
General Planar Motion from a Pair of 3D Correspondences

Juan Carlos Dibene Zhixiang Min
Stevens Institute of Technology

{jdibenes,zmin1,edunn}@stevens.edu

Enrique Dunn

Abstract

We present a novel 2-point method for estimating the
relative pose of a camera undergoing planar motion from
3D data (e.g. from a calibrated stereo setup or an RGB-
D sensor). Unlike prior art, our formulation does not as-
sume knowledge of the plane of motion, (e.g. parallelism
between the optical axis and motion plane) to resolve the
under-constrained nature of SE(3) motion estimation in this
context. Instead, we enforce geometric constraints identify-
ing, in closed-form, a unique planar motion solution from
an orbital set of geometrically consistent SE(3) motion es-
timates. We explore the set of special and degenerate geo-
metric cases arising from our formulation. Experiments on
synthetic data characterize the sensitivity of our estimation
framework to measurement noise and different types of ob-
served motion. We integrate our solver within a RANSAC
framework and demonstrate robust operation on standard
benchmark sequences of real-world imagery. Code is avail-
able at: https://github.com/jdibenes/gpm.

1. Introduction
Pose estimation is a basic geometric perception task cru-

cial to multiple computer vision and robotic applications
such as 3D modeling [9], image registration [22], object
pose estimation [24], visual odometry [23], and simultane-
ous localization and mapping (SLAM) [21]. The problem
is generally formulated as the estimation of the parameters
of a motion-model representation (i.e. SE(2) or SE(3)) that
satisfies a given image formation model and a set of input
observations [8]. From a geometric perspective, the 2D and
3D variants of the absolute orientation problem (i.e. finding
the rigid motion among two sets of corresponding points
expressed in different Euclidean coordinate systems), are
perhaps the most straightforward and well-known.

The use of constrained planar motion models allows to
reduce data requirements and enforce structured geometric
priors onto the estimates (e.g. non-holonomic constraints
applicable to robotic vehicle platforms). For such cases,
the desired estimate may be geometrically represented as
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Figure 1. Planar motion is common to mobile platforms traversing
locally flat terrain such as the KITTI [10] (left) and TUM [34]
(right) benchmarks. Our method operates on 3D feature inputs,
possibly attained through stereo triangulation or depth sensors, to
estimate planar motion without any priors on the motion plane.

an element of SE(2) defined on a 2D plane embedded in
Euclidean 3-space. Surprisingly, the task of jointly estimat-
ing a completely unknown embedding motion plane, as well
as the corresponding SE(2) motion parameters, remains an
open research problem.

Our geometric formulation assumes the availability of a
pair of correspondences among local (i.e. camera-space)
3D points attained from RGB-D inputs (e.g. active/passive
stereo, time-of-flight sensors, view-registered lidar). Per the
discussion in Horn’s classic work [16], such input under-
constrains the estimation of the general SE(3) transforma-
tion relating the 3D coordinates. Our formulation disam-
biguates among the ensuing 1D family of solutions in gen-
eral SE(3) by enforcing compliance to a general planar mo-
tion (i.e. SE(2)) model through a straightforward geomet-
ric constraint: orthogonality between the translation com-
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ponent and the rotation axis.
Our framework defines the geometry of the set of possi-

ble SE(3) solutions, and explicitly models the 1D paramet-
ric dependency for both general motion components (i.e.
3D rotation and translation) to derive a closed-form solu-
tion yielding the unique SE(3) element satisfying the gen-
eral planar motion assumption. The technical contributions
and differentiators of our work are:

1. Simplicity. We develop a minimal and purely geomet-
ric first-order analytic solution defined over linear vec-
tor operations and trigonometric functions instead of
root-searching over higher-order polynomial terms.

2. Generality. Our formulation makes no assumptions
on the camera disposition w.r.t. the ground motion
plane, making it suitable for deployment in capture
rigs with unknown (but constant) configuration.

3. Interpretability. By virtue of its explicit geomet-
ric parameterization, our formulation can summarily
identify and robustly estimate special motion instances
such as pure rotation and/or translation.

2. Related work

We present a summary of closely related work for rela-
tive pose estimation assuming planar motion.

Ortı́n and Montiel [27] use monocular vision to esti-
mate the relative motion of an indoor robot limited to the
X-Z plane. They propose a linear 3-point algorithm, and
an iterative non-linear 2-point solver based on a fundamen-
tal matrix parametrization. For the case of pure rotation,
where the epipolar geometry is not defined, they consider
an homography-based model from a 1-point match.

Stewénius and Åström [33] consider a multi-camera sys-
tem undergoing planar motion and address 3 particular
cases: 1) 8 points in 3 one-dimensional views, 2) 3 points
in 2 two-dimensional views, and 3) 2 points in 3 two-
dimensional views.

Booij and Zivkovic [2] provide a comprehensive descrip-
tion of the monocular planar 2-point algorithm of Goedemé
et al. [11], for which the motion is constrained to the X-Y
plane. The method determines relative heading and rota-
tion angles, and can yield up to 2 possible solutions for the
relative translation and rotation.

Choi et al. [4] introduce a 2-point solver for planar mo-
tion and a 1-point solver for circular planar motion. Both
motions are restricted to the X-Z plane. The relative pose
can be estimated from either a reduced essential matrix
model with 4 solutions for the planar motion and 2 solutions
for the circular motion, or from a reduced homography of
the ground plane, with 1 solution for the planar case and 2
solutions for the circular case.

Nicolás et al. [20] address the problem of visual con-
trol for mobile robots with non-holonomic constraints. The
robot undergoes planar motion and only the x-coordinates
of the epipoles are considered for control design.

Scaramuzza [32] presents a method to estimate the rela-
tive motion of a vehicle from 1 point correspondence. The
assumptions are that the vehicle motion follows the Acker-
mann steering principle, that motion is on the X-Y plane,
and that the distance between the camera and the back
wheel axis is zero.

Lee at al. [18] present a minimal 2-point solver for the
relative motion of a generalized camera under the Acker-
mann motion model, with up to 6 solutions. Motion is con-
sidered on the X-Y plane.

Miraldo and Araujo [25] address relative pose estimation
under planar motion considering known 3D lines. It does
not require to determine correspondences between pixels
and 3D points. Instead, what it is required is to determine
for each pixel to which 3D line it belongs to. The relative
motion is constrained to the X-Y plane.

Choi et al. [5] present a relaxed planar motion model
which allows for small non-planar motion. The planar com-
ponent is assumed to lie on the X-Z plane and the relative
pose is estimated from 3 point correspondences.

Chou and Wang [7] consider planar motion on the X-Y
plane. From the epipolar constraint, they derive a system
of equations that can be interpreted as the intersection of 2
ellipsoids, which yields up to four solutions. Their solver
requires 2 point correspondences.

Choi and Kim [3] build upon the derivation of [7] to for-
mulate the planar relative pose problem as the intersection
of a line and a unit circle. Their 2-point solver yields up to
two solutions. Motion is on the X-Z plane.

Saurer et al. [31] present minimal solutions for the ego-
motion of a camera based on homography knowing the
gravity direction between calibrated images. The solutions
depend on the prior knowledge about the reference plane
used by the homography.

Örnhag and Heyden [26] consider two cameras on a mo-
bile platform directed towards the floor and mounted at the
same distance from the ground. Planar motion is assumed
(the mobile platform rotates about the z-axis) and the rela-
tive motion is estimated from ground plane homographies.

Hajder and Barath [13] present a least squares solver for
relative planar motion from 3 point correspondences, con-
sidering motion on the X-Z plane. The solver obtains the
motion parameters as the roots of a 6th degree polynomial.

Zhang et al. [35] propose a 2-point solver for relative
planar motion, on the X-Z plane, from ground plane homo-
graphies. Their solver computes the rotation and translation
independently so it can work with pure rotation scenes.

Zhao et al. [36] solve for relative motion using ray-point-
ray correspondences. In the case of planar motion, the rela-
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Figure 2. Our method factorizes the rotation component R of the
motion into a product two rotations R = R∗R1. a) The particular
solution R∗, a rotation about k∗, aligns the vectors given by the
3D point pairs. b) Combining R∗ with R1, a rotation about k1,
yields the general solution to R parameterized by θ1, whose value
is determined from the planar motion constraint.

tive pose can be estimated from 1 ray-point-ray correspon-
dence. For the planar case, motion is on the X-Y plane.

Li et al. [19] present a comprehensive study of relative
pose estimation constrained by SE(3) invariants, including
planar motion. They show that rotation angle and screw
translation can be integrated into relative pose solvers to re-
duce the number of minimal points. As these are SE(3)
invariants, extrinsic pose of the camera with respect to the
motion plane is not required.

Hajder and Barath [14] propose 2 solvers to estimate the
extrinsic camera parameters from a single affine correspon-
dence assuming general planar motion. The image plane is
assume to be orthogonal to the ground (X-Z plane). The
first solver corresponds to the calibrated camera case, while
the seconds considers an unknown common focal length.

Guan et al. [12] address the minimal cases for estimating
the generalized relative pose from affine correspondences.
For the case of planar motion, they present a minimal solver
from 1 affine correspondence and a solver from 2 affine cor-
respondences to overcome the degenerate case. Motion is
on the X-Z plane.

Most related to our work, is the 2-point solver of Choi
and Park [6] from 2D-3D point correspondences obtained
from RGB-D data. However, they assume the motion of the
camera is on the X-Z plane, which requires that the RGB-
D camera is adjusted precisely to make sure the X-Z plane
of the camera coordinate system is parallel to the moving
plane of the robot.

3. General Planar Motion from a 3D Point Pair
It is common practice to consider SE(2) transformations

to be applied to elements residing in Euclidean 2-space (i.e.
contained within a plane). Our notion of general planar mo-
tions (GPMs) refers to those elements of SE(3) (applica-
ble to elements of Euclidean 3-space) which are compat-
ible with an SE(2) rigid motion. The geometric property
defining such compatibility is having the rotation axis and

the translation components represented by orthogonal vec-
tors. Such notion defines GPMs as a subset of SE(3) and
offers generalizations to higher dimensions (which are con-
sidered out of scope for this work). Geometrically, GPMs
implicitly define the embedded motion plane by 1) speci-
fying the plane’s normal vector orientation to be parallel to
the 3D axis of their rotation component, and 2) specifying
the translational component vector to correspond to a point
belonging to such plane.

The empirical relevance of such formulation is that it ob-
viates the need to calibrate the camera w.r.t. the ground
plane. As discussed in section 2, pose estimation can be sig-
nificantly simplified by modeling constraints between the
geometry of the image plane and the motion plane. While
such works may be applicable to capture setups with ar-
bitrary camera orientation (w.r.t. to the motion plane) by
applying pre-processing steps to the input data, such arbi-
trary orientation must be known a-priori. Our 2-point GPM
solver, requires no such information.

3.1. Geometric Solution from a Single 3D Point Pair

Our method considers two static 3D points, PA and PB ,
observed by a camera at an initial location τ1 and then at
a different location τ2 (see Figure 1). The 3D points at τ1,
PA1 and PB1, and those at τ2, PA2 and PB2, are given w.r.t.
each camera’s coordinate frame. Then, the points observed
at τ1 and τ2 are related by a rotation and a translation as

PA2 = RPA1 + t, (1)

PB2 = RPB1 + t, (2)

where R and t are the parameters to be estimated. For planar
motion, this problem has 5 degrees of freedom (DOF): 2 for
the axis of rotation, 1 for the angle of rotation, 1 for the di-
rection of the translation (on the plane of motion) and 1 for
the magnitude of the translation. Equation 1 and Equation 2
provide 5 constraints on the 6-DOF pose (R, t) (since the
distance between the points is invariant), with the remain-
ing DOF corresponding to a rotation about the axis passing
through both points. This last DOF is constrained by the
planar motion assumption.
Factorization of the rotation. Our solution is based on fac-
torizing R into two separate rotations. Similar approaches
have been used in previous works such as [30, 29, 17]. Sub-
tracting Equation 2 from Equation 1 yields

PA2 − PB2 = R(PA1 − PB1). (3)

Such an expression simply defines the rotation of the 3D
line-segment vector across time. A particular solution R∗
for Equation 3 can be obtained as follows. First, determine
the axis k∗ of the rotation between the points at τ2 and those
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at τ1, as the common normal to the line-segment vectors
(see Figure 2a) by

k∗ = u((PA1 − PB1)× (PA2 − PB2)), (4)

where u(·) converts to a unit vector. For now, we assume
that the cross product in Equation 4 is non-zero. The alter-
native case will be addressed in subsection 3.2. Next, the
angle of rotation θ∗ is

θ∗ = arccos (k1 · k2), (5)

where
k1 = u(PA1 − PB1), (6)

k2 = u(PA2 − PB2). (7)

Finally, Rodrigues’ rotation formula gives

R∗ = C(k∗, θ∗) = I+sin (θ∗)K∗+(1−cos (θ∗)K
2
∗), (8)

where K∗ is the skew-symmetric matrix corresponding to
k∗. We use C(k, θ) to denote the rotation matrix corre-
sponding to a rotation about an axis k by an angle θ. Of
course, R∗ is only one of the infinitely many solutions for
Equation 3. Geometrically, the entire family of rotations
can be generated by combining R∗ with a rotation along an
axis parallel to either k1 or k2 (see Figure 2b). Accordingly,
the remaining solutions can be generated by (and parame-
terized w.r.t.) a single parameter θ1 as

PA2 − PB2 = R∗C (k1, θ1) (PA1 − PB1), (9)

This parameterization is based on the fact that points lying
on the axis of rotation remain fixed. The reader might won-
der why is this parameterization sufficient without also con-
sidering rotations about the axis defined by PA2 and PB2

PA2 − PB2 = C (k2, θ2)R∗(PA1 − PB1). (10)

or even

PA2−PB2 = C (k2, θ2)R∗C (k1, θ1) (PA1−PB1). (11)

It can be shown that the parameterizations in Equation 9,
Equation 10, and Equation 11 are all equivalent by using a
known property of rotation matrices

R∗C(k1, θ)R
⊤
∗ = C(R∗k1, θ) = C(k2, θ). (12)

As a consequence, the same final composite rotation matrix
R may be generated by either of our potential parameteri-
zations. Thus, for simplicity, we chose the single parameter
model defined by Equation 9

R = C(kR, θR) = C(k∗, θ∗)C(k1, θ1), (13)

where kR and θR are the axis and the angle corresponding
to R, respectively.
Enforcing the GPM constraint. We use the planar mo-
tion constraint to determine the value of θ1 as follows. The
planar motion constraint is

(−R⊤t) · kR = 0. (14)

Combining Equation 1 with Equation 14 and using the prop-
erty of rotation matrices RkR = R⊤kR = kR along with
the invariance of the dot product under rotations yields

∆P · kR = 0, (15)

where

∆P = PA1 − PA2. (16)

Note that a similar result can be achieved using Equation 2.
We assume for now that ∆P ̸= 0. The opposite case is
discussed in subsection 3.2.
Solving for the free parameter. From the Rodrigues for-
mula for the composition of two axis-angle rotations

sin

(
θR
2

)
kR =sin

(
θ∗
2

)
cos

(
θ1
2

)
k∗+

cos

(
θ∗
2

)
sin

(
θ1
2

)
k1+

sin

(
θ∗
2

)
sin

(
θ1
2

)
(k∗ × k1).

(17)

Finally, combining Equation 15 and Equation 17 yields

θ1 = 2arctan
(y
x

)
, (18)

where

y = −
(
sin

(
θ∗
2

)
k∗

)
·∆P , (19)

x =

(
cos

(
θ∗
2

)
k1 + sin

(
θ∗
2

)
(k∗ × k1)

)
·∆P . (20)

Solving for the motion and the plane. The value of R is
obtained by plugging θ1 into Equation 13. Then t can be
obtained from either Equation 1 or Equation 2

t = PA2 −RPA1. (21)

For estimating the plane of motion, the plane normal (kR)
can be obtained from Equation 17 given that R ̸= I , where
I is the 3× 3 identity matrix. Note that the plane of motion
always passes through the origin.
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3.2. Geometric Special Cases

When the cross product yielding the axis k∗ in Equa-
tion 4 is zero, it indicates the 3D vectors connecting the 3D
points observed at τ1 and τ2 are parallel. There are two dif-
ferent geometric interpretations for this, each corresponding
to a special case for our method: θ∗ = 0 or θ∗ = π. We as-
sume θ = [0, π] since the direction of rotation is given by
the axis k, following the right hand rule.

If θ∗ = π, then any axis k∗ orthogonal to k1 (or k2)
suffices. Such axis can be obtained, for example, from the
SVD of k⊤1 (or k⊤2 ). Then, R and t can be estimated as
described in section 3.

If θ∗ = 0, then the geometric configuration is degener-
ate. The rotation axis kR is parallel to both k1 and k2 (see
Figure 3a) and the planar motion constraint (Equation 15) is
satisfied for all values of θ1. Otherwise, the motion would
violate the planar assumption. Therefore, it is not possi-
ble to recover the true value of θ1. Note that both the nu-
merator and denominator of Equation 18, which gives the
solution for θ1, vanish in this case and the result is unde-
fined. Since θ∗ = 0 and θ1 = 0 yield R = I , pure transla-
tion and the degenerate case are indistinguishable. For real
images, with potentially many more than two point corre-
spondences (e.g. running in a RANSAC framework), the
degenerate case with θ1 ̸= 0 is seldom observed since all of
the observed 3D points would have to be collinear and their
line parallel to the axis of rotation. Therefore, our solver
defaults to pure translation under the degenerate condition.

When the value of ∆P in Equation 15 is zero both the nu-
merator and denominator of Equation 18 vanish. We show
the conditions under which this situation occurs. Having
∆P = 0 means that PA2 = PA1. Thus, from Equation 1

PA1 = RPA1 + t. (22)

Then, we eliminate R and solve for ∥t∥

∥t∥ = 2∥PA1∥cos(θtPA1
), (23)

where θtPA1
is the angle between PA1 and t. Then, t can be

parameterized by θtPA1
and θPA1

as

t = 2 cos(θtPA1
)C(C(P̂A1, θPA1

)k⊥, θtPA1
)PA1, (24)

where P̂A1 = u(PA1) and k⊥ is any axis orthogonal to PA1.
Note that the parameter θPA1

encodes all possible choices
of k⊥. Equation 24 describes a sphere surface, centered on
PA1 and with radius ∥PA1∥, for all t that satisfy ∆P =
0 (see Figure 3b). Then, from Equation 1, every t on the
surface of the sphere has a corresponding family of rotations
parameterized by θf

R = C(C(P̂A1, θPA1
)k⊥, 2θtPA1

− π)C(P̂A1, θf ). (25)

As an example, we show the two extreme cases. For t = 0
there is a family of R = C(P̂A1, θf ), which corresponds

θ1

Axis of
rotation

PB1

PA1

PB2

PA2

PA1

Origin

θtPA1

t
PA1 − t

t-sphere

a) b)
Figure 3. Geometric special cases. a) When θ∗ = 0 there is
always a corresponding t for any θ1, so it is not possible to dis-
ambiguate by the planar motion constraint. b) For ∆P = 0, it is
necessary for t to be on the sphere centered on PA1 and for R to
belong to a particular set. The planar motion constraint is always
zero and cannot be used to disambiguate.

to all pure rotations about PA1. For t = 2PA1 there is a
family of R = C(C(P̂A1, θPA1

)k⊥, π)C(P̂A1, θf ). In real
images (with many point correspondences and a RANSAC
framework), all of these special structures can be avoided
just by choosing another set of point correspondences with
∆P ̸= 0. The case where all samples fall in this special
case is rarely observed, since it requires that t is on all of the
spheres corresponding to all observed 3D points and that R
belongs to all families given by all (t, sphere) pairs. For
example, t = 0 is on all of the spheres and requires that
the axis of rotation passes through all of the 3D points. Fi-
nally, similar results can be obtained from Equation 2 in-
stead when considering ∆ = PB1 − PB2 in section 3.

4. Experiments

We evaluate the performance of our solver and compare
with state of the art methods on synthetic and real data.
All of the experiments were run on MATLAB R2020b. We
compare with the methods of Scaramuzza [32] (1pt-1*dof-
2d2d), Choi and Park [6] (2pt-3dof-2d3d), Horn [15] (3pt-
6dof-3d3d), Persson and Nordberg [28] (3pt-6dof-2d3d),
and Hajder and Barath [13] (3pt-2*dof-2d2d). We denote
all methods using a three-part name, where the first part is
the number of input point correspondences, the second part
is the DOF of the pose, and the third part is the type of point
correspondences. For example, our method takes two 3D-
3D point correspondences to estimate a 5-DOF pose and
thus is denoted as 2pt-5dof-3d3d.

We use a pair of 6-DOF methods [15, 28] as an integrity
baseline since they are not affected by deviations from pla-
nar motions. The 1pt-1*dof-2d2d method [32] allows to
compare our method under the Ackermann motion model
on a known motion plane. The remaining planar method
pair [6, 13] require prior calibration of the ground plane and
allow us to draw comparisons w.r.t. general planar motion
model. Also, the different types of point correspondences
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(2D-2D, 2D-3D) allow to better compare the performance
and robustness of our solver under the effect of 2D and 3D
noise. Note that the 3pt-2*dof-2d2d method [13] returns up
to 6 solutions and 3pt-6dof-2d3d [28] returns up to 4.

The 2D-2D methods do not estimate the scale of the
translation so we extended them to obtain the scale from the
3D data to have a uniform metric for the translation error.
From Equation 1, the scale ρ of the translation is

ρ = t̂ · (PA2 −RPA1), (26)

where t̂ is the direction of the translation (a unit vector)
given by these methods. This extension is denoted with an
* in the DOF part of the method name.

4.1. Synthetic Data

We generated two synthetic datasets of 10,000 random
planar motions (R, t) each. Rotations are considered about
the Y axis and thus the translations are on the X − Z
plane. For the first dataset (Y-ackermann), motions follow
the Ackermann steering model, while the second dataset (Y-
general) contains arbitrary translations on the plane. The
1pt-1*dof-2d2d method [32] is based on the Ackermann
model and thus is not evaluated on the Y-general dataset.
For the methods that return multiple solutions, we select
the one that is closest to the ground truth orientation. We
report the medians of the orientation error, computed as the
angle of R⊤Rgt, the relative translation error, computed as
∥t−tgt∥/∥tgt∥, where gt denotes the ground truth pose, and
the plane of motion orientation error, as the angle between
estimated and ground truth plane normal (i.e., rotation axis).
Pure rotation and translation. We verify our solver under
pure rotation and translation. We take the Y-general dataset
and randomly rotate each pose. Then, we set t = 0 for
pure rotation and R = I for pure translation, effectively
generating two new datasets with 10K poses each. For pure
rotation, maximum rotation, translation, and plane orienta-
tion errors are 3×10−6 degrees, 2×10−11 (absolute error),
and 1×10−6 degrees, respectively. For pure translation, the
maximum errors are 0 , 6× 10−13 %, (plane is undefined).
Ground plane calibration error. We evaluate the effect of
simulated ground plane calibration error (GPCE), attained
by rotating the motions in the datasets in increments of 1
degree from -10 to 10 degrees. This preserves the orthogo-
nality of the rotation axis and the translation, but the rotation
axis is no longer aligned with the Y axis. The results for ro-
tating the motions about the x axis are shown in Figure 4.
For rotating about the z axis, the results are very similar
and can be found on the supplementary material. Results
highlight our method’s differentiating property: by jointly
estimating the motion parameters and the motion plane, our
method obviates the need for ground plane calibration and
is thus unaffected. In this regard, we clearly outperform the
triplet of calibrated planar motion solvers [32, 6, 13] (i.e.
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Figure 4. Effect of ground plane calibration error. Motions in the
datasets were rotated about the x axis.

assuming a motion plane parallel to the optical axis). As
expected, 6-DOF methods are also unaffected by GPCE.
Non-planarity of motion. We evaluate performance for
various degrees of non-planarity, attained by fixing the ro-
tation and then rotating t about the axis orthogonal to both
the rotation axis and t, in increments of 1 degree from -10
to 10 degrees. The results are shown in Figure 5. As ex-
pected, 6-DOF baselines are unaffected by non-planarity.
All planar motion solvers are shown to have degraded per-
formance as the magnitude of the deviation from planar
motion increases. For deviations less than 6 degrees, our
method consistently outperforms the 2pt-3dof-2d3d [6] and
3pt-2*dof-2d2d [13] calibrated planar methods. Alternative
forms of motion planarity deviation that encode GPCE (i.e.
translation is fixed and the rotation axis rotated about the
axis orthogonal to both) yielded similar results and are in
the supplementary material.
Measurement noise. First, we evaluate the effect of 2D
pixel noise and depth noise independently. For 2D noise ex-
periments, pixel measurements are disturbed by 2D Gaus-
sian noise from 0 to 1 pixels in increments of 0.1 pixels and
the corresponding depth value is unmodified. We consider
a focal length of f = 720 pixels. The results are shown in
Figure 6. We observe that our method is only outperformed
by the 1pt-1*dof-2d2d method [32], which is only suit-
able under Ackermann motion, and the 3pt-6dof-3d3d non-

8065



-10 -5 0 5 10

Deviation (degrees)

0

5

10

15

20

25

M
e
d
ia

n
 o

ri
e
n
ta

ti
o
n
 e

rr
o
r 

(d
e
g
re

e
s
)

Effect of non-planarity (Y-ackermann)

2pt-5dof-3d3d (ours)

1pt-1*dof-2d2d

2pt-3dof-2d3d

3pt-6dof-3d3d

3pt-6dof-2d3d

3pt-2*dof-2d2d

-10 -5 0 5 10

Deviation (degrees)

0

5

10

15

20

25

30

35

40

M
e
d
ia

n
 o

ri
e
n
ta

ti
o
n
 e

rr
o
r 

(d
e
g
re

e
s
)

Effect of non-planarity (Y-general)

2pt-5dof-3d3d (ours)

2pt-3dof-2d3d

3pt-6dof-3d3d

3pt-6dof-2d3d

3pt-2*dof-2d2d

-10 -5 0 5 10

Deviation (degrees)

0

20

40

60

80

100

M
e
d
ia

n
 r

e
la

ti
v
e
 t
ra

n
s
la

ti
o
n
 e

rr
o
r 

(%
)

Effect of non-planarity (Y-ackermann)

2pt-5dof-3d3d (ours)

1pt-1*dof-2d2d

2pt-3dof-2d3d

3pt-6dof-3d3d

3pt-6dof-2d3d

3pt-2*dof-2d2d

-10 -5 0 5 10

Deviation (degrees)

0

20

40

60

80

100
M

e
d
ia

n
 r

e
la

ti
v
e
 t
ra

n
s
la

ti
o
n
 e

rr
o
r 

(%
)

Effect of non-planarity (Y-general)

2pt-5dof-3d3d (ours)

2pt-3dof-2d3d

3pt-6dof-3d3d

3pt-6dof-2d3d

3pt-2*dof-2d2d

-10 -5 0 5 10

Deviation (degrees)

0

0.5

1

1.5

2

2.5

3

3.5

4

M
e
d
ia

n
 p

la
n
e
 o

ri
e
n
ta

ti
o
n
 e

rr
o
r 

(d
e
g
re

e
s
)

Effect of non-planarity (Y-ackermann)

2pt-5dof-3d3d (ours)

-10 -5 0 5 10

Deviation (degrees)

0

1

2

3

4

5

6

M
e

d
ia

n
 p

la
n

e
 o

ri
e

n
ta

ti
o

n
 e

rr
o

r 
(d

e
g

re
e

s
)

Effect of non-planarity (Y-general)

2pt-5dof-3d3d (ours)

Figure 5. Effect of the non-planarity of motion when rotating t
towards/away from the rotation axis.

planar baseline [15]. The 2D-3D methods 2pt-3dof-2d3d
[6] and 3pt-6dof-2d3d [28] are the most affected. For depth
noise experiments, pixel measurements are fixed and depth
is adjusted by uS% of its magnitude where u ∈ [−1, 1] is
a uniform random variable and S is the scale. For example,
for S = 5 the new depth value will be somewhere between
95% and 105% of its original value. The results are shown
in Figure 7 where the plot’s x axis corresponds to S. The
3D-3D methods 3pt-6dof-3d3d [15] and our 2pt-5dof-3d3d
are the most affected because depth noise breaks the length
invariance assumption between the camera frames. We note
that the 2D-2D methods are unaffected by depth noise and
the reason there is translation error for the 2D-2D methods
is due to the extension we perform (Equation 26) to recover
the scale of the translation from the (corrupted) 3D data.
From these two experiments we observe that our method is
more sensitive to depth errors than pixel errors. Finally, we
evaluate the effect of 3D noise (Figure 8). The 3D coordi-
nates are adjusted by uS% of their value, but now u is Gaus-
sian with µ = 0 and σ = 1. Our method shows comparable
performance w.r.t. the 3pt-2*dof-2d2d [13], 3pt-6dof-2d3d
[28], and 3pt-6dof-3d3d [15] methods for S < 1.5.
Execution time. We perform a relative evaluation of solver
execution times on both synthetic datasets. All solvers were
implemented completely in MATLAB (no pre-compiled
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Figure 6. Effect of 2D pixel noise.

Table 1. Median execution time (µs) on the synthetic datasets. All
methods implemented in MATLAB R2020b.

Y-ackermann Y-general

1pt-1*dof-2d2d [32] 1.3 1.3
2pt-5dof-3d3d (ours) 6.7 6.2
2pt-3dof-2d3d [6] 33.6 33.0
3pt-6dof-3d3d [15] 11.6 11.4
3pt-6dof-2d3d [28] 72.5 71.6
3pt-2*dof-2d2d [13] 59.6 59.2

mex). Solvers were run 30 times on each dataset for a
total of 30×10000×2 samples per solver. We report the
median execution time for each solver in Table 1. Due to
its simplicity, our method is faster than the others except
for the 1pt-1*dof-2d2d Ackermann solver, which is about
5x faster. Compared to the remaining planar methods, our
method achieves a speed up of ∼5x w.r.t. 2pt-3dof-2d3d
solver [6], and a speed up of ∼9x w.r.t. the 3pt-2*dof-2d2d
solver [13]. Compared to 6 DOF baselines, our solver is
∼2x faster than 3pt-6dof-3d3d [15] and ∼11x faster than
3pt-6dof-2d3d [28]. For methods returning multiple solu-
tions, namely 3pt-2*dof-2d2d [13] and 3pt-6dof-2d3d [28],
we do not include the time for selecting a single solution.
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Figure 7. Effect of depth noise.

4.2. Real Data

We evaluate our method’s performance on two stan-
dard benchmarks: the KITTI odometry dataset [10] and the
TUM RGB-D dataset [34]. For KITTI, we use the stereo
pair corresponding to cameras 0 and 1 to extract 3D data.
For each image, we extract SURF [1] features and match
features across each stereo pair to obtain the corresponding
3D points via triangulation. Finally, we match the features
across sequential pairs of images of camera 0 to obtain 3D-
3D point correspondences. For TUM we also use SURF
features and perform matching across sequential images to
obtain 3D-3D point correspondences.

All solvers run inside a RANSAC framework with an
adaptive number of iterations N = ln(1 − p)/ ln(1 − vs),
where we set p = 0.9999, v is the inlier ratio running es-
timate, and s the number of correspondences required per
solver. Assuming v = 0.5 the number of iterations for
the 1 point method [32] is 13, for the 2 point methods of
ours and [6] the number is 32, and for the 3 point methods
[15, 28, 13] the number is 69. The inlier threshold for 3D-
3D point correspondences is a reprojection error of 3 pixels
on both images. For solvers returning multiple solutions, all
hypotheses are tested on all points.

We report the medians of the orientation error, computed
as the angle of R⊤Rgt, and the translation error, computed
as ∥t − tgt∥, where gt denotes the ground truth pose. We
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Figure 8. Effect of 3D noise.

also report the median of the errors and of the success rate
for all sequences in the ALL columns. The best result for
each sequence is in bold and the best result of the planar
methods is underlined. We consider a stride of 1 (i.e, pose
is estimated for frames n and n+1). Results for other stride
values can be found in the supplementary material.
KITTI dataset. For KITTI, we evaluate on the first 11
sequences, for which ground truth data is available. Due
to space constraints, we only present results on the first 4
sequences in Table 2. The results on the remaining 7 se-
quences are in the supplementary material. We note that the
median GPCE for all sequences is approximately 1.495 de-
grees and the median non-planarity error is 2.599 degrees.
Our method outperforms the three calibrated planar solvers
[32, 6, 13] in orientation estimation while the median trans-
lation error is within 2.2 cm of the best (planar) median er-
ror given by the 2pt-3dof-2d3d method [6]. We attribute the
increase in translation error to our solver’s sensitivity to 3D
data discrepancies, as our 3D-3D solver is affected mainly
by depth noise as shown in the synthetic experiments (Fig-
ure 7).The non-planar 3pt-6dof-2d3d method [28] yields the
best results overall and the median errors of our method are
within 0.086 degrees and 8.4 cm of it. Finally, for our solver
the median plane orientation error for all sequences is 3.133
degrees (considering stride 5, since small strides approach
pure translation).
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Table 2. Median orientation error (in degrees), translation error (in meters), and success rate (in %) on the KITTI dataset [10] (stride of 1).
Best in bold, best of planar methods underlined. The column ALL contains the median for all 11 sequences.

Sequence 00 01 02 03 ALL
deg m deg m deg m deg m deg m %

2pt-5dof-3d3d (ours) 0.186 0.105 0.143 1.274 0.181 0.116 0.177 0.125 0.168 0.116 100.0
3pt-6dof-3d3d [15] 0.255 0.129 0.359 2.025 0.270 0.147 0.242 0.152 0.245 0.147 100.0
2pt-3dof-2d3d [6] 0.237 0.109 0.112 0.378 0.198 0.094 0.182 0.094 0.175 0.094 100.0
3pt-6dof-2d3d [28] 0.090 0.032 0.082 0.238 0.093 0.035 0.070 0.029 0.082 0.032 100.0
1pt-1*dof-2d2d [32] 0.319 0.631 0.194 1.931 0.274 0.918 0.256 0.498 0.239 0.694 99.4
3pt-2*dof-2d2d [13] 0.247 0.130 0.134 0.654 0.206 0.114 0.200 0.110 0.188 0.114 100.0

Table 3. Median orientation error (in degrees), translation error (in meters), and success rate (in %) on the TUM dataset [34] (stride of 1).
Best in bold, best of planar methods underlined. The column ALL contains the median for all 4 sequences.

Sequence 360 slam slam2 slam3 ALL
deg m deg m deg m deg m deg m %

2pt-5dof-3d3d (ours) 0.755 0.059 0.560 0.027 0.500 0.025 0.355 0.018 0.530 0.026 98.9
3pt-6dof-3d3d [15] 1.035 0.087 0.724 0.038 0.621 0.037 0.460 0.026 0.673 0.037 99.1
2pt-3dof-2d3d [6] 0.562 0.048 0.526 0.030 0.438 0.023 0.300 0.015 0.482 0.027 95.5
3pt-6dof-2d3d [28] 0.659 0.033 0.517 0.017 0.462 0.015 0.300 0.012 0.490 0.016 98.9
1pt-1*dof-2d2d [32] 0.408 0.015 0.379 0.013 0.337 0.009 0.229 0.007 0.358 0.011 88.8
3pt-2*dof-2d2d [13] 0.440 0.029 0.404 0.017 0.356 0.012 0.246 0.009 0.380 0.015 96.1

TUM dataset. For TUM, we evaluate on the Robot SLAM
sequences: 1) freiburg2 pioneer 360, 2) freiburg2 pioneer
slam, 3) freiburg2 pioneer slam2, and 4) freiburg2 pioneer
slam3. The results are in Table 3. Ackerman motion is well
suited for this dataset, as the camera is right above the wheel
axis (see Figure 1); in contrast to KITTI, where the distance
between the camera and the back wheel axis is about 1 me-
ter. We note that the median GPCE for all sequences is
1.509 degrees and the median non-planarity error is 0.595
degrees. Here, the 1pt-1*dof-2d2d [32] Ackermann solver
yields the best results overall in orientation and translation
estimation. Our method’s median errors are within 0.172
degrees and 1.5 cm w.r.t. 1pt-1*dof-2d2d [32]. However,
our success is significantly higher. It is also higher than
the rates of the remaining calibrated planar methods [6, 13]
and competitive to the rates of the 6-DOF methods [15, 28]
(within 0.2%). For our solver, the median plane orientaton
error for all sequences is 3.427 degrees (stride 10).

5. Conclusions
We introduced a geometric solver for relative camera

pose from two 3D-3D point correspondences under planar
motion. Our method is general in the sense that it does not
require any knowledge about the motion plane, nor imposes
an in-plane motion model. Moreover, given that the pose
parameters are obtained from 3D data, the absolute scale
of the translation is determined. Per limitations, our mini-
mal solver lacks any mechanisms for evaluating and/or en-
forcing input data compliance to the planar motion assump-

tion. Geometrically, we identify a degenerate case when ob-
served 3D points are parallel to the rotation axis and a spe-
cial case where the rotation cannot be uniquely determined
from the planar motion constraint. However, such scenarios
are rare in practice and are easily diagnosed by our formula-
tion. Evaluation of our solver inside a RANSAC framework
demonstrated effective outlier rejection and robust opera-
tion on real 3D data, with performance comparable to prior
art but without the ground plane/motion limitations.
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