mip360 [2] as the baseline for all our experiments.
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Table 1. A quantitative comparison of mip360 (level-wise) and
mip360 (all views) on “Dragon in pyramid” scene.

Level 0 Level 1

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
mip360 (level-wise) 31.5390 0.9181 0.1304 29.8560 0.8133 0.3484

mip360 30.8847 0.9006 0.1367 24.3876 0.7055 0.5163

4. Motivation

The majority of real-world scenarios are stratified with
multiple levels. For example, a commodity store has exte-
rior and interior structures. This work addresses an essential
question for such stratified scenes: Can a single radiance
field learn such hierarchical scenes? This section intro-
duces and discusses our observations on one such stratified
scene: “Dragon in Pyramid”, as illustrated in Figure 3. The
outer structure of “Dragon in Pyramid” is a Mayan pyramid
that has a dragon inside it. To validate our claim, we first
train the baseline model on each level, i.e., on outer pyramid
views and inner views (focusing dragon) independently. We
refer to these separately trained models as mip360 (level-
wise). Then, we train a single mip360 model using the outer
and inner views for the scene. The term “level” in our work
refers to each level in a stratified scene. In the scene de-
picted in Figure 3, level 0 denotes the pyramid’s outer con-
struction, while level 1 denotes the pyramid’s interior struc-
ture, which contains a dragon.

Table 1 shows that the baseline model performs remark-
ably well when trained separately on each level. In compari-
son, the metric values for the baseline model trained jointly
on both levels of stratified scene declines. PSNR at level
1 is 24.39 dB, a 5.47 dB reduction compared to mip360
(level-wise). Similarly, performance in level 0 has declined,
but less dramatically than in the inner level. This pattern is
observed across all metrics. Furthermore, the qualitative re-
sults illustrated in Figure 3 backs up the quantitative study’s
findings. Figure 3 indicates that mip360 (level-wise) gener-
ates novel views on par with the ground truth. However,
shown in Figure 3, the jointly trained model has white arti-
facts on the pyramid’s outer structure and haziness in front
of the dragon inside the pyramid. This demonstrates that
current radiance field networks have issues while learning a
3D representation of a stratified scene. We perform a simi-
lar experiment for a RealEstate10K scene in Appendix E.1
in the supplmentary material.

5. Method

This section describes our method : Strata-NeRF for
stratified scenes. We generate latent codes with the latent
generator described in Section 5.1. This latent code is fed
into the radiance field architecture through the latent router,
described in Section 5.2. Figure 4 depicts the overall archi-
tecture of Strata-NeRF. We adopt the base neural radiance

field architecture proposed in mip360 [2].

5.1. Latent Generator

A latent space reflects the scene’s “compressed” repre-
sentation. It has been shown in various works that this
space has rich properties. VQ-VAE [56] learns a codebook
to model the discrete distribution of the latent space of a
variational-autoencoder. The encoder’s output is compared
to all of the vectors in the codebook. The nearest vector is
fed into the decoder as input. Since most data in the world
is discrete, VQ based models have been highly successful in
image generation [15], speech encoding [56], and other ap-
plications. In a stratified scene, the definition of level is also
discrete. Hence, our method employs VQ-VAE as a latent
generator because of their proven success in representing
discrete distributions.

We use Integrated Positional Encoded (IPE) [2] γ(x) as
input to our latent generator. We encode γ(x) and then
search the codebook for the closest vector. After that, the
closest vector from the codebook is used to condition the
radiance field network. Specifically, γ(x) is passed through
a set of two hidden layers to generate an encoded input z.
The encoded latent code z is then passed through the quan-
tizer bottleneck to determine the quantized latent code ze,
where ze ∈ E; where E ∈ RN×D is the codebook; N is
the number of vectors in the codebook, and D is the dimen-
sion of the latent space. ze is then supplied into the decoder
network, which consists of two hidden layers, to yield y as
the reconstructed output of γ(x). The quantized latent ze is
also sent into the radiance field network through the “Latent
Router” block. Loss for this variational autoencoder (VAE)
block is defined as follows:

Lvq = ||γ(x)−y||22+||sg(ze)−z||22+β||ze−sg(z)||22 (3)

The “Latent Generator” module based on VAE is jointly
trained with the NeRF through backpropagation.

5.2. Latent Router

The Latent Router block is inspired by the CodeNeRF
architecture [22], in which shape and texture latent codes
are sent to the NeRF MLP through a residual connection.
In our architecture, the quantized latent codes ze that are
generated in the “Latent Generator” block are input to the
Radiance field after passing through an MLP layer in the
Latent Router as shown in Figure 4.

5.3. Training Strata-NeRF

For training Strata-NeRF, we utilize the losses suggested
by mip360 [2] as we use a similar radiance field design.
Lrecon(c(r, t), c

∗(r)) denotes the reconstruction loss be-
tween the estimated colour along a ray and the actual colour
value. Ldist(s, w) is the distortion loss where s is the nor-
malized ray distances and w is the weight vector. Note that
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Figure 4. For each 3D point along the projected ray, we generate a latent code using our “Latent generator” module. The generated latent
code is routed to the MLP using “Latent Router”. Vector Codebooks learn the discrete distribution of positionally encoded 3D points. (a)
Our model’s end-to-end architecture; (b) components of the “Latent Generator” and “Latent Router” blocks.

Table 2. Characteristic Comparison of the proposed methods

Method Discrete
Representation

Photometric
Losses

VAE
loss

NeRF [34] ✗ ✓ ✗
mip360 [2] ✗ ✓ ✗
Plenoxel[64] ✓ ✓ ✗
Instant-NGP[35] ✓ ✓ ✗
TensoRF[6] ✓ ✓ ✗
Ours ✓ ✓ ✓

we don’t alter anything in the proposal MLP. More details
are provided in mip360 [2]. The total loss for Strata-NeRF
is given as:

Ltotal = Lrecon(c(r, t), c
∗(r)) + λ1Ldist(s, w) + λ2Lvq

(4)
We use λ1 = 0.01, λ2 = 0.1 and β = 1.0 across all our
experiments, as they work robustly [2] for Strata-NeRF.

6. Experiments
We discuss implementation details in Section 6.1. Sec-

tion 6.2 discusses the dataset used for evaluating our
method with other baselines. In Section 6.3, we present
quantiative and qualitative comparison with the baseline
methods. Additionally, we discuss the ablations for the pro-
posed method.

6.1. Implementation Details

Our method builds on mip360 [2] as the base radiance
field. We use a latent generator network which consists
of an encoder-decoder architecture and a vector-codebook.
The encoder has two linear layers of hidden size 48, and
the decoder has one linear layer of hidden size 96. The
output dimension of our decoder matches the output from
Integrated Positional Encoding (IPE) block. The size of

Figure 5. Skeleton mesh of the stratified scenes : Bhutanese House
and Coffee Shop. More details are in the supplementary material.

our codebook is 1024, and the dimension of each vector in
the codebook is 48. We condition the neural radiance field
through the latent generated after the quantization step in
the latent generator. We use a Latent routing module con-
sisting of two linear layers of hidden-size 256. As illus-
trated in Figure 4, the output of the linear layer in the rout-
ing module conditions the first two layers of the radiance
field network. We employ the losses outlined in Section 5.
On each scene, we train our approach for 150k iterations.
We use Adam [25] optimizer with a learning rate of 1e−6.
Further details are provided in supplementary material.

6.2. Evaluation Dataset

Most of the radiance field methods evaluate their results
on the synthetic (Blender) and real-world (LLFF) datasets
proposed in NeRF [34]. These scenes either include a soli-
tary object on a white background or a frontal view of a nat-
ural scene. According to our description of stratified scenes,
these datasets has only one level. Even large-scale recon-
struction datasets like TanksandTemples [26] are not repre-
sentative of our setting as they only have views either inside
or outside of the structure. Similarly, Scannet [9] a dataset
for real-world interior scenes, lacks the characteristics of
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Table 3. Quantitative evaluation on test-set against baselines discussed in Section 6.1. Each column is depicts the best and second best.
Cube-Sphere-Monkey

Level 0 Level 1 Level2 Total
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

Nerf [34] 28.3314 0.9383 0.1034 18.1806 0.4976 0.4981 22.1178 0.5995 0.3825 22.8766 0.6784 0.3280
mip360 [2] 28.3149 0.9298 0.1156 19.0443 0.5343 0.4930 24.9136 0.7326 0.3245 24.0909 0.7322 0.3110

Plenoxels [64] 25.3547 0.9169 0.1238 13.1148 0.3320 0.6895 21.5568 0.6523 0.3803 20.0087 0.6337 0.3979
Instant-NGP [35] 28.2104 0.9168 0.1123 14.3648 0.1830 0.7216 17.6914 0.2744 0.5997 20.0889 0.4581 0.4779

TensoRF [6] 32.0077 0.9532 0.0692 13.7487 0.1537 0.7106 13.0075 0.2496 0.6886 19.5880 0.4521 0.4894
Ours 26.9335 0.9298 0.1255 25.7088 0.7738 0.2959 26.1912 0.8172 0.2549 26.2778 0.8403 0.2254

Bhutanese House
Level 0 Level 1 Level 2 Total

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
Nerf [34] 11.4478 0.6917 0.3711 17.1209 0.5886 0.7078 18.3918 0.6952 0.6591 15.6535 0.6585 0.5793

mip360 [2] 26.6240 0.9002 0.2062 24.5946 0.7296 0.4739 29.4225 0.8577 0.4156 26.8804 0.8291 0.3652
Plenoxels [64] 15.2205 0.7752 0.3052 13.0386 0.4670 0.6703 19.3050 0.5819 0.5886 15.8547 0.6080 0.5214

Instant-NGP [35] 23.9791 0.9217 0.1500 24.7316 0.7009 0.4237 27.6617 0.8136 0.3786 25.4575 0.8121 0.3174
TensoRF [6] 13.8880 0.7607 0.3142 17.0244 0.4856 0.6421 16.8170 0.6306 0.6332 15.9098 0.6256 0.5298

Ours 27.6842 0.9046 0.2045 24.9180 0.7371 0.4616 29.4646 0.8575 0.4172 27.3556 0.8331 0.3611

Table 4. Quantitative evaluation on test-set against baselines discussed in Section 6.1. Each column is depicts the best and second best.
Coffee Shop

Level 0 Level 1 Level2 Total
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

Nerf [34] 06.7446 0.6197 0.4698 16.1398 0.4915 0.7982 12.8889 0.4213 0.8158 11.9244 0.5108 0.6946
mip360 [2] 26.2073 0.8825 0.1867 27.0500 0.8086 0.3785 34.2023 0.9362 0.1950 29.1532 0.8757 0.2534

Plenoxels [64] 19.3204 0.7968 0.2579 12.3871 0.4044 0.6904 22.4325 0.6856 0.4585 18.0467 0.6289 0.4689
Instant-NGP [35] 29.9425 0.9324 0.0992 28.1040 0.8193 0.3452 29.6574 0.8680 0.2621 29.2347 0.8732 0.2355

TensoRF [6] 33.0337 0.9435 0.0692 19.3115 0.5331 0.6580 21.1852 0.7169 0.4594 24.5102 0.7312 0.3955
Ours 26.4499 0.8802 0.1939 28.6392 0.8403 0.3450 33.2692 0.9254 0.2243 29.4528 0.8819 0.2544

Dragon In Pyramid
Level 0 Level 1 Level 2 Total

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
Nerf [34] 14.6405 0.6595 0.3800 20.8368 0.6052 0.6856 - - - 17.7386 0.6323 0.5328

mip360 [2] 30.8758 0.9006 0.1367 24.3890 0.7054 0.5163 - - - 27.6324 0.8030 0.3265
Plenoxels [64] 13.0667 0.6247 0.4217 14.5126 0.3572 0.6498 - - - 13.7896 0.4910 05358

Instant-NGP [35] 23.9054 0.9010 0.0949 24.7389 0.6594 0.4664 - - - 24.3222 0.7802 0.2807
TensoRF [6] 35.3015 0.9632 0.0414 19.5573 0.5221 0.6809 - - - 27.4294 0.7427 0.3611

Ours 29.4773 0.8700 0.1699 26.1722 0.7489 0.4573 - - - 27.8248 0.8095 0.3136

a stratified dataset. Because of the direct unavailability of
stratified scenes, we built our own dataset that replicates the
intended “stratified” scenario. We create a synthetic scene
dataset using a mesh-editing software Blender [8] and real
scene dataset by altering RealEstate10K dataset which was
proposed for the camera localization task.

The proposed synthetic dataset has two important varia-
tions based on: (a) the number of stratified levels and (b) the
geometric complexity. We classify based on the geometry’s
complexity as follows: (a) Simple Scenes: Stratified scenes
using geometric components such as the sphere, cube, and
so on; and (b) Complex Scenes: Stratified scenes that mimic
real-world scenes. For Simple Scenes, we leverage models
and textures provided by Blender [8]. We utilized publicly
available graphical models and composited them to create a
real-world configuration for Complex scenes. For example,
to design the “Coffee shop” scene, we selected a building

structure for the outer level and walls and glasses for the
intermediate level structure. For the core level, we com-
posited elements such as a cash register, coffee cups, and
so on to simulate a real-world coffee-shop scene. To avoid
photo-metric changes, we use fixed illumination. For each
stratified level, the camera settings : field of vision and focal
length are fixed. Each scene is rendered at 200× 200 reso-
lution . The camera viewpoint are sampled evenly from the
curved surface of a hemisphere and then randomly divided
into train, validation, and test sets. Inner objects in Simple
Scenes are rendered from the surface of a sphere. Figure
5 depicts the proposed dataset’s skeletal meshes. Further
information on dataset is present in Appendix B in the sup-
plementary material.

RealEstate10K dataset. We extracted four scenes “Span-
ish Colonial Retreat in Scottsdale Arizona”, “139 Barton
Avenue Toronto Ontario” , “31 Brian Dr Rochester NY”
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Figure 6. (From top to bottom) Qualitative results on the pro-
posed synthetic datasets (Figure 5). Each row represents a
novel view from a level of the stratified scene. The ground-truth
(GT) is shown in Column 1. Compared to baselines (Column 2-4),
our method’s (Column 5) renderings are more consistent to GT.

and “7 Rutledge Ave Highland Mills” from RealEstate10K
dataset. We manually inspected and removed regions which
had dynamic components in them. More details about con-
verting RealEstaet10k dataset for our stratified setting is
provided in Appendix C the supplementary material.

6.3. Evaluation

We present quantitative and qualitative analysis of
Strata-NeRF on the datasets described in Section 6.2.
Baselines. We compare our model with NeRF [34] ,
mip360 [2], Instant-NGP [35], TensoRF [6] and Plenox-
els [64]. We chose Plenoxels [64] for comparison because it
uses sparse-voxel representation which already discretizes
the continuous 3D space, which can be useful in strati-
fied scenes. It is worth noting that the sizes of the syn-
thetic scenes in our dataset differ. As a consequence, the
authors’ recommended configuration file did not produce
the optimal results. As a result, we modified the configura-
tion files for unbounded scenes released by the creators of
mip360 [2] to improve performance. For Instant-NGP [35],
TensoRF [6] and Plenoxels [64], we change the hyperpa-
rameters like bound and scale as suggested in the official
implementatinos. More information is in Appendix D in
the supplementary material. Table 2 provides an overview

Table 5. Quantitative comparison of our model and baseline on
“139 Barton Avenue” scene of RealEstate10K dataset.

Metrics Level 0 Level 1 Level 2 Level 3 Level 4 Level 5

mip360[2] PSNR ↑ 18.086 16.496 24.459 20.862 17.479 10.999
SSIM ↑ 0.618 0.595 0.771 0.702 0.584 0.409

Ours PSNR ↑ 23.164 21.665 25.236 24.156 22.879 25.409
SSIM ↑ 0.826 0.757 0.789 0.791 0.753 0.782

Table 6. Quantitative comparison of our model and mip360 base-
line on Six Layer Scene.

Dataset Levels mip360 [2] Ours mip360 [2] Ours

Spanish Colonial Retreat 5 20.106 22.514 0.622 0.685
31 Brian Dr Rochester 4 23.273 28.026 0.715 0.835

139 Barton Avenue 6 18.991 23.433 0.642 0.780
7 Rutledge Ave 7 19.621 25.040 0.566 0.791

of baselines.
Quantitative Results. Table 3 & 4 shows the average
PSNR, SSIM [60] and LPIPS [67] for each stratified level
in unseen test views. We find that our method surpasses
other methods across all metrics most of the time. The base-
line mip360 [2] works fine for the exterior structure but fails
for the inner layers in the “Cube-Sphere-Monkey” scene.
Strata-NeRF, on the other hand, offers superior metrics at
all stratified levels. The baseline models do well in the
outer scene but perform sub-optimally in the inner levels,
especially in level 1. These outcomes demonstrate that our
method outperforms the baseline models significantly.

Table 6 shows the summary of average PSNR and SSIM
for all the levels in a scene for RealEstate10K dataset. In
this case, we only compare our method with mip360 as it
is the best performing one among others on the synthetic
dataset. We observe that our method outperforms the base-
line method in all scenarios. Further, we present level-wise
result for a specific scene in Table 5. We observe that for
real datasets with increase in number of levels, the magni-
tude of performance improvement increases, which demon-
strates the effectiveness of the proposed approach. Further,
we also compare Instant-NGP [35] and TensoRF [6] on a
RealEstate10K scene in Appendix E.2 in the supplemen-
tary material.
Qualitative Results. Figure 6 & 8 depicts the qualitative
results for the synthetic dataset scenes described in Section
6.2. We observe that NeRF [34] performs poorly regard-
less in majority of scenarios. The generated novel views
for “Coffee Shop” are poor. It only works well in level
0 of “Cube-Sphere-Monkey” dataset. mip360 [2] outper-
forms NeRF but falters in level 1. Furthermore, in level 0 of
the “Cube-Sphere-Monkey” dataset, mip360 only generates
a white patch with no visible structure. For RealEstate10K
dataset, it can be observed in Figure 7 that mip360 gen-
erates blurry results compared to our approach. Further,
we find that our approach generates consistent and struc-
turally salient novel views throughout all levels and scenes.
We show qualitative results for Instant-NGP [35] and Ten-
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Figure 7. Qualitative comparison on Scenes from RealEstate10K dataset between mip360 (left image) and our method Strata-NeRF (right
image) in a pair. Each row represents a scene in RealEstate10K and each pair represents a level in that scene. Our method outperforms and
produce good quality novel views compared to mip360.
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Figure 8. (From top to bottom) Qualitative results on the proposed
synthetic datasets. Each row represents a novel view from each
level of the stratified scene. The ground-truth view is shown in
Column 1. Compared to prior works (Column 2-4) our method’s
(Column 5) renderings are more similar to the ground-truth.

soRF [6] in Appendix E.2 in the supplementary material.
Worst Case Analysis. When comparing different methods,
average metrics are often insufficient to determine which
method is superior to the others. As we have observed in
Figure 9 that the baseline method fails on some of test im-
ages, hence we also compare the methods in worst care sce-
narios. The worst-case analysis describes a method’s worst
performance on the dataset. The worst case analysis is par-
ticularly useful to detect the shortcomings of the methods.
We present analysis in two categories: (a) histogram dis-
tribution for each metric on the test set, and (b) qualitative
comparison of the worst-case scenario for our method on
PSNR metric.

Figure 9 compares PSNR histogram plots on test-set
views for the “Cube-Sphere-Monkey” scene. We can see
that the mip360 approach performs poorly on PSNR and
ranks low on practically all stratification levels. This sup-
ports our argument that the mip360 approach produces ar-

Level 2Level 1Level 0

Plenoxelmip360GT OursNeRF

Figure 9. (Top Row) Comparison of histogram plots for the test-
set for PSNR on “Cube-Sphere-Monkey”. Note how distribution
of our our method is always towards the right compared to other
methods. x− axis denote metric value and y − axis denotes the
frequency. A qualitative comparison of our method’s worst-case
PSNR results. PSNR is present at the bottom of the result image.

tifacts in such stratified scenes. For our method, the PSNR
distributions are on the right. This implies that the novel
views on test-set from our method will not be having seri-
ous artifacts in most cases, demonstrating its reliability.

Images in Figure 9 depict the qualitative results for the
worst-case PSNR instances. All methods perform well in
level 0. Hence, we are discussing interior levels which are
level 1 and level 2. Other approaches fail in the worst-case
scenario for our method at level 1. The outputs from NeRF,
mip360 and Plenoxel are visually impaired. At level 2, our
method has less blur compared to other approaches. These
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(a) (b) (c)

Figure 10. Novel-views from different levels of ’Real Estate Video Tour 7 Rutledge Ave Highland Mills NY 10930 Orange County NY’
scene in Real Estate 10K dataset. The two rows are from two-different view-points.

Table 7. Quantitative comparison of our model and baseline on
Synthetic Six Layer Scene.

Metrics Level 0 Level 1 Level 2 Level 3 Level 4 Level 5

mip360 [2] PSNR ↑ 22.215 16.183 15.084 12.012 21.813 21.539
SSIM ↑ 0.777 0.442 0.510 0.344 0.817 0.647

Ours PSNR ↑ 23.889 21.449 21.456 24.095 28.283 21.898
SSIM ↑ 0.833 0.681 0.685 0.722 0.883 0.686
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Figure 11. Comparisons of different codebook size on “Dragon
in Pyramid” scene for different vector-codebook sizes. Note at
size=1024 we achieve the best results with less artifacts.

findings demonstrate that our method is better suited to rep-
resent stratified scenes than others.
Ablation Studies. To analyse our proposed method, we
present an ablation on the size of the vector codebook in
our latent generator. Table 8 shows the ablation for the size
of the vector codebook on the “Coffee Shop” dataset. We
trialed with codebook sizes of 512, 1024 and 4096. We
found that size 1024 provides optimal performance. As
shown in Figure 11, increasing the codebook size induces
haziness in the generated novel views, while decreasing the
size creates white artifacts in level 0. As a result, we fix the
size 1024 for all of our synthetic experiments. Whereas for
RealEstate10K dataset we find that codebook size of 4096
produces the optimal tradeoff of results across levels, as it
contains more number of levels and details.We further dis-
cuss the key architectural design choices for Latent Gener-
ator and Latent Router modules in Appendix E.5.
No. of levels: To further test the efficacy of our method
on higher number of levels, we created a “Simple Geom-
etry” scene consisting of primitive geometry shapes like
cube and spheres. More details are in the supplementary

Table 8. Quantitative results on “Cube-Sphere-Monkey” scene
for ablation on size of the vector codebook in Latent Generator.

Size PSNR ↑ SSIM ↑ LPIPS ↓
Level 0 Level 1 Level 0 Level 1 Level 0 Level 1

512 29.5458 26.3497 0.8743 0.7395 0.1675 0.4899
1024 29.4834 26.1715 0.8701 0.7489 0.1367 0.5163
4096 28.4609 27.8274 0.8628 0.7342 0.1776 0.5027

material. Table 7 displays the results for both the baseline
and our approach across a six levels stratified scene. The av-
erage PSNR/SSIM for the mip360 baseline is 15.35 / 0.487,
while our method achieved PSNR/SSIM of 23.54 / 0.754
which improves PSNR and SSIM by 53.35 % and 54.83 %
respectively. This shows that our method performs better on
increasing number of levels when compared with the base-
line method. These observations also hold true for scenes
in the RealEstate10K dataset as shown in Table 5.

7. Conclusion

In this work, we focus on the problem of modelling the
3D representation of a stratified and hierarchical scene, im-
plicitly through a single neural field. For this, we propose
Strata-NeRF, which models scenes with stratified structures
by introducing a VQ-VAE-based latent generator to implic-
itly learn the distribution of latent space of input 3D loca-
tions and condition the neural radiance field with the latent
code generated from this distribution. We also introduce a
new synthetic dataset with stratified-level scenes and use it
to analyse various existing approaches. Through quantita-
tive, qualitative, and worst-case analysis on this dataset, we
show that Strata-NeRF has a more stable 3D representation
than the other methods. Further, the improvements due to
Strata-NeRF also generalize to real-world RealEstate10K
dataset, where it outperforms baselines by a significant mar-
gin establishing a new state-of-the-art. We believe design-
ing a new volume rendering equation for modelling com-
plex stratified scenes is a good direction for future work.
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