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Figure 1. Examples of video clips from the coMplex video Object SEgmentation (MOSE) dataset. The selected target objects are
masked in orange ◼. The most notable feature of MOSE is complex scenarios, including the disappearance-reappearance of objects,
small/inconspicuous objects, heavy occlusions, crowded scenarios, etc. For example, the target player in the 2nd row turns around when
reappearing in the 4th and 5th columns after disappearing in the 3rd column, bringing challenges in re-identifying him. Most videos in
MOSE contain crowded and occluded objects with the target object seldom being the salient one. The goal of MOSE dataset is to provide
a platform that promotes the development of more comprehensive and robust video object segmentation algorithms.

Abstract

Video object segmentation (VOS) aims at segmenting a
particular object throughout the entire video clip sequence.
The state-of-the-art VOS methods have achieved excellent
performance (e.g., 90+% & ) on existing datasets. How-
ever, since the target objects in these existing datasets
are usually relatively salient, dominant, and isolated, VOS
under complex scenes has rarely been studied. To revisit
VOS and make it more applicable in the real world, we
collect a new VOS dataset called coMplex video Object
SEgmentation (MOSE) to study the tracking and segment-
ing objects in complex scenarios. MOSE contains 2,149
video clips and 5,200 objects from 36 categories, with
431,725 high-quality object segmentation masks. The most
notable feature of MOSE dataset is complex scenes with
crowded and occluded objects. The target objects in the
videos are commonly occluded by others and disappear
in some frames. To analyze the proposed MOSE dataset,
we benchmark 18 existing VOS methods under 4 differ-
ent settings on the proposed MOSE dataset and conduct
comprehensive comparisons. The experiments show that
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current VOS algorithms cannot well perceive objects in
complex scenes. For example, under the semi-supervised
VOS setting, the highest & by existing state-of-the-art
VOS methods is only 59.4% on MOSE, much lower than
their∼90%& performance on DAVIS. The results reveal
that although excellent performance has been achieved on
existing benchmarks, there are unresolved challenges under
complex scenes and more efforts are desired to explore these
challenges in the future.

1. Introduction
Video object segmentation (VOS) [73, 74, 97] aims at

segmenting a particular object, e.g., the dominant objects
or the objects indicated by users, throughout the entire
video sequence. It is one of the most fundamental and
challenging computer vision tasks and has a crucial role
in many piratical applications that involve video analysis
and understanding, e.g., self-driving vehicle, augmented
reality, video editing, etc. There are many different settings
for VOS, for example, semi-supervised VOS [4, 71] that
gives the first-frame mask of the target object, unsupervised
VOS [14, 33] that automatically finds primary objects, and
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interactive VOS [9, 68] that relies on the user’s interactions
of the target object. Video object segmentation has been
extensively studied in the past using traditional techniques
or deep learning methods. Especially, the deep-learning-
based methods have greatly improved the performance of
video object segmentation and surpassed the traditional
techniques by a large margin.

Current state-of-the-art methods have achieved very
high performance on two of the most commonly-used
VOS datasets DAVIS [73, 74] and YouTube-VOS [97].
For example, XMem [10] achieves 92.0% & on
DAVIS 2016 [73], 87.7% & on DAVIS 2017 [74],
and 86.1%  on YouTube-VOS [97]. With such a high
performance, it seems that the video object segmentation
has been well resolved. However, do we really perceive
objects in realistic scenarios? To answer this question,
we revisit video object segmentation under realistic and
more complex scenes. The target objects in existing
datasets [73, 74, 97] are usually salient and dominant.
In real-world scenarios, isolated and salient objects
rarely appear while complex and occluded scenes happen
frequently. To evaluate current state-of-the-art VOS
methods under more complex scenarios, we collect
2,149 videos with complex scenes and form a new large-
scale challenging video object segmentation benchmark,
termed coMplex video Object SEgmentation (MOSE).
Specifically, there are 5,200 objects from 36 categories in
MOSE, with 431,725 high-quality segmentation masks. As
shown in Figure 1, the most notable feature of MOSE is
complex scenarios, including disappearance-reappearance
of objects, small/inconspicuous objects, heavy occlusions,
crowded scenarios, etc. For example, the white sedan in the
first row of Figure 1 is occluded by the bus, and the heaviest
occlusion in 3rd image makes the sedan totally disappear.
In the second row of Figure 1, the target player in the
crowd is inconspicuous and disappears in the third frame
due to the occlusions of the crowd. When the target player
reappears, he turns around and shows a different appearance
from the first two frames, which makes him very difficult
to be tracked. The heavy occlusion and disappearance of
objects under complex scenes bring great challenges to
video object segmentation. We wish to promote video
object segmentation research in complex environments and
make VOS applicable in the real world.

To analyze the proposed MOSE dataset, we retrain and
evaluate some existing VOS methods on MOSE. Specifi-
cally, we retrain 6 state-of-the-art methods under the semi-
supervised setting using mask as the first-frame reference, 2
methods under the semi-supervised setting using bounding
box as the first-frame reference, 3 methods under the multi-
object zero-shot video object segmentation setting, and 7
methods under interactive setting. The experimental re-
sults show that videos of complex scenes make the current

state-of-the-art VOS methods less pronounced, especially
in terms of tracking objects that disappear for a while due
to occlusions. For example, the & performance of
XMem [10] on DAVIS 2016 is 92.0% but drop to 57.6% on
MOSE, the & performance of DeAOT [104] on DAVIS
2016 is 92.9% but drop to 59.4% on MOSE, which consis-
tently reveal the difficulties brought by complex scenes.

The poor performance on MOSE is due to not only
occlusions/crowds/small-scale in static images but also ob-
jects’ disappearance-reappearance and flickering across the
temporal domain. While the heavy occlusions, crowds, and
small objects bring challenges to the segmentation of objects
in images, the disappearance-reappearance of objects makes
it extremely difficult to track an occluded object, increasing
the challenge of association.

In a summary, our main contributions are as follows:
• We build a new video object segmentation bench-

mark dataset termed MOSE (coMplex video Object
SEgmentation). MOSE focuses on understanding ob-
jects in videos under complex environments.

• We conduct comprehensive comparison and evaluation
of state-of-the-art VOS methods on the MOSE dataset
under 4 different settings, including mask-initialization
semi-supervised, box-initialization semi-supervised,
unsupervised, and interactive settings.

• Taking a close look at MOSE, we analyze the chal-
lenges and potential directions for future video under-
standing research in complex scenes.

2. Related Work
2.1. Video Object Segmentation (VOS)

Video object segmentation (VOS) aims at segmenting a
particular object throughout the entire video clip sequence.
According to how to indicate the particular object, there are
mainly four different settings, i.e., semi-supervised VOS (or
semi-automatic VOS [89] or one-shot VOS), unsupervised
VOS (or automatic VOS [89] or zero-shot VOS), interactive
VOS, and referring VOS.
∙ Semi-supervised VOS. Semi-supervised video object seg-
mentation (or one-shot video object segmentation) [4] gives
the first frame object mask and target to segment the tar-
get object throughout the remaining video frames. Most
existing works can be categorized into propagation-based
methods [8, 13, 25, 30–32, 34, 35, 51, 72, 94, 95, 97, 98, 109]
and matching-based methods [13, 21, 22, 29, 40, 69, 85, 91,
102, 107, 111]. The propagation-based methods utilize the
mask of previous frame to guide the mask generation of
the current frame, propagating the clues of target object
frame by frame. The matching-based methods memorize
the embedding of target object and then conduct per-pixel
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classification to measure the similarity of each pixel’s fea-
ture to the embedding of target object.

Since pixel-wise masks are hard to be obtained, some
semi-supervised VOS works propose utilize bounding box
as the first-frame clue to indicate the target object [50, 81,
86]. For example, SiamMask [86] applies a mask prediction
branch on fully-convolutional Siamese object tracker to
generate binary segmentation masks.
∙ Interactive VOS. Interactive video object segmentation is
a special form of semi-supervised video object segmenta-
tion [6, 9, 11, 13, 28, 66, 68, 106], it aims at segmenting the
target object in a video indicated by user’s interaction, e.g.,
clicks or scribbles. Existing interactive VOS mainly follows
a paradigm of interaction-propagation way. Besides the
feature encoder that extracts discriminative pixel features,
there are other two modules placed on the feature encoder
to achieve interactive video object segmentation, i.e., inter-
active segmentation module that corrects prediction based
on user’s interaction and mask propagation module that
propagates user-corrected masks to other frames.
∙ Referring VOS. Referring video object segmentation [19,
79, 105] is an emerging setting that involves multi-modal
information. It gives a natural language expression to
indicate the target object and aims at segmenting the target
object throughout the video clips. Existing referring video
object segmentation methods can be categorized into two
ways: bottom-up methods and top-down methods. Bottom-
up methods [20, 56, 79] directly segment the target object
at the first frame and propagate the mask to the remain-
ing frames, or conduct image segmentation on each frame
independently and then associate these masks. Top-down
methods [2, 49, 93] exhaustively propose all potential track-
lets and select the one that is best matched with language
expression as output.
∙ Unsupervised VOS. It is also known as automatic VOS
or zero-shot VOS [24, 44, 54, 58, 61, 78, 83, 88, 100, 101].
Different from the above VOS settings, unsupervised VOS
does not require any manual clues to indicate the objects
but aims to automatically find the primary objects in a
video. Unsupervised VOS can only deal with objects of
pre-defined categories. Early methods usually use post-
processing steps [24]. Then end-to-end training methods
become the mainstream in unsupervised VOS, which can
be categorized into local content encoding and contextual
content encoding. The local content encoding methods [14,
33,43,44,82,83,112] typically employ two parallel networks
to extract features from optical flow and RGB image. The
contextual content encoding methods [59, 60, 87] focus on
capturing long-term global information.
2.2. Related Video Segmentation Tasks

There are some other video segmentation tasks that are
related to video object segmentation, for example, video

instance segmentation, video semantic segmentation, and
video panoptic segmentation.
∙ Video Instance Segmentation (VIS). Video instance seg-
mentation is extended from image instance segmentation
by Yang et al. [99], it simultaneously conducts detection,
segmentation, and tracking of instances of predefined cat-
egories in videos. Thanks to the large-scale VIS dataset
YouTube-VIS [99], a series of learning methods have been
developed and greatly advanced the performance of VIS [36,
48]. Then, occluded video instance segmentation is pro-
posed by [76] to study the video instance segmentation
under occluded scenes. Similar to [76], we study video
understanding under complex scenarios like occlusions, but
different from [76], we focus on video object segmenta-
tion (VOS) and our proposed MOSE dataset contains more
videos and more complex scenes than [76], especially in
terms of object’s disappearance-reappearance.
∙ Video Semantic Segmentation (VSS). Driven by the
great success in image semantic segmentation [7, 57] and
large-scale video semantic segmentation datasets [3,17,65],
video semantic segmentation has drawn lots of attention
and achieved significant achievement. Compared to image
domain, temporal consistency and model efficiency are the
new efforts in the video domain. For example, Sun et al. [80]
propose Coarse-to-Fine Feature Mining (CFFM) to capture
both static context and motional context.
∙ Video Panoptic Segmentation (VPS). Kim et al. [38]
introduce panoptic segmentation to the video domain to
simultaneously segment and track both the foreground in-
stance objects and background stuff. They build a VPS
dataset with 124 videos. Then, Miao et al. [64] build
a larger VPS dataset called VIPSeg with 3,536 videos.
Existing methods [77, 92] mainly add temporal refinement
or cross-frame association modules upon image panoptic
segmentation models to enhance temporal conformity and
instance tracking performance.
2.3. Complex Scene Understanding

Complex scene understanding has become a research
focus in the image understanding domain [15,18,39,41,47,
63,90,108,110]. For example, Ke et al. [37] propose Bilayer
Convolutional Network (BCNet) to decouple overlapping
objects into occluder and occludee layers. Zhang et al. [108]
propose a self-supervised approach to conduct de-occlusion
by ordering recovery, amodal completion, and content com-
pletion. On the video domain, however, occlusion under-
standing is still underexplored with only several multi-object
tracking works [16,55,96,113]. For example, Chu et al. [16]
propose a spatial temporal attention mechanism (STAM)
to capture the visible parts of targets and deal with the
drift brought by occlusion. Zhu et al. [113] propose dual
matching attention networks (DMAN) to deal with the noisy
occlusions in multi-object tracking. Li et al. [46] propose
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Table 1. A complete list of object categories and their #instances in
the MOSE dataset. The object categories are sorted in descending
order of their frequency of occurrence.

Category No. Category No. Category No. Category No.
Person-other 519 Monkey 181 Bicycle 130 Boat 73
Fish 343 Dog 175 Cyclist 116 Lizard 68
Horse 272 Boat 166 Tiger 108 Duck 64
Sheep 264 Sedan 160 Giraffe 108 Goose 54
Zebra 254 Motorcyclist 153 Panda 106 Horse-rider 46
Rabbit 237 Turtle 142 Driver 90 Bus 29
Bird 226 Cat 139 Airplane 89 Truck 15
Elephant 207 Parrot 139 Chicken 86 Vehicle-other 14
Motorcycle 192 Cow 139 Bear 84 Poultry-other 12

to track every thing in the open world by performing class-
agnostic association. In this work, we build a Complex
Video Object Segmentation dataset to support future work
on complex scene understanding in VOS.

3. MOSE Dataset
In this section, we introduce the newly built MOSE

dataset. We first present the video collection and annotation
process in Section 3.1 and then give the dataset statistics
and analysis in Section 3.2. Finally, we give the evaluation
metrics in Section 3.3.
3.1. Video Collection and Annotation

Video Collection. The videos in MOSE are obtained from
two sources. The first source is inherited from the OVIS
dataset [76], which was designed for video instance segmen-
tation. The second source consists of newly captured videos
from real-world scenarios. We chose to include videos
from the OVIS dataset because they contain numerous heavy
occlusions and meet the requirements of complex scenes.
However, for videos inherited from OVIS, since many ob-
jects appear for the first time after the first frame, they
cannot be directly used for video object segmentation, which
requires a first-frame reference. One solution would be to
discard all objects that do not appear in the first frame, but
this would result in a significant waste of mask annotations.
To make full use of OVIS videos and adapt them for video
object segmentation tasks, we cut each of these videos into
several videos according to the frame where each object first
appears in the videos. We then discard videos that do not
meet our requirements. For the newly captured videos, we
first select a set of semantic categories that are common in
the real world, including vehicles (e.g., bicycle, bus,
airplane, boat), animals (e.g., bird, panda, dog,
giraffe), and human beings in different activities (e.g.,
motorcycling, driving, riding, running), and

then collect/film videos containing these categories from
the campus, zoo, indoor, city street, etc. A complete list
of object categories in the MOSE dataset can be seen in
Table 1. These categories are common in our daily lives,
where crowds and occlusions frequently occur. Moreover,
they are included in popular large-scale image segmentation
datasets such as MS-COCO [52], which makes it easy to use
image-pretrained models.

Our primary concern is video object segmentation under
complex scenes that contain crowds, occlusion, multi-scale
objects, and other challenging scenarios. Therefore, we es-
tablished several rules to ensure that complex environments
are included when collecting/shooting videos:
R1. Each video must contain several objects, while videos

with only a single object are excluded. Specifically,
videos with crowded objects of similar appearance are
highly valued.

R2. Occlusions should be present in the video. Videos that
do not have any occlusions throughout the entirety of
the frames are discarded. We encourage occlusions
caused by other moving objects.

R3. Great emphasis should be placed on scenarios where
objects disappear and then reappear due to occlusions
or crowding.

R4. The target objects should be of a variety of scales and
types, such as small-scale or large-scale, conspicuous
or inconspicuous.

R5. Objects in the video must show sufficient motion.
Videos with completely still objects or very little
motion are discarded.

Besides the rules mentioned above, we also require the
video quality to be of high standard, which means the video
resolution should be 1920×1080 and the video length should
be between 5 to 60 seconds in general.

Video Annotation. Having all videos for MOSE been
collected, our research team looks through them and figure
out a set of targets-of-interest for each of the videos. Then
we slightly clip the start and the end of videos, to reduce the
number of less motional or simple frames in the video. Next
we annotate the first-frame mask of the target objects, as
VOS input. Following this, the videos are sent to the anno-
tation team along with the first-frame masks for annotation
of the subsequent video frames.

Using the given first-frame mask as a reference, the
annotation team is required to identify the target object in
the given first-frame mask, then track and annotate the seg-
mentation mask of the target object in all frames following
the first frame. The process of annotating videos has been
made easier with the help of an interactive annotation tool

20227



Table 2. Scale comparison between MOSE and existing VOS datasets. “Annotations” denotes the number of annotated object masks.
“Duration” denotes the total duration (in minutes) of the annotated videos. “mBOR” denotes the mean of the Bounding-box-Occlusion
Rate. “Disapp. Rate” represents the frequency of objects that disappear in at least one frame. The newly built MOSE has the longest video
duration and the largest number of annotations. More importantly, the most notable feature of MOSE is that it contains lots of crowds,
occlusions, and disappearance-reappearance objects, which provide much more complex scenarios for video object segmentation.

Dataset Year Videos Categories Objects Annotations Duration mBOR Disapp. Rate
YouTube-Objects [75] 2012 96 10 96 1,692 9.01 - -

SegTrack-v2 [42] 2013 14 11 24 1,475 0.59 0.12 8.3%
FBMS [67] 2014 59 16 139 1,465 7.70 0.01 11.2%

JumpCut [23] 2015 22 14 22 6,331 3.52 0 0%
DAVIS16 [73] 2016 50 - 50 3,440 2.88 - -
DAVIS17 [74] 2017 90 - 205 13,543 5.17 0.03 16.1%

YouTube-VOS [97] 2018 4,453 94 7,755 197,272 334.81 0.05 13.0%
MOSE (ours) 2023 2,149 36 5,200 431,725 443.62 0.23 41.5%

that we developed. The annotation tool automatically loads
videos and all target objects. Annotators use the tool to
load and preview videos and first-frame masks, annotate and
visualize the segmentation masks in the subsequent frames,
and save them. The annotation tool also has a built-in inter-
active object segmentation network XMem [10], to assist
annotations in producing high-quality masks. To ensure
the annotation quality under complex scenes, the annotators
are required to clearly track the object that disappears and
reappears due to heavy occlusions and crowd. For frames in
which the target object is disappeared or is fully occluded,
annotators also need to confirm that the output masks of
such frames shall be blank. It is a requirement that all of
our videos be annotated every five frames at the very least.
For the purpose of testing the frame-rate robustness of the
models, some videos are annotated every frame.

After annotation, the videos are reviewed by our verifi-
cation team to ensure high-quality annotations, particularly
for videos containing occlusions, crowds, or instances of
objects disappearing and reappearing.
3.2. Dataset Statistics

In Table 2, we analyze the data statistics of the new
MOSE dataset using previous datasets for the video ob-
ject segmentation as a reference for the analysis, including
JumpCut [23], SegTrack-v2 [42], YouTube-Objects [75],
FBMS [67], DAVIS [73, 74], and YouTube-VOS [97]. As
shown in Table 2, there are 2,149 videos and 431,725 mask
annotations for 5,200 objects contained in the proposed
MOSE dataset. Comparing with previous largest VOS
dataset YouTube-VOS [97], MOSE has much more mask
annotations, 431k vs. 197k. Among the 8 video object
segmentation datasets that we analyzed in Table 2, MOSE
has the longest video duration (433.62 minutes), which is
about 100 minutes longer than the second longest dataset
YouTube-VOS (334.81 minutes) and is hundreds of times

Low occlusion but high BOR

High occlusion but low BOR

Figure 2. Failure cases of the BOR indicator. It can be seen from
the first row of samples that they have high BOR values, but there is
less or no occlusion present. Samples in the second row have very
small BOR values, but there are severe occlusions in the samples.

longer than the other seven datasets. We include more long
videos in the MOSE compared to previous VOS datasets to
ensure that our dataset contains a diverse range of occlusion
scenarios, motion scenarios, and instances of objects disap-
pearing and reappearing.

Disappearance and Occlusion Analysis. Previous oc-
cluded video datasets OVIS [76] defines a Bounding-box
Occlusion Rate (BOR) to reflect the occlusion degree. The
BOR is calculated by the Intersection-over-Union of bound-
ing boxes in the videos. We provide the mean of BOR of
all frames in Table 2. The MOSE has the largest value
of mBOR, indicating the more frequency of occlusions in
MOSE than previous datasets. However, we find that BOR
can only roughly reflect the occlusion. It does not well reveal
the degree of occlusion in the MOSE dataset and may be
prone to making some mistakes in this regard. As shown
in the first row of Figure 2, high BOR is observed in the
three images with low occlusion or even no occlusion. In
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contrast, in the images of the second row, where there are
heavily occluded objects, the BOR is low and even 0.

Therefore, besides counting BOR, we further calculate
the number of disappeared objects that disappear in at least
one frame of the video, followed by the disappearance
rate that reflects the frequency of disappearances, which
illustrates how often the disappearance of objects occurs due
to complex scenarios in a dataset. As shown in Table 2, the
disappearance rate (Disapp. Rate) of MOSE stands at the
highest, reaching 41.5%. Meanwhile, a total of 27.0% of
objects in MOSE showcase the disappearance-reappearance
phenomenon, meaning they completely vanish and sub-
sequently reappear in future frames. These observations
underscore the frequent and substantial occurrence of dis-
appearance and occlusions in the proposed MOSE dataset.

3.3. Evaluation Metrics

In accordance with the previous method [73, 74], we
compute the region similarity  and the contour accuracy
 as evaluation metrics. Given segmentation mask predic-
tions 𝑀̂ ∈ {0, 1}𝐻×𝑊 and the ground-truth masks 𝑀 ∈
{0, 1}𝐻×𝑊 , region similarity  is obtained by calculating
the Intersection-over-Union (IoU) of 𝑀̂ and 𝑀 ,

 = 𝑀̂ ∩𝑀
𝑀̂ ∪𝑀

. (1)
Then, the average region similarity 𝑚𝑒𝑎𝑛 over all objects
is calculated as the final region similarity result. We use
 to represent 𝑚𝑒𝑎𝑛 for the sake of brevity. To measure
the contour quality of 𝑀̂ , contour recall R𝑐 and precision
P𝑐 are calculated via bipartite graph matching [62]. Then,
the contour accuracy  is the harmonic mean of the contour
recall R𝑐 and precision P𝑐 , i.e.,

 =
2P𝑐R𝑐

P𝑐 + R𝑐
, (2)

which represents how closely the contours of predicted
masks resemble the contours of ground-truth masks. The
average contour accuracy𝑚𝑒𝑎𝑛 over all objects is calculated
as the final contour accuracy result. We use  to represent
𝑚𝑒𝑎𝑛 for the sake of brevity. Then, & = ( +  )∕2 is
used to measure the overall performance.
4. Experiments

Herein we conduct experiments and benchmarks on four
different Video Object Segmentation (VOS) settings, in-
cluding semi-supervised (or one-shot) VOS with mask-
initialization, semi-supervised VOS with box-initialization,
unsupervised (or zero-shot) VOS, and interactive VOS, to
comprehensively analyze the newly built MOSE dataset.
Implementation Details. The proposed MOSE dataset is
consistent with the YouTube-VOS [97] format. We replace

Table 3. Comparisons of state-of-the-art semi-supervised methods
on the validation set. “ " and “" denote the mean of region
similarity and the mean of contour accuracy. & denotes the
mean of  and  . BL30K [11] is not added during the training
stage to make a fair comparison.

MOSE (ours) DAVIS17 YT-VOS18Method Pub.
  & & 

AOT [103] NeurIPS’21 53.1 61.3 57.2 84.9 84.1
STCN [12] NeurIPS’21 46.6 55.0 50.8 85.4 83.0
RDE [45] CVPR’22 44.6 52.9 48.8 84.2 -
SWEM [53] CVPR’22 46.8 54.9 50.9 84.3 82.8
XMem [10] ECCV’22 53.3 62.0 57.6 86.2 85.7
DeAOT [104] NeurIPS’22 55.1 63.8 59.4 85.2 86.0

the training dataset of previous methods from YouTube-
VOS with our MOSE and strictly follow their training set-
tings on YouTube-VOS [97]. We follow DAVIS [73, 74] to
evaluate the performance and report the results of 𝑚𝑒𝑎𝑛,
𝑚𝑒𝑎𝑛, and & on the validation set of MOSE. During
the training of these VOS methods, we follow their way of
using image pre-trained models but do not use any additional
video datasets for pretraining.
Settings. There are 2,149 videos in the whole MOSE
dataset. These videos are split into 1,507 training videos,
311 validation videos, and 331 testing videos, for model
training, daily evaluation, and competition period evalua-
tion, respectively. Each of the videos gives a first-frame
mask or bounding box as the reference of the target object for
the semi-supervised (one-shot) VOS setting, and first-frame
scribbles for the interactive VOS setting.
4.1. Semi-supervised Video Object Segmentation

Semi-supervised video object segmentation, or one-shot
video object segmentation, gives either the first frame mask
or bounding box of the target object as a clue and reference.
We train and evaluate the very recent 6 mask-initialization
semi-supervised VOS methods and 2 box-initialization
semi-supervised VOS methods built upon ResNet-50 [26]
on the MOSE dataset, as shown in Table 3 and Table 4,
respectively. It is our hope that the experiments will provide
baselines for future semi-supervised VOS algorithms to be
developed.

Mask-initialization. This setting is a classic and cur-
rently the most popular topic for video object segmentation.
A lot of excellent deep-learning-based works have been
developed for this setting in the past decade and greatly
improve the video object segmentation performance to a
saturation level. For example, the most recent state-of-
the-art method DeAOT [104] achieves 85.2% & on the
DAVIS 2017 [74], 86.0%  on YouTube-VOS [97], and
92.3% & on DAVIS 2016 [73], which are excellent
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Table 4. Comparisons of state-of-the-art box-initialization semi-
supervised methods on the validation set. “ " and “" denote the
mean of region similarity and the mean of contour accuracy. &
denotes the mean of  and  .

MOSE (ours) DAVIS17 YT-VOS18Method Pub.
  & & 

SiamMask [86] CVPR’19 17.3 26.7 22.0 56.4 52.8
FTMU [81] CVPR’20 19.1 28.5 23.8 70.6 -

performance and almost reach the ground truth. To analyze
the newly built MOSE dataset and test the performance of
existing methods in complex scenes, we train and evaluate
these methods on MOSE. We report the results of 6 recent
state-of-the-art methods on the validation set of MOSE,
including AOT [103], STCN [12], RDE [45], SWEM [53],
XMem [10], and DeAOT [104], as shown in Table 3. Cur-
rent state-of-the-art methods only achieve the performance
from 48.8% & to 59.4% & on the validation set of
the newly proposed MOSE dataset, while their results on
DAVIS 2017 [74] and YouTube-VOS [97] are usually above
80% & or , some of them almost reach 90% & or 
on DAVIS 2017 and YouTube-VOS. The results reveal that
although we have achieved excellent VOS performance on
previous benchmarks, there are unresolved challenges under
complex scenes and more efforts are desired to explore
these challenges in the future. Discussion about the MOSE
dataset and some potential future directions are provided in
Section 5.

Box-initialization. As shown in Table 4, two semi-
supervised (one-shot) VOS methods with a bounding box as
the first-frame reference are trained on MOSE and evaluated
on the validation set of MOSE, including SimMask [86] and
FTMU [81]. Current state-of-the-art methods achieve only
22.0% and 23.8% & on the validation set of the newly
proposed MOSE dataset, while their results on DAVIS
2017 [74] are already 70+% & .

After careful analysis, we believe that one of the reasons
for such a significant drop in performance is that there are
many heavy occlusions, small-scale objects, and crowded
scenarios in the videos of MOSE dataset, which make
the weakly supervised segmentation of the videos much
more difficult. There is a possibility that, even within the
target bounding box region, the target object may not the
most salient one due to heavy occlusions and crowd. The
occlusion of an object can cause it to be broken up into
several pieces that are not adjacent to each other, which
greatly increases the difficulty of segmenting an object using
a box-driven approach.
4.2. Unsupervised Video Object Segmentation

Unsupervised video object segmentation, or zero-shot
video object segmentation, does not require any manual
clues (e.g., mask or bounding box) as a reference to indicate

Table 5. Comparisons of state-of-the-art multi-object zero-shot
VOS methods on the validation set. “ " and “" denote the mean
of region similarity and the mean of contour accuracy. &
denotes the mean of  and  .

MOSE (ours) DAVIS17Method Pub.
  & &

RVOS [84] CVPR’19 24.1 36.9 30.5 43.7
AGNN [87] ICCV’19 38.6 48.8 43.7 61.1
STEm-Seg [1] ECCV’20 43.3 50.5 46.9 64.7

Table 6. Comparisons of state-of-the-art interactive VOS methods
on the validation set. &@60s denotes the & performance
reached by methods within 60 seconds interactions.

MOSE (ours) DAVIS17Method Pub.
&@60s &@60s

IPNet [68] CVPR’19 41.2 78.7
STM [70] ICCV’19 45.3 84.8
MANet [66] CVPR’20 43.6 79.5
ATNet [27] ECCV’20 44.5 82.7
GIS [28] CVPR’21 50.2 86.6
MiVOS [11] CVPR’21 51.4 88.5
STCN [12] NeurIPS’21 56.8 88.8

the objects but aims to find the primary objects in a video
automatically. The mainstream of zero-shot VOS methods
focuses on addressing single-object VOS. However, MOSE
is a multi-object VOS dataset like DAVIS 2017 [74], thus
we only benchmark multi-object zero-shot VOS methods on
MOSE, e.g., STEm-Seg [1], AGNN [87], and RVOS [84].
The results are shown in Table 5. In this setting, only videos
with exhaustive first-frame annotations are used. Existing
methods rely on off-the-shelf image-trained instance seg-
mentation methods, which can well detect/segment objects
in the static image thanks to complex scene learning in the
image domain. The performance drop is mainly due to
temporal challenges.
4.3. Interactive Video Object Segmentation

Following the interactive track of DAVIS 2019 Chal-
lenge [5], we provide initial scribbles for the target object in
a specific video sequence, which are used as the first inter-
action. The interactive video object segmentation methods
are required to predict the segmentation mask for the whole
video based on the first interaction. Then, by comparing
predicted masks and ground truth masks across the video,
corrective scribbles on the worst frame are further provided
for the methods to refine the video segmentation prediction.
The above step is allowed to be repeated up to 8 times with a
time limitation of 30s for each object. We report the metric
of &@60s to encourage the methods to have a good
balance between speed and accuracy. As shown in Table 6,
seven recent interactive video object segmentation methods
are evaluated on the validation set of MOSE.
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5. Discussion and Future Directions
Herein we discuss the challenges of the proposed MOSE

dataset brought by complex scenes and provide some po-
tential future directions based on the experimental results
analysis of the existing methods on MOSE.
∙ Stronger Association to Track Reappearing Objects. It
is necessary to develop stronger association/re-identification
algorithms for VOS methods in order to be able to track ob-
jects that disappear and then reappear. Especially, the most
interesting thing is that we have noticed that a number of
disappeared-then-reappeared objects have been reappearing
with a different appearance from the time they disappeared,
i.e., appearance-changing objects. For example, the target
player in Figure 1 shows his back before disappearing while
showing the front at reappearing. There is a great deal of
difficulty in tracking with such an appearance change.
∙ Video Object Segmentation of Occluded Objects. The
frequent occlusions in the videos of MOSE provide data
support to the research of occlusion video understanding.
Tracking and segmenting an object with heavy occlusion
have rarely been studied since the target objects in existing
datasets are usually salient and dominant. In real-world sce-
narios, isolated objects rarely appear while occluded scenes
occur frequently. Our human beings can well capture those
occluded objects, thanks to our contextual association and
reasoning ability. With the introduction of an understanding
of occlusion into the process of video object segmentation,
the VOS methods will become more practical for use in
real-world applications. Especially, the occlusions make
the box-initialization semi-supervised VOS setting more
challenging in terms of segmenting an occluded object by
bounding box.
∙ Attention on Small & Inconspicuous Objects. Although
the detection and segmentation of small objects is a hot
topic in the image domain, tracking and segmenting small
and inconspicuous objects in the video object segmentation
domain is still to be developed. As a matter of fact, most
of the existing video object segmentation methods mainly
focus on tracking large and salient objects. The lack of
sufficient attention to small-scale objects makes the video
object segmentation methods less pronounced in practical
applications that may involve target objects of varying sizes
and types. There are many objects in the proposed MOSE
dataset that are on a small scale and are inconspicuous in
the videos, which provides a greater opportunity for the
research of tracking and segmenting objects that are small
and inconspicuous in realistic scenarios.
∙ Tracking Objects in Crowd. One of the most notable
features of the MOSE is crowded scenarios, which are
common in real-world applications. There are many videos
in the MOSE dataset, which contain crowd objects, such as
flocks of sheep moving together, groups of cyclists racing,

pedestrians moving on a crowded street, and etc. A scenario
like this presents challenges when it comes to segmenting
and tracking one object among a crowd of objects that share
a similar appearance and motion to the target object with the
crowd as a whole. In the image/frame domain, it is desired
for video object segmentation algorithms to enhance the
identification ability to distinguish between different objects
with a similar appearance. What’s more, in the temporal
domain, it is challenging to perform the object association
between the two frames with the crowd consisting of similar-
looking objects.
∙ Long-Term Video Segmentation: In terms of practical
applications like movie editing and surveillance monitoring,
long-term video understanding is much more practical than
short-term video understanding. For example, the average
length of videos on YouTube is around twelve minutes,
which is much longer than the average length of the exist-
ing video object segmentation dataset. Although existing
VOS methods provide excellent performance, they typically
require a lot of computing resources, e.g., GPU memory,
for storing the object features of previous frames. Due
to the large computation cost, most existing VOS methods
cannot well handle long videos. The average video length
of the MOSE dataset is longer than existing VOS datasets,
bringing more challenges and opportunities in dealing with
long-term videos. It is a good and practical direction to
design VOS algorithms that can deal with long videos
with low computation costs while achieving high-quality
segmentation results.

6. Conclusion

We build a large-scale video object segmentation dataset
named MOSE to revisit and support the research of video
object segmentation under complex scenes. There are 2,149
high-resolution videos in MOSE with 431,725 high-quality
object masks for 5,200 objects from 36 categories. The
videos in MOSE are commonly long enough to ensure
diverse and sufficient occlusion, motion, and disappearance-
reappearance scenarios. Based on the proposed MOSE
dataset, we benchmark existing VOS methods and conduct
a comprehensive comparison. We train and evaluate six
methods under the semi-supervised (one-shot) setting with
a mask as the first-frame reference, two methods with a
bounding box as the first-frame reference, three methods un-
der the unsupervised (zero-shot) setting, and seven methods
under the interactive setting. After evaluating existing VOS
methods on MOSE dataset and comprehensively analyzing
the results, some challenges and potential directions for
future VOS research are concluded. We find that we are
still at a nascent stage of segmenting and tracking objects
in complex scenes where crowds, disappearing, occlusions,
and inconspicuous/small objects occur frequently.
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