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Abstract

Graph neural networks (GNNs) have brought superb

performance to various applications utilizing graph struc-

tural data, such as social analysis and fraud detection. The

graph links, e.g., social relationships and transaction his-

tory, are sensitive and valuable information, which raises

privacy concerns when using GNNs. To exploit these vul-

nerabilities, we propose VertexSerum, a novel graph poi-

soning attack that increases the effectiveness of graph link

stealing by amplifying the link connectivity leakage. To

infer node adjacency more accurately, we propose an at-

tention mechanism that can be embedded into the link de-

tection network. Our experiments demonstrate that Ver-

texSerum significantly outperforms the SOTA link infer-

ence attack, improving the AUC scores by an average of

9.8% across four real-world datasets and three different

GNN structures. Furthermore, our experiments reveal the

effectiveness of VertexSerum in both black-box and on-

line learning settings, further validating its applicability

in real-world scenarios. The source code is available at

https://github.com/RollinDing/VertexSerum.

1. Introduction

Graph Neural Networks (GNNs) have been widely

adopted in various domains, such as financial fraud detec-

tion [25], social network analysis [19], and heart-failure

prediction [6], thanks to their capabilities to model high-

dimensional features and complex structural relationships

between entities [30]. However, with the increasing use of

graph data, concerns about data privacy are also growing

[1, 7, 27]. This is particularly relevant in industries such

as finance and healthcare, where sensitive relationships are

often embedded in graph-structured data.

Recently, there has been a rise in privacy attacks on

GNNs [11, 28] that infer link existence between nodes in

graphs by only querying the graph model, thus posing a

threat to the confidentiality of GNNs. For a graph node pair,

*These authors contributed equally to this work.

the similarity of their posterior distributions (abbreviated as

“posteriors” [11]) is measured to deduce the link existence.

For instance, in federated learning scenario [10], where dif-

ferent parties keep private data locally but contribute to the

GNN training in the cloud based on their data, a malicious

contributor can infer the link belonging to other contributors

by querying trained GNN models. In this context, the risks

of link information leakage lie in the joint training of GNNs

and the available GNN inference APIs on graph data.

In this work, we identified a limitation of the existing

link-inferring attacks: they do not perform well if the inter-

ested node pairs are from the same category (intra-class).

This is due to the high similarity of the posterior distribu-

tions between node pairs in the same category. To overcome

this limitation, we propose a novel approach to significantly

improve link inference attacks, particularly on intra-class

node pairs, by allowing a malicious contributor to poison

the graph during GNN training in an unnoticeable way.

This paper proposes a novel privacy-breaching data poi-

soning attack on GNNs, VertexSerum1, with a new anal-

ysis strategy. The attack aims to amplify the leakage of

private link information by modifying nodes/vertices. This

work makes the following contributions:

1. We propose a new evaluation metric, intra-class AUC

score, for link inference attacks, by considering only

node pairs from the same class. It overcomes the bias

in prior works not differentiating between inter-class and

intra-class, bringing valuable insights for our approach.

2. We introduce the first privacy-breaching data poisoning

attack on GNNs, which injects adversarial noise into a

small portion (< 10%) of the training graph to amplify

the graph’s link information leakage. We constructively

employ a self-attention-based network to train the link

detector and propose a pre-training strategy to overcome

the overfitting issue of limited training data.

3. We demonstrate the effectiveness of the proposed link

inference attack on popular GNN structures and graph

datasets. The attack improves the link stealing AUC

score by 9.8% compared to the SOTA method in [11].

1The name is inspired by Veritaserum in the Harry Potter series.

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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4. We consider the practicality of applying VertexSerum by

evaluating its homophily noticeability of the poisoned

graph and the victim model accuracy. The experimental

results show that VertexSerum increases model privacy

leakage without affecting the GNN performance.

2. Background and Related Work

2.1. Graph Neural Networks

Graph Neural Networks (GNNs) are widely used in

semi-supervised graph node classification tasks [30]. A

graph, denoted as G=(V,E), has a topology with a set of

nodes V and edges/links E. This work focuses on undi-

rected homogeneous graphs, commonly studied in graph

theory and network analysis [5, 6, 16, 19, 25, 29]. A link

between node u and v is represented by (u, v) ∈ E, while

its absence is (u, v) /∈ E. For each node, it has fea-

tures x and corresponding class label y for a classification

task. The graph, node features, and labels compose the

dataset used for GNN training and validation, denoted as

D={G,X,Y }. After training, a neural network model for

the graph is generated, denoted as f , where the model out-

put f(u) represents the posterior probabilities of node u for

the classes. The main GNN architectures for node classifi-

cation include Graph Convolutional Network (GCN) [13],

Graph SAmple and aggreGatE (GraphSAGE) [9], and

Graph Attention Network(GAT) [24]. These models, with

different neural network architectures, learn to aggregate

feature information from a node’s neighborhood, whose re-

ceptive field is bounded by the model depth. Different from

previous works that do not differentiate between nodes in

the graph for evaluation, we specifically analyze the intra-

class node pairs, which refer to nodes in the same class.

2.2. Link Inference Attack

GNNs are susceptible to various privacy attacks that

compromise the confidentiality of sensitive information

within data. These include membership inference attacks

[15], adversarial graph injection attacks [20], graph modifi-

cation attacks [32], and link privacy attacks [11, 28]. Steal-

ing Link Attack [11] was the first link privacy attack, where

the graph structure information is inferred from prediction

results of the GNN model, i.e., posteriors of nodes. An-

other attack, LinkTeller [28], takes into account the influ-

ence propagation during GNN training for link inference.

However, LinkTeller requires the attacker to have access to

the graph’s node features X , a much stronger attack model

than ours where the attacker only accesses the posterior dis-

tributions of interested nodes, a more realistic scenario.

2.3. Enhance Privacy Leakage via Data Poisoning

Data poisoning is an effective method to manipulate the

behavior of the victim model during training by intention-

Benchmark Rlinked Runlinked AUCall AUC1

Cora 0.81 : 0.19 0.18 : 0.82 0.907 0.874

Citeseer 0.74 : 0.26 0.18 : 0.82 0.987 0.912

AMZPhoto 0.83 : 0.27 0.16 : 0.84 0.919 0.813

AMZComputer 0.78 : 0.22 0.21 : 0.79 0.913 0.826

Table 1. Node pairs’ distribution analysis. R is the ratio of intra-

class node pairs vs. inter-class, among all linked node pairs and

unlinked node pairs. AUC reflects the success rate of link ref-

erence attacks, where AUCall considers overall node pairs and

AUC1 considers only node pairs from intra-class, e.g., in class 1.

ally introducing malicious training samples into the be-

nign dataset [31]. The recent work [3] poisons the training

dataset with a small number of crafted samples, with in-

correct labels, which results in a trained model that overfits

the training data, significantly increasing the success rate

of membership inference attacks. Inspired by the previ-

ous membership leakage amplification by data poisoning,

on conventional deep learning models, this work shows that

properly crafted data poisoning is also able to amplify link

leakage of the graph in GNNs, posing a significant privacy

threat to GNNs. Data poisoning on GNNs can be achieved

by modifications made to node features, node labels, or the

graph structure. We choose to poison node features with

small perturbations to make the attack stealthy. Our attack

is more effective than the state-of-the-art link inference at-

tacks [11, 28] with a specific focus on intra-class inference.

3. Observations and Insights

3.1. Link Inference Attack Does Not Always Work

Previous research of link inference attacks on GNNs has

demonstrated good performance in predicting the existence

of links among overall node pairs [11]. The GNN model

is queried, and the similarity of the posterior distributions

of the node pair is calculated for a link detector, which re-

turns the prediction of whether a link exists between these

two nodes. Although the performance on overall node pairs

tends to be good, when considering only intra-class node

pairs, i.e., to infer the link existence of node pairs from

the same class, the effectiveness is much lower. This is

due to several reasons: 1 Though it is common to select

equal numbers of linked and unlinked node pairs for eval-

uation, the distribution of inter-class and intra-class node

pairs in both sets are highly unbalanced: while the major-

ity of linked node pairs are intra-class, most of the unlinked

node pairs are inter-class; 2 the posterior distributions of

intra-class nodes are much more similar than those of inter-

class nodes. We demonstrate the characteristic of node pairs

distribution in Table 1. If we only consider node pairs from

the same classes, their posterior distribution will be similar

regardless of whether they are linked or not. The differ-

ent success rates of the link inference attack on node pairs
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Figure 1. Visualization on link inference, overall vs. intra-class.

We randomly sampled 200 node pairs (100 linked + 100 unlinked)

from all nodes (all) and only the second class (1). The dots are the

PCA projections of the similarities of node pair posteriors, where

dots in red represent linked pairs and dots in gray represent un-

linked pairs. The more apart the two distributions are, the easier

link inference can be.

from the entire graph and only one class are reflected by the

AUC scores, presented in the third and fourth columns of

Table 1, and also visualized in Figure 1. As the visualiza-

tion shows, in the top row across three different datasets,

the linked node pairs and unlinked node pairs are easily dis-

tinguishable, from the overall node pairs; while the bottom

row shows that for intra-class node pairs, the two distribu-

tions are not easily separable, indicating the difficulty for

link inference. To address this issue, we propose a new

metric, intra-class AUC score, to evaluate the link infer-

ence attack’s performance in the same classes, as presented

in Column 5 of Table 1.

3.2. Graph Poisoning Threat to GNNs

Data poisoning on Graph neural networks can be

achieved on various entries. For example, in social net-

works, an adversarial user can create fake accounts or mod-

ify their profile deliberately. As GNNs applied to these

graphs must be frequently retrained or fine-tuned, an at-

tack surface is created for malicious parties to compro-

mise the GNN performance or privacy by crafting malicious

data. Specifically in federated learning, a common struc-

tural graph is used by distributed contributors to provide

data for training, malicious parties may upload carefully

poisoned data into the graph in a stealthy and unobtrusive

way. Graph poisoning attacks are easy to conduct, difficult

to detect, and highly effective in compromising GNNs. Our

proposed attack shows that by data poisoning, the link leak-

age of intra-class nodes can be significantly amplified, and

link inference can be effectively accomplished.

4. VertexSerum - The Proposed Attack

In this section, we illustrate our proposed privacy-

breaching data poisoning attack – VertexSerum. The

Figure 2. Overview of VertexSerum with Self-Attention Detector.

overview of the attack procedure is presented in Figure 2.

4.1. Threat Model

Adversary’s Goal. The attack targets GNN-based classi-

fiers, which utilize node features and the graph topology to

predict the labels for querying nodes. The attacker aims to

deduce the connectivity between any pair of nodes (u, v)
belonging to class k by querying a pre-trained GNN model.

Adversary’s Knowledge. We assume the attacker has lim-

ited access to the vendor’s GNN as they can only acquire

the interested nodes’ posteriors through queries. We also as-

sume that the attacker has access to a portion of the graph,

as in federated learning, where the attacker acts as a dis-

tributed contributor to provide data for the training dataset,

which can be intentionally poisoned. Note these assump-

tions align with “Attack-3” in the state-of-the-art link in-

ference attack [11] and are practical. We further impose

a stricter constraint on the attackers’ capabilities: they can

only poison the features of their own data, without alter-

ing the graph’s structure. This is because tampering with

structure is prone to be detected, e.g., homophily analysis

[4], whereas feature tampering tends to be more subtle and

covert. We limit the portion of the graph that the attacker

can manipulate, such as 10% of the entire graph, which is

more practical and realistic in federated learning settings.

4.2. Inspiration from ML Poisoning

In conventional machine learning (ML) regime, poison-

ing the training dataset with tainted data can expose user

data privacy [3, 22], e.g., by injecting label-tampered sam-

ples to the training data, forcing the victim model to overfit

on specific features of each sample, thereby exacerbating its

membership leakage. However, the potential of such data

poisoning schemes have not been explored in attacking the

link privacy of GNNs. This work bridges this knowledge

gap by crafting samples in training dataset to strengthen

GNN model’s attention on node connections, making the

model to produce more similar outputs for linked nodes and

increase the dissimilarity between unlinked nodes. Rather

than generating abnormal labels which may be detected

by outlier detection tools, we induce poisoned features
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Algorithm 1 Link Stealing with VertexSerum

Require: Target class k; Partial graph Gp = (Vp, Ep); Step

size ε; Maximum number of iterations N ; Training al-

gorithm T ; Vendor graph G = (V,E).
Ensure: Link existence of node pair ẑ = (u, v).

/*Generate Poisoned Graph*/

1: Train shadow GNN model on Gp with the public train-

ing algorithm f sh
θ ← T (Gp).

2: for n = 1, 2, . . . , N do � Projected Gradient Descent

3: Compute the gradient of loss L(f sh
θ ): gn ← ∇L

4: Update nodes features in class k to increase loss,

x ∈ V k
p : xn+1 ← xn + εgn

5: end for

6: Get poisoned graph G′

p and send it to the vendor.

7: The vendor trains a GNN model fθ on G ∪G′

p.

/*Train Link Detector*/

8: Query model fθ to obtain posteriors of nodes in V k
p .

9: Compute and aggregate the similarity features F k
p from

node pairs’ posteriors as truth dataset Dk
p = {F k

p, E
k
p}.

10: Train binary classifier M on Dk
p using self-attention

link detector.

/*Link Inference*/

11: Given a target node pair in class k, u, v ∈ V k, compute

the similarity feature F
k
u,v .

12: Feed in F
k
u,v to detectorM for link inference.

13: return True / False

with small perturbations with Projected Gradient Descent

(PGD), allowing us to achieve attack stealthiness.

4.3. Attack Flow of VertexSerum

VertexSerum aims to steal the true link information of

interested node pairs. The attack is carried out between a

model vendor V and a malicious contributorA. The vendor

has access to the entire graph dataset D={G,X,Y } and

trains a downstream task with a public training algorithm T
2. The adversary contributes a small portion of the dataset,

Dp={Gp,Xp,Y p}, containing a partial graph Gp, which is

used for both generating the poisoning sub-graph and train-

ing the link detector. The attack steps are:

1. The adversary chooses a target class k from the label

space Y . The attack goal is to predict the link existence

between nodes u, v, i.e., if (u, v) ∈ E, when yu=yv=k.

2. Following the steps in Lines 1-6 of Algorithm 1, the ad-

versary generates a partial dataset D′

p with a poisoned

graph G′

p by analyzing a shadow model trained on Gp,

as depicted in the shadow part in Figure 2, and sends it

to the vendor.

2We assume the GNN type is open to the adversary for the ease of eval-

uation. We also demonstrate the effectiveness of VertexSerum in Section

5.7, when the adversary has no clue of the GNN model.

3. The vendor trains a GNN model for downstream tasks

fθ ← T (D ∪D′

p) on the poisoned graph G ∪G′

p.

4. The adversary queries the GNN model, fθ, with the pos-

sessed poisoned partial graph G′

p and generates similar-

ities of posteriors. Binary link detectors are constructed

to infer link existence, as shown in the right bottom part

of Figure 2 and detailed in Lines 8-10 of Algorithm 1.

5. The adversary makes a guess ẑ = (u, v) with the link

detectors (Line 11-13).

Our attack utilizes data poisoning to breach the confiden-

tiality of GNNs: the poisoned graph G′

p is used in the vic-

tim GNN model training, with an objective to amplify the

model privacy leakage.

4.4. Requirements of the Poisoning Nodes

For Step 2 of the attack, to generate a graph that enhances

the model’s aggregation on linked nodes, we design a spe-

cific poisoned graph G′

p that makes the GNN model fθ fo-

cus more on adjacency. Next, we outline requirements for

successful node poisoning:

1. Intact Community. The adversary should ensure that

the node classification accuracy for the victim task is

not evidently affected, so that the poisoned graph is less

likely to be rejected by the vendor for GNN training. Be-

sides, misclassified nodes can negatively impact passing

information to adjacent linked nodes, leading to an over-

all lower aggregation capability for the GNN model.

2. Node Attraction and Repulsion. The poisoned sam-

ples should simultaneously promote the similarity of the

GNN outputs on linked nodes (attraction) and the dis-

similarity on unlinked nodes (repulsion). This requires

a balance between the attraction and repulsion of node

features when poisoning the dataset.

3. Adversarial Robustness. Adversarial training tech-

niques [17, 21] can improve a model’s robustness against

adversarial samples, where the model tolerates small in-

put perturbations and outputs similar predictions. In

VertexSerum, we utilize adversarial training to increase

the model’s adversarial robustness, guiding linked nodes

with similar features to produce similar posteriors.

4.5. Crafting Poisoning Features via PGD

To meet these requirements, we propose a graph poi-

soning method optimized with projected gradient descent

(PGD). We adopt the shadow training methods [11, 18],

where the attacker will first train a shadow GNN (fsh
θ ) on

the possessed partial graph Gp. The optimal perturbation to

add on node features is found based on the gradient of the

loss function shown in Eq. 1.

L = αLattraction + βLrepulsion + λLCE (1)
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The loss function includes three terms, with α, β, λ as

positive coefficients to balance attraction and repulsion:

1. The attraction loss penalizes the euclidean distance of

posteriors on two linked nodes. The PGD will find node

features that reduce the distance between linked nodes.

Lattraction = −
∑

(u,v)∈E

(fsh
θ (u)− f

sh
θ (v))2 (2)

2. The repulsion term computes the cosine similarity be-

tween unlinked nodes. The rationale is that cosine is

bounded so as to avoid an overlarge dissimilarity term.

The PGD will find the node features that reduce the sim-

ilarity between unlinked nodes.

Lrepulsion =
∑

u,v∈V,u �=v,
(u,v) �∈E

(1− cos(fsh
θ (u), fsh

θ (v)))2 (3)

3. The cross-entropy term LCE serves as a regularization

in the loss function. Its goal is to improve the victim

model’s adversarial robustness to amplify link leakage.

The previous poisoning attack includes regularization of

perturbations, such as the L1 norm, during optimization.

However, we observed that this term is not necessary for

the PGD process if we have a small updating step size ε. By

only optimizing Eq. 1, the generated perturbation is already

effective and unnoticeable.

4.6. Self-attention Link Detector

In Step 4 of the attack, the adversary trains a link detec-

tor using the posteriors of the partial graph by querying the

pre-trained vendor model. Previous work [11] used a Multi-

Layer Perceptron (MLP) to analyze the similarity features

of the node pair posteriors. However, the dense structure of

MLP is often inadequate to capture the complex dependen-

cies among similarity features. Furthermore, since the at-

tacker only has a small part (< 10%) of the graph, training

an MLP is prone to be unstable due to overfitting. More-

over, since VertexSerum introduces more complex charac-

teristics such as attraction and repulsion during poisoning,

the underlying patterns in the similarity features are ex-

pected to be more informative. To address these issues, we

propose improvement to the MLP model with a Multihead

Self-attention [23] link detector, which can efficiently use

information by selectively attending to different parts in the

input similarity features. We follow the same construction

of similarity features as the previous method [11], consist-

ing of eight distances and four entropy features between two

nodes. To ensure stability of the self-attention detector on a

small dataset, we initialize its first embedding layer with the

first fully-connected layer from the MLP. The experimental

results in Table 2 in next section show that the introduction

of self-attention improves the attack AUC score by an aver-

age of 7.2% with the standard deviation dropping by 35%.

5. Experiments

5.1. Experimental Setup

Datasets: We evaluate the effectiveness of VertexSerum on

four publicly available datasets: Citeseer [13], Cora [13],

Amazon Photo Dataset [14], and Amazon Computer

Dataset [14]. These datasets cover different daily-life sce-

narios and are widely used as benchmarks for evaluating

graph neural networks. The first two datasets are citation

networks where nodes represent publications, and links in-

dicate citations among them. The last two datasets are

co-purchase graphs from Amazon, where nodes represent

products, and edges represent the co-purchased relations

of products. Our benchmarks scale from (3k nodes + 11k

edges) for Cora to (14k nodes + 492k edges) for AMZCom-

puter. We assume the vendor’s model is trained on 80% of

the nodes and evaluated on the remaining in the graph.

Since we assume the attacker only contributes a small

portion of the graph for training, i.e., G′

p, we sample 10%
nodes among the training dataset. To train the link detec-

tor, we collect all linked node pairs and randomly sample

the same number of unlinked node pairs in G′

p. Similarity

features are computed based on these node pairs, following

[11], together with corresponding link information. We split

this dataset into 80% for training and 20% for validation.

Metric: ROC-AUC is a commonly used evaluation met-

ric for binary classification tasks and has also been applied

in previous works on link inference [11, 28]. It measures

the ability of the link detector to distinguish between linked

and unlinked node pairs. A higher AUC indicates superior

performance of the link detector in identifying linked node

pairs from unlinked ones.

In addition to overall AUC, we also evaluate the intra-

class AUC. Overall AUC measures the ability of the link de-

tector to identify linked node pairs among all classes, while

intra-class AUC measures its ability only in one class. As

mentioned in Section 3.1, a successful link inference attack

should have a high overall AUC as well as a high intra-class

AUC. Without loss of generality, we set Class 1 as target

class to evaluate performance of the link inference attack.

Models: We evaluate VertexSerum on three commonly

used GNN structures: GCN [13], GraphSAGE [9], and

GAT [24]. Deep Graph Library (DGL) is used for model

implementation [26]. We construct a 3-layer MLP as the

baseline link detector, with the first layer containing 64 hid-

den neurons which is also the initialization for the self-

attention link detector. The self-attention detector is of a 16-

head attention structure with an input dimension of 64. For

initialization, we train MLP for 50 epochs with a learning

rate of 0.001. We then fine-tune the self-attention detector

with a learning rate of 0.0001, using the cross-entropy loss

and Adam optimizer [12]. We run experiments 10 times and

report the average and standard deviation of AUC scores.
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Model GCN GAT GraphSAGE

Dataset Citeseer Cora Citeseer Cora Citeseer Cora

SLA + MLP[11] 0.914±0.008 0.874±0.018 0.969±0.002 0.845±0.011 0.972±0.002 0.854±0.009

SLA + ATTN 0.951±0.064 0.903±0.067 0.980±0.003 0.868±0.029 0.976±0.007 0.931±0.029

VS + MLP 0.892±0.006 0.912±0.065 0.913±0.005 0.856±0.017 0.949±0.007 0.859±0.027

VS + ATTN(*) 0.978±0.033 0.927±0.023 0.997±0.002 0.924±0.022 0.994±0.006 0.957±0.007

Dataset AMZPhoto AMZComputer AMZPhoto AMZComputer AMZPhoto AMZComputer

SLA + MLP[11] 0.813±0.015 0.826±0.018 0.881±0.007 0.820±0.046 0.873±0.015 0.883±0.004

SLA + ATTN 0.917±0.037 0.956±0.007 0.963±0.011 0.889±0.066 0.972±0.009 0.978±0.005

VS + MLP 0.780±0.007 0.849±0.009 0.917±0.006 0.852±0.033 0.873±0.032 0.898±0.004

VS + ATTN(*) 0.939±0.018 0.962±0.011 0.990±0.008 0.919±0.031 0.987±0.006 0.985±0.006

Table 2. Comparison of the average AUC with standard deviation for different attacks on the four datasets. The best results are highlighted

in bold. (*) denotes our proposed method.

Figure 3. A visualization of nodes and edges belonging to the tar-

get class from the original (Nε = 0) and poisoned (Nε > 0)

partial graphs. Node color represents the low-dimensional embed-

ding of the GNN model’s output, i.e., the node posteriors. Color’s

similarity indicates posteriors’ similarity.

5.2. Graph Visualization

Figure 3 displays part of the poisoned graph of Ver-

texSerum on a 3-layer GraphSAGE model trained on the

Cora dataset with different distortions Nε. By injecting

poisoned samples into the partial graph while maintaining

the topology, the PGD objective loss induces correspond-

ing attraction and repulsion forces between nodes, resulting

in increased attention to linked nodes. As the distortion in-

creases from 0 to 1, the node colors shift to demonstrate

attraction to linked nodes and repulsion to unlinked nodes.

5.3. Attack Performance

We evaluate the effectiveness of VertexSerum (VS), in-

cluding both the poisoning method and the self-attention-

based (ATTN) link detector. The prior stealing link attack

(SLA) [11] serves as the SOTA method for us to compare,

as it shares a similar threat model with our attack. SLA uses

similarity features and an MLP-based link detector to attack

a graph neural network, without poisoning. We compare the

performance of different attack strategies and link detector

structures, and report intra-class AUC scores in Table 2.

VertexSerum with the attention detector significantly im-

proves the performance of link inference attacks for all

datasets and GNN models. Compared to the method us-

ing SLA with MLP, our attack has an average improvement

Figure 4. The AUC score along each target class. We take a case

study on Cora dataset (7 classes in total) with GraphSAGE as the

GNN model.

of 9.8% on AUC scores. Note that the self-attention-based

link detector significantly improves the attack performance

even without poisoning datasets (see the two rows of “SLA

+ ATTN ” in Table 2). This is because the multi-head atten-

tion structure models the dependencies between elements in

similarity features, better exposing the link existence during

inference. On the other hand, using VertexSerum with MLP

alone does not improve the detection performance on some

datasets, such as Citeseer and AMZPhoto. From our con-

sideration, VertexSerum enforces GNN to learn more about

the connections between nodes, adding more hidden infor-

mation to the similarity feature, for which MLPs lack the

capability to capture. However, by combining VertexSerum

with our proposed self-attention link detector, the poisoning

works effectively towards increasing the link leakage.

We also demonstrate the intra-class AUC scores by vary-

ing the target class, taking Cora with GraphSAGE model

in Figure 4 as an example. We draw the same conclusion

as above on the link inference attack. Not only the self-

attention detector can greatly outperform MLP, but also the

poisoning also boosts link detection. Further, we demon-

strate that VertexSerum can still preserve the highest ef-

fectiveness of link inference on overall classes. We show

the overall AUC scores in Table 3, assuming the Graph-

SAGE model. Besides the elevated attack success, we can

explicitly observe the overall AUC scores are higher than
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Cora Citeseer AMZPhoto AMZComputer

SLA+MLP [11] 0.907±0.001 0.987±0.001 0.919±0.020 0.913±0.043

SLA+ATTN 0.994±0.008 0.995±0.001 0.947±0.005 0.962±0.005

VS+MLP 0.945±0.003 0.978±0.013 0.946±0.010 0.900±0.055

VS+ATTN 0.997±0.012 0.994±0.001 0.956±0.001 0.968±0.004

Table 3. Comparison of the overall AUC scores for different tasks

on GraphSAGE model, by inferring the link between node pairs

from all classes.

Cora GCN GAT GraphSAGE

Benign 0.891 0.880 0.867

Poisoned 0.882 0.872 0.887

AMZPhoto GCN GAT GraphSAGE

Benign 0.937 0.935 0.933

Poisoned 0.921 0.930 0.922

Figure 5. Homophily analysis on graph poisoning. Cora and

AMZPhoto are selected as the case study. The top histogram plots

show the node homophily before and after the poisoning attack,

where high coincidence on distribution means two graphs have

high homophily. The lower tables demonstrate various model ac-

curacies on the graphs before and after poisoning, showing that the

accuracy is barely affected by the poisoning.

the intra-class AUC scores. This also affirms our discussion

in Section 3.1 that evaluation on overall node pairs yields

higher performance than that on intra-class node pairs.

5.4. Attack Stealthiness

We evaluate the stealthiness of VertexSerum from two

perspectives: homophily unnoticeability and model accu-

racy. Homophily unnoticeability is an important metric for

graph adversarial attacks and is defined as the node-centric

homophily distribution shifting between the clean and poi-

soned graph being upper-bounded by a threshold, which

ensures that the malicious nodes are not easily detectable

by the database administrators [4]. We visualize the ho-

mophily distribution of the benign and poisoned graphs in

Figure 5. It is clear that VertexSerum can effectively pre-

serve the homophily while still conducting effective poison-

ing. The lower tables in Figure 5 present the model accuracy

before and after poisoning, demonstrating that VertexSerum

only introduces small accuracy degradation/improvement.

Since from the vendor’s perspective, the new accuracy is

achieved after the re-training, thus, the trivial difference en-

sures stealthiness, i.e., the vendor will not stop using the

poisoned graph due to poor performance.

5.5. Ablation Study

5.5.1 Influence of the Depth of GNN

We conduct an evaluation of our attack on the GraphSAGE

model with varying numbers of layers (depth) in the GNN

Figure 6. Performance of our attack on the GraphSAGE model

with varying numbers of layers. The blue line represents the attack

AUC scores, while the pink dashed lines indicate the training and

testing accuracies.

β = 0.01 β = 0.1 β = 1
λ = 0.1 λ = 1 λ = 0.1 λ = 1 λ = 0.1 λ = 1

α = 0.1 0.914 0.942 0.931 0.943 0.954 0.953

α = 1 0.952 0.963 0.954 0.953 0.946 0.945

α = 10 0.949 0.947 0.950 0.949 0.925 0.926

Table 4. AUC scores of VertexSerum Attack on GraphSAGE for

Cora Dataset with different regularization strengths.

fθ.The results are shown in Figure 6, where the blue line il-

lustrates the attack AUC scores, while the pink dashed lines

indicate the training and testing accuracy. As the number

of layers increases, the GNN aggregates information from

neighborhoods across multiple hops progressively, leading

to overly similar output representations on linked nodes,

known as over-smoothing [2].

When GNNs have only one layer, the attack is harder be-

cause of the lack of aggregated information between linked

nodes. VertexSerum shows good performance when the

number of layers is greater than 1, as more hops of neigh-

bors are taken into consideration. Meanwhile, the model

training and testing accuracy decreases as the number of

layers increases, because of over-smoothing, where the rep-

resentations of nodes become similar after multi-layer mes-

sage passing. Consequently, the attack performance slightly

drops, due to the underperformance of model accuracy. This

is a concerning observation since the attack success rate is

bound to the model accuracy. A well-performed model is

also highly vulnerable to link inference attacks.

5.5.2 Impact of Different Loss Terms

In designing our PGD objective loss in Eq. 1, we consider

a trade-off between the attraction loss, repulsion loss, and

cross-entropy loss by controlling the corresponding regu-

larization strength terms α, β, and λ. We compare the at-

tack performance using different tuples of regularization

weights in Table 4. We find that the optimal choice is

(α, β, λ)=(1, 0.01, 1), where the repulsion weight is much

smaller than the others. This is due to the imbalance be-

tween the number of linked and unlinked node pairs, which

leads to a high repulsion loss, and this choice balances the

effect of the repulsion loss and attraction loss.
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Figure 7. Performance of our attack on the GraphSAGE model un-

der the online training setting. The blue line in the plot represents

the attack AUC scores, and the x-axis represents different poison-

ing time during online training.

Figure 8. The attack performance when the vendor model is un-

known and trained on Cora Dataset, where the attacker uses arbi-

trary GNN structures to train the shadow model.

5.6. Online Poisoning on GNNs

Graph neural networks in practice are not always trained

offline, but multiple contributors may provide data at differ-

ent times for online training. This is particularly relevant in

scenarios such as recommendation systems, where models

are frequently updated with incoming user behavior data.

In this section, we investigate a training scenario where the

vendor’s model is trained batch-by-batch as the data arrives.

We divide the dataset into eight batches, each representing

a different contributor. We select one of the contributors

as the adversary and use VertexSerum to poison the corre-

sponding partial graph. The model is updated in order as the

contributors arrive, and we evaluate the attack performance

when the adversarial contributor arrives at different times.

Figure 7 presents the attack AUC when the adversarial

batch arrives at different times during online training. We

observe that poisoning the early batches is more effective

than poisoning the last batch. This is likely because the

early batches have a long-term effect on fitting the online

model, while the poisoning data in the last round is only

fitted during the last update. Further, the poisoning attack

on offline training yields better results. Since the poisoning

exists throughout the offline training, the model fitting on

the benign batches is also consistent throughout the training,

akin to poisoning at an early time. Overall, VertexSerum is

effective for both online and offline training on GNNs.

5.7. Transferability in the Black-Box Setting

In previous evaluations, we assume that the attacker has

prior knowledge of the vendor model’s architecture and

training process, which is a gray-box setting. In this section,

we extend our evaluation to the black-box setting, where the

attacker has no knowledge of the victim model’s architec-

ture and configuration. We investigate the transferability of

VertexSerum, where the attacker trains the subgraph using

a different model from the vendor model. For instance, the

attacker may train the subgraph using GAT when the vendor

model is trained using GraphSAGE. Figure 8 shows the re-

sults under the black-box setting. We find that even without

knowledge of the vendor model structure, the attacker can

still achieve high performance using VertexSerum. Interest-

ingly, the attacker achieves the highest AUC scores when

using GAT as the shadow model to generate the poison ex-

ample. We hypothesize that GAT has a higher generaliz-

ability in estimating the real boundary of the vendor model,

making the poison samples from GAT more effective.

6. Defense

There are two potential directions to defend against the

VertexSerum attack. The first approach is to blur the per-

turbation. Our poisoning samples are similar to adversarial

samples, which are clean features with small added noise.

Thus, it is possible to slightly change the training samples

through preprocessing methods such as denoising or aug-

mentation, without harming the model accuracy. The sec-

ond approach is to increase the GNN’s robustness against

the link stealthy attack. One way to achieve this is to build

GNNs with certified robustness using differential privacy

[8]. Alternatively, the vendor can train the GNN with an

appropriate depth to avoid over-smoothing or over-fitting.

7. Conclusions

In this paper, we investigate the vulnerability of graph

neural networks to privacy leakage amplified by data poi-

soning. We propose VertexSerum, with data poisoning and

self-attention link detector, a link inference attack with sig-

nificantly better attack performance on intra-class nodes.

We conduct extensive evaluations on different attack set-

tings, including gray-box, offline training, online training,

and black-box. As graph neural networks become increas-

ingly popular, our findings pose a new challenge to confi-

dentiality of the structural datasets using GNNs. The work

serves as a cautionary note to model vendors, informing

them of possible privacy exposure of their training datasets

and calling for more follow-on work to build robust GNNs

against such privacy-breaching attacks.
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