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Abstract

Curating datasets for object segmentation is a difficult
task. With the advent of large-scale pre-trained genera-
tive models, conditional image generation has been given
a significant boost in result quality and ease of use. In this
paper, we present a novel method that enables the genera-
tion of general foreground-background segmentation mod-
els from simple textual descriptions, without requiring seg-
mentation labels. We leverage and explore pre-trained la-
tent diffusion models, to automatically generate weak seg-
mentation masks for concepts and objects. The masks are
then used to fine-tune the diffusion model on an inpaint-
ing task, which enables fine-grained removal of the object,
while at the same time providing a synthetic foreground
and background dataset. We demonstrate that using this
method beats previous methods in both discriminative and
generative performance and closes the gap with fully su-
pervised training while requiring no pixel-wise object la-
bels. We show results on the task of segmenting four dif-
ferent objects (humans, dogs, cars, birds) and a use case
scenario in medical image analysis. The code is available
at https://github.com/MischaD/fobadiffusion.

1. Introduction

Supervised pretraining, e.g., with ImageNet[16], has
demonstrated reduced training times and boosted perfor-
mance. This gave rise to models that could be trained once
over large amounts of data before being adapted to spe-
cialised tasks, such as image recognition, object detection,
image segmentation[52], and medical image analysis[50].
The recent development of self-supervision techniques and
their ability to learn without manual labels led to much
larger scale training datasets [9] and to the creation of foun-
dation models [6]. At present, the use of pre-trained models
for a wide range of diverse downstream tasks defines a very
active and intriguing area of research.

Large scale foundation models are already established in

Figure 1. High level overview of our proposed method: Without
needing a single labelled image, our method is able to generate
foreground, background, and segmentation masks for any concept
that is known to a text-to-image generative network.

natural language processing, with most of them being based
on the Transformer architecture [57, 17, 7]. A crucial part of
this architecture are cross- and self-attention layers, which
compute interpretable importance weightings [39, 12].

Diffusion models are based on the U-Net architecture
[45] with additional attention layers [37] to condition on
textual prompts. Therefore, we can extract inherently inter-
pretable pixel importance scores from conditioning on tex-
tual prompts. Furthermore, the reverse diffusion process
teaches the U-Net to successively remove noise from im-
ages, starting from pure Gaussian noise. In the early steps
of this process, where the images resemble pure noise, the
texture is non-existent, and the model only learns structures.

Recently, latent diffusion models have emerged as state-
of-the-art generative models for the task of text-to-image
generation [18, 44, 41]. However, training such models
requires a significant amount of CO2-intensive resources
and until recently, pre-trained model weights have not been
publicly available. Rombach et al. were the first to pub-
lished their weights and model architecture [44], which
facilitated the development of numerous derived applica-
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tions [60, 15, 53] and established this model as the foun-
dation model for tasks that require generalised representa-
tions of concepts in images. State-of-the-art latent diffusion
models are able to generate high resolution images of a vast
amount of different objects, suggesting that a highly expres-
sive latent representation of the data has been learned.

We hypothesize that we can leverage these learned la-
tent representations for our own downstream tasks of zero-
shot foreground-background generation. Using a genera-
tive latent diffusion foundation model, we are able to ex-
tract a weak segmentation mask around an arbitrary object
by computing the importance maps based on the textual in-
put prompts. Weak segmentation masks have been shown
to be an effective prior for segmentation models, given that
enough training samples are available [34, 40]. We then
use these preliminary masks to fine-tune a latent diffusion
model on (1) generating new images from this dataset, as
well as (2) inpainting regions where the object is not present
according to our preliminary masks. The resulting model is
able to perform full-image synthesis, as well as foreground,
background and mask generation, as summarized in Fig. 1.
A segmentation model trained using these masks can then
achieve a level of performance that is close to direct super-
vision, despite not requiring manual segmentation masks at
any point in the pipeline. This suggests that labour-intensive
ground-truth image annotation workflows could become ob-
solete in the future, and be replaced by concept distillation
from generative foundation models.
Our main contributions are:

• We propose a self-supervised, hyperparameter-free,
approach for dataset-independent foreground-
background segmentation, based on latent diffusion
models, capable of synthesizing foreground, back-
ground, and segmentation masks.

• We describe a general framework to extract importance
scores obtained from pretrained diffusion models and
detail how to use them to improve segmentation per-
formance.

• We verify the feasibility of our method on a set of four
different foreground background segmentation tasks,
spanning humans, birds, dogs, and cars and show that
our method achieves results close to supervised meth-
ods while being trained without direct supervision.

• We experiment with the extension of our method to
domain-adapted diffusion models by showing promis-
ing results on a medical segmentation task.

2. Related Work
Semantic Segmentation refers to the identification of high
level concepts in an image, which enable their extraction
from the image. [33, 36] introduced the use of fully convo-
lutional networks for this task, which superseded previous

shallow feature classification approaches [20]. Currently,
the most common segmentation network architectures are
designed as encoder-decoder pairs, as it enforces an infor-
mation bottleneck that facilitates generalisation. The en-
coder provides meaningful low dimensional representations
and the decoder reconstructs high-resolution segmentation
maps [10, 45, 33, 36]. Recent approaches maximise the use
of multi-scale information with multi-scale attention [56],
squeeze-and-attention [63], and Transformers [62]. The fi-
nal pixel classification operation, which creates the segmen-
tation mask, is performed through multinomial logistic re-
gression. These methods require large amounts of manually
labelled training samples, which can be labour-intensive
and expensive.

Weakly Supervised Semantic Segmentation partially
mitigates that by learning from weak global labels, such
as image-wise class labels, and perform rough semantic-
segmentation tasks. These approaches often leverage the
learned representations in intermediate layers through at-
tention maps [26] or saliency maps [31] extraction. These
representations are learned in a supervised manner through
a classification task, as opposed to our approach that lever-
ages an even weaker signal: free-form text-embeddings.
Furthermore, these methods cannot generate images and
are, therefore, not suitable for foreground-background syn-
thesis.
Foreground background separation is a segmentation
task where the goal is to apply binary classification over
all the pixels of an image to separate the object of interest,
the foreground, from the contextual background. For exam-
ple, in video analysis tasks, the background is often defined
as parts of scenes that are at rest [51]. More recently, de-
composing individual images into potential foreground and
background layers became an intriguing research topic [25].
Since the foreground-background separation factors are not
known a priori, many related works formulate the prob-
lem as a category-agnostic unsupervised segmentation ap-
proach. While deep neural networks can learn pixel clus-
tering in an unsupervised way [25, 29, 38], it often leads
to inferior performance when compared to fully supervised
methods. Other works also tried to learn image segmenta-
tion from generative models, for example via direct sam-
pling from the training distribution with cut-and-paste [43],
image combinations via styleGAN [1], erasing and redraw-
ing [11], and through inpainting [49].

The work closest related to ours is [61] who employ
layered generative adversarial networks (GANs) to gener-
ate distinct images for the foreground and background. As
opposed to [61], we are not relying on the unknown struc-
ture of the latent manifold to separate the embedding codes
that represent foreground and background, but instead fol-
low the directly interpretable paradigm ‘textual concept de-
scription’ → ‘segmentation model’. Both approaches in-
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troduce a similar bias, ours through the textual concept de-
scription and them through object-specific models, making
our method similarly conditioned but more flexible.
Diffusion models are generative methods. Generative mod-
eling has always been an important task in deep learning.
Recently, Diffusion models gained a lot of attention thanks
to the impressive results achieved by [42, 48]. Based on
[22, 55], these models currently define the state-of-the-art
in conditional image generation, and have been extended
towards text-to-image models such as unCLIP [41] and Sta-
ble Diffusion [44]. Part of that success is due to the efficacy
of straightforward extensions to diffusion models, such as
classifier-free guidance [23]. Current research about dif-
fusion models focuses mostly on inpainting [14, 13, 44].
Depending on the task, it might be easier to learn the object
itself and then train a diffusion model on the task of inpaint-
ing regions where the object is not present. However, we fo-
cus on the scenario where we have the object itself present
and try to remove it.

Shortly after latent diffusion models showed superiority
in terms of image sample quality compared to GANs [18],
they were conditioned on the description of concepts [42].
These models became widely available online, including
on commodity hardware after the computationally expen-
sive denoising process was accelerated on a fundamental
level [32]. Direct translation of text into object-centric
representations has been attempted but rather in the con-
text of attention editing [21], subject specific image genera-
tion [47], and textual concept-refined image-to-image trans-
lation [59]. Textual inversion, where examples of concepts
are provided to a diffusion model as text and image tuples
to teach the model a new concept [19], operates on the same
fundamental input level as our approach. However, it is
not able to provide object segmentation masks or concept-
specific pixel importance scores. Recent advances on dif-
fusion models have led to a spike in research around how
latent features can be extracted [21, 2] however, their po-
tential to be used for zero-shot segmentation has yet to be
explored.

3. Method
Our approach is summarized in Fig. 2. At a high level,

we first use the attention maps from a pretrained latent dif-
fusion model to compute coarse foreground segmentations
(preliminary masks). We use these masks to fine-tune the
diffusion model to be able to remove the object from the im-
age, replacing it with background information, whilst also
being able to generate new samples from the true distribu-
tion p(x) of the dataset. By comparing the original images
to those with the background inpainted over the foreground,
we are then able to produce much more refined masks. We
can also then use the fine-tuned model to sample an arbi-
trary number of new images, including only the foreground,

only the background, and the masks separating them. The
only assumptions this method uses is that we have access
to a dataset of images where the chosen object is always
present, and that the foundation model we use has learned
a meaningful representation of the object we want to iden-
tify. In this context, objects can describe concepts like birds,
cars, dogs, humans, but also parts of objects such as arms
or legs.

We start from the latent diffusion model (LDM) [44], a
foundation model pretrained on the task of text-to-image
generation, denoted as m. It generates images by sampling
gaussian noise and iteratively denoising them in T diffusion
steps. Throughout this work, we keep the default value from
[44] of T = 50 steps.

Let D denote a dataset where all the images contain our
desired object. Formally, we aim to generate unsupervised
segmentation masks of the original dataset Dm as well as a
synthetic dataset that contains synthetic images D′, masks
D′

m, foreground D′
f , and background D′

b denoted as set
D′

s = {D′,D′
m,D

′
f ,D

′
b}.

Preliminary Masks: The LDM was trained on paired text-
image data. Thus, the output is conditioned on a text input,
which we have to carefully choose to generate our initial
attention maps. In practice, self- and cross-attention work
well for conditioning on different inputs, especially across
different modalities [57]. As input, we propose the prompt
“a photo of a {object}” where “object” is a high level de-
scription of our foreground object (e.g. “bird”).

The first step in computing the preliminary masks is to
leverage the raw attention maps computed in every cross-
attention layer of the U-Net architecture. We decide against
cherry-picking different attention layers for different tasks
to remain task-agnostic, but would like to point out that
this could lead to task-specific improvements as an hyper-
parameter option.

Let z0 denote the latent space representation of some in-
put image x. In each layer, attention is computed as:

Attention(Q,K, V ) = ψ(Ql,K
T
l ) · Vl (1)

with the attention probabilities ψ(Ql,K
T
l ) defined as:

ψzt,l
(Ql,K

T
l ) = softmax(

QKT

√
d

) (2)

with Q = W
(i,l)
Q · ϕ(zt,l), K = W

(i,l)
K · τθ(y), and

V = W
(i,l)
V · τθ(y) denoting the learnable projection ma-

trices according to [57], ϕ(zt,l) the latent code of the l-th
U-Net layer in the t-th reverse diffusion step, and τθ(y) the
learned latent representation for the textual input prompt
[44]. zt,l denotes the latent representation of the stable dif-
fusion model in layer l, conditioned at diffusion t.

The next step is to compute the mean attention maps M̂
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Figure 2. Overview of our model pipeline for self-supervised foreground-background segmentation.

Figure 3. T0 vs AUC-ROC on CUB. Incorporating more reverse
diffusion steps into the attention computation improves the AUC-
ROC against the groundtruth only up to roughly T0 = 40.

as expectations over multiple repeated diffusion steps ac-
cording to

M̂ =

T0∑
t=1

Ez∼p(zt|zt+1,z0)[
∑
l

ψzt,l
(Ql,K

T
l )]. (3)

We empirically show in our supplementary material that
this can be simplified to performing single reverse diffusion
steps which leads to a simplified importance score

M̂ =

T0∑
t=1

∑
l

ψzt,l
(Ql,K

T
l ) (4)

Figure 3 shows AUCROC of using M̂ to identify the
foreground as a function of the number of reverse steps.
There is a clear improvement visible computing the mean
over up to roughly T0 = 40 reverse diffusion steps. Includ-
ing higher diffusion steps seems to deteriorate the accuracy
of ϕ. This is because for higher values of t the input im-
ages approach pure Gaussian noise. However, for medium
values of t the input and output images already approxi-
mate the basic structure of the final objects. Other details,
like texture, appear at later stages but do not bear any valu-
able information for this use case. This observation could
mean that for time critical applications, starting from lower
t should suffice.

The third and final step in retrieving the preliminary
masks is to binarize the mean attention maps. To do so, we

take advantage of the observation that all attention maps re-
semble a bimodal distribution, with one mode at a low value
for the non-object pixels and one mode at a high value for
the object pixels. Hence, we model absolute values of the
instance-wise attention scores as a bimodal Gaussian mix-
ture model (GMM) to produce GMM masks. Additionally,
we remove orphan pixels by computing the mean filter over
the resulting binary classification map to produce our pre-
liminary masks Mpre. These preliminary masks could po-
tentially already be used to detect objects as evaluated in
Sec. 4.
Fine-tuning and Mask Refinement: The main problem
with the preliminary masks is that, because they are derived
from the latent space of the LDM, their resolution is only
64 × 64. This limits them to being a coarse segmentation,
which often overestimates the size of the object rather than
following the object’s sharp edges. A rough segmentation
is sufficient for tasks like inpainting, especially if the area
around the object is homogeneous, but for the task of ex-
tracting the foreground object it produces unwanted arte-
facts. To work around this, we leverage the same diffusion
model that we used to extract the masks. We use the binary
classification prediction of the GMM mask Mpre to select
random rectangles within the image that only contain back-
ground. Then we fine-tune the model to inpaint only the
background of these images by conditioning on the prompt
yb =“a photo of a background” using the image as ground
truth (See supplements for examples). Simultaneously, the
model is fine-tuned on the task of full image synthesis to
generate new samples for D′ by conditioning on yf = “a
photo of a {object}”.

To generate the final foreground masks Dm we use the
fine-tuned LDM m′ to inpaint the background over the area
covered by the preliminary mask conditioning on the back-
ground prompt. To identify the foreground region, we take
the pixel-wise intensity difference between the background-
inpainted and original images. As the inpainted images are
conditioned to generate background, the difference is higher
in the true foreground region. We apply a Gaussian mixture
model to the pixel-wise difference map to create a binary
classification map. Formally the refined masks M are com-
puted as
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M =Mpre,up ⊙ g(|x−m′(z̃0, yb)|), (5)
z̃0 = z0 ⊙ (1−Mpre) + z⊙Mpre (6)

where Mpre,up denotes the preliminary mask upsampled
to the input image’s resolution, g applies the bimodal Gaus-
sian mixture model to the pixel values and z̃0 is the latent
code of an image with the foreground region replaced with
random noise z. This produces refined masks, as the use
of pixel-wise error improves the segmentation around the
sharp edges of the object. Additionally, the computation of
the refined masks is performed in pixel-space of the images
instead of the latent space ofm and therefore produces even
more detailed masks.

Finally, to further improve our mask prediction we use
the refined masks as labels to train a U-Net [45] to directly
segment the foreground of the images, similar to the ap-
proach in [61], which follows a standardized approach of
training a U-Net on a fixed number of steps and hence does
not require any hyperparameter tuning. We experiment with
training the segmentation network on refined masks of the
original unlabelled training data (Ds), as well as training
it with the fully synthetic dataset D′

s as an augmentation
method, which we generate by prompting the fine-tuned
model with the foreground conditioning yf and repeating
our pipeline of mask refinement on this synthetic dataset to
get segmentation labels.

4. Evaluation and Results
Implementation: We use PyTorch 1.11 and run our ex-
periments on a workstation with two A6000 Nvidia GPUs.
Concept distillation training takes on average one day. The
forward pass is fast, equivalent to that of a standard U-Net.
Datasets: We choose our datasets such that they cover a
variety of different objects, including in-the-wild animals
and cars, as well as humans in static setups.

Human3.6m [24] is a dataset of 3.6 million images of
humans in different scenarios and situations. To show that
our method does not rely on large datasets we take a subset
of 6000 randomly chosen images centred around the human
and cropped to 256 × 256 pixels from the training dataset
of Human3.6m.

To test the method on representations of animals, we use
two datasets: the Stanford Dog Dataset [28], which contains
20,580 images of dogs divided into different categories, and
the Caltech-UCSD Birds 200 (CUB) dataset [58], which
contains 11,788 images of birds from 200 different species.

Finally, we also experiment with the detection of cars us-
ing [30], which consists of 16,185 images of cars in differ-
ent natural and non-natural settings. All these datasets come
with subcategories grouping the images based on selected
features. For our use case, we consolidate these groups

when prompting the model and use the classes cars, dogs,
human, and birds to simulate the absence of manual labels.

Methods CUB
ACC IoU mIoU

Fully supervised U-Net 97.9 88.3 93.0

GrabCut [46] by [49] 72.3 36.0 52.3
ReDO [11] 84.5 42.6 −
PerturbGAN [4] − − 38.0
IEM + SegNet [49] 89.3 55.1 71.4
Melas-Kyriazi et al. [35] 92.1 66.4 −
Layered GAN [61] 94.3 69.7 81.7

Ours (U-Net trained on Ds) 95.2 75.1 84.8
Ours (U-Net trained on Ds ∪D′

s) 95.6 77.2 86.0

Table 1. Comparison to other segmentation methods. Baselines
taken from [61]. Details on the training of the U-Nets can be found
in the appendix.

Self-supervised Segmentation Performance: Table 1
compares our methods performance against other unsuper-
vised methods on the CUB dataset, showing the pixel-wise
accuracy, the Intersection over Union (IoU) of the fore-
ground segmentation and the mean IoU. From this we see
that training a U-Net on our self-supervised labels produces
a model that outperforms all other methods, achieving an
overall foreground IoU improvement of 5.4 compared to
[61]. Furthermore, by adding the fully synthetic dataset
D′

s to the training data we are able to improve the per-
formance even further, reaching a foreground IoU of 77.2.
Table 3 also shows high foreground IoU values across the
other datasets, with Fig. 4 showing qualitative examples.
Mean Attention Map Performance: Computing the mean
attention maps M̂ and comparing them to the ground-truth
yields a remarkable AUC-ROC for the bird dataset of 97.1.
Scores are normalized instance-wise to a range of 0 to 1.
We also experiment with no normalization, which gives a
slightly worse AUC-ROC of 97.08. Qualitative examples
from all datasets are shown in Fig. 5, displaying the mean
attention maps’ ability to localise the foreground in differ-
ent scenarios. To compare this to our classification results
we compute the threshold such that we reach over 95% true
positive rate on a reserved training set of 100 images. True
positive rate is more important in our case because we ob-
serve that falsely classifying pixels as background leads the
inpainting model taking these foreground pixels as sources
to inpaint larger parts of the image. We reach a pixel-wise
accuracy of 86% on a set of 1000 test images suggesting
that our method of extracting the classification masks al-
ready can provide meaningful results.

While these results are encouraging, they also require a
ground-truth dataset and thresholding that we do not want
to rely on. The results indicate that our computed masks
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Figure 4. Unsupervised Segmentation Masks generated by our proposed approach.

are very good at locating the objects, albeit they do not
reach state-of-the-art performance despite adding supervi-
sion. Training on refined masks and integrating synthetic
data surpasses supervised results without using any labels
as shown in the next section.

Methods CUB
ACC IoU mIoU

Preliminary Masks Mpre 83.5 29.0 55.7
Simple Inpainting Mcrop 90.0 30.7 60.0
U-Net trained on (D, Mpre) 91.7 66.5 78.2
Refined Masks M 92.4 63.6 77.4
U-Net trained on Ds 95.2 75.1 84.8
U-Net trained on Ds ∪D′

s 95.6 77.2 86.0

Table 2. Segmentation results for different steps of our pipeline.

Ablation study: Table 2 shows an ablation study for
the individual components of our method. Initially, the
zero-shot preliminary masks generated from the foundation
model achieve good accuracy (83.5), but poor foreground
IoU (29.0). This reflects our earlier intuition that masks
overestimate the size of the object due to the maps being
computed at a lower resolution. Thanks to this, the GMM
overestimates the boundaries and spares the need for any
hyperparameter. Optimizing the threshold to maximise the
accuracy over a set of 100 training images would increase
the accuracy to 93.9%, but requires a ground-truth dataset.

Training a U-Net on these labels (Mpre) increases the

IoU to 66.5, showing the value in training the segmenta-
tion network. Using the refined masks as foreground seg-
mentation gives comparable performance, with higher ac-
curacy but lower foreground IoU. Additionally, we exper-
iment with replacing the inpainting step used to improve
Mpre with a simpler approach that crops background ar-
eas and uses them as inpainting in Eq. (5) instead of m′.
The resulting masks Mcrop are worse than the masks from
our proposed refinement step (For more details see supple-
ments). However, training a U-Net on these refined masks
produces the best results, being further boosted by incorpo-
rating additional synthetic data. The progressive refinement
of the segmentation masks is shown in Fig. 6.
Data synthesis: Table 3 compares the generative ability
of our fine-tuned diffusion model using the Fréchet incep-
tion distance (FID). Our method achieves higher generation
quality than all other methods across the CUB, Stanford
Dogs, and Stanford Cars datasets. We improve upon Lay-
eredGAN’s remarkably low FID scores for CUB and Stan-
ford Cars by 3.1 and 5.6 respectively.

Our method allows for the generation of samples covered
entirely by the background, as shown in Fig. 7, without ever
seeing such an image during training. The success of this
component is what enables the refined masks to be gener-
ated, as accurately inpainting the foreground allows us to
use the pixel-wise difference between the original and in-
painted images to precisely identify the foreground.
Concept Distillation: Finally we can evaluate if our model
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Figure 5. Mean attention maps for all datasets in latent space z of the diffusion model. Prompts are “a photo of a {object}”, where {object}
is replaced by “bird” for the first pair of rows, then “car”, “dog”, and “human”.

Methods Sup. CUB Stanford Dogs Stanford Cars Human3.6m
FID ↓ IoU ↑ FID ↓ IoU ↑ FID ↓ IoU ↑ FID ↓ IoU ↑

FineGAN [54] Weak 23.0 44.5 54.9 - 24.8 - - -
OneGAN [3] Weak 20.5 55.5 48.7 - 24.2 - - -
LayeredGAN [61] Unsup. 12.9 69.7 59.3 - 19.0 - - -

Ours Self 9.8 75.1 43.1 63.8 13.4 55.2 63.7 69.2

Table 3. Quantitative Results on Ds. Training details are shown in the supplements. Values are taken from [61]. Source code for [54, 3, 61]
was not available for re-evaluation on the Dogs, Cars and Human3.6m datasets. IoU on CUB are reported using the prediction of our model
and the ground truth provided with the dataset. For the other datsets we use the IoU of the bounding boxes.

Figure 6. Progressive refinement of the segmentation masks.

has indeed learned to distinguish between foreground and
background by looking at the output of different classifier-
free guidance scales starting from the same seed zt. Since
we have fine-tuned our model only on two distinct textual
prompts the conditional image generation should have col-
lapsed to two clusters, one for the object and the other
one for the background. Hence, instead of performing
classifier-free guidance using the predictions of m′ condi-
tioned on empty prompts we can directly use the predic-
tions of m′(zt, yb) and m′(zt, yf ) to perform image inter-
polation. We define classifier-free guidance in the direction
of the foreground, hence, a higher score means that latent
representations are pushed further in the direction of the ob-
ject. The results are shown in Fig. 8. For negative guidance
scales, the background is more detailed and there is no bird

present. Increasing this scale leads to less detail in the back-
ground while birds often seem to naturally grow from the
details in the background. The quality of the birds visually
improves while the quality of the rest of the image keeps
degrading resulting in less detailed backgrounds. We con-
firm this quantitatively by computing the FID for different
classifier-free guidance scales. Without classifier-free guid-
ance, i.e., scale = 1, the method reaches a FID of 9.8, at
scale = 3 a FID of 11.3, and at scale = 7.5 a FID of 22.3.

Medical Image Analysis: We want to evaluate if this ap-
proach can be applied to other domains, such as medical
imaging. Since the LDM does not have any medical un-
derstanding, we first need to fine-tune it using MIMIC [27],
which provides chest x-ray images paired with radiology re-
ports. We can fine-tune the model using a similar approach
as the one suggested by [8] (Details on the fine-tuning can
be found in the supplements). Then we report the pixel-
wise AUC-ROC on MS-CXR [5], a subset of MIMIC with
bounding box labels for diseases. Qualitative results can
be seen in Fig. 9. The pixel-wise accuracy of the attention
mask is already at 79.6% AUC-ROC across eight different
diseases, however, the bimodal GMM assumption no longer
holds in many cases because the model distinguishes three
regions, namely: background, foreground, and the rest of
the chest region.
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Figure 7. Full background image synthesis from the fine-tuned model, conditioned on yb. Using our proposed fine-tuning method, the
diffusion model is successfully able to generate images without birds from a dataset only consisting of images with birds.

Figure 8. Synthetic results of m′ with changing scales of classifier-
free-guidance, ranging from -2 on the left to +7.5 on the right.

Figure 9. M̂ and Mpre extraction on a medical task.

5. Discussion

’startofstring’ ’a’ ’photo’ ’of’ ’a’ ’human’ ’with’ ’arms’ ’and’ ’legs’

Figure 10. Input image and mean attention maps for every word
of the textual input prompt “startofstring a photo of a human with
arms and legs”. The attention of “human” focuses on the torso, the
one for the “arms” on the arms, and the one for the “legs” on the
legs.

We show in Sec. 4 that our method to extract the segmen-

tation masksM from the preliminary attention masks yields
better results than computing an optimised threshold over a
reserved miniset. This is possible because comparing to the
inpainted background provides sharp edges around the ob-
ject. However, our model is currently limited to detecting
single object concepts. An extension to multiple objects
could be achieved by prompt engineering in combination
with data augmentation techniques. Taking the foreground
masks and using them to extract objects would enable multi-
instance and multi-object segmentation by layering multiple
objects over each other and extending the final U-Net to a
multi-label segmentation model.

Furthermore, learning from weak labels has the disad-
vantage that the segmentation model may learn and repro-
duce weaknesses of the initial method. In our case, the
bimodal GMM fails if the image has more than two dis-
tinct contrast clusters. This is especially the case on the
Human3.6m dataset where the floor, walls, and person have
vastly different contrast-levels. Consequently, the final seg-
mentation sometimes fails to detect the lower part of the
body as shown in Fig. 4. However, our method could easily
be adapted to only a part of the human body, such as the
legs. We show this in Fig. 10, as by conditioning images
from [24] on the prompt “A photo of a human with arms
and legs” and computing M̂ for the three concepts (human,
arms, and legs) we are able to produce attention maps fo-
cused on specific body parts.

6. Conclusion
In this work, we have presented a generalizable frame-

work to train segmentation networks without any hyperpa-
rameter tuning using an unsupervised zero-shot approach
following the paradigm of ‘textual concept description‘ →
‘segmentation model‘. We leverage the power of large gen-
erative latent diffusion models and fine-tune the model on
the task of generating foreground and background images,
which can be used as data augmentation methods. We show,
that this method can achieve results close to supervised
methods, without requiring any manually generated ground
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truth labels. Our approach is amenable to supervised deep
learning and can be combined with existing models to boost
segmentation performance even further.

In future work we will explore how multi-object, multi-
instance segmentation can be facilitated with concept distil-
lation from generative image foundation models.
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