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Abstract

Real-world data tends to follow a long-tailed distribu-
tion, where the class imbalance results in dominance of the
head classes during training. In this paper, we propose a
frustratingly simple but effective step-wise learning frame-
work to gradually enhance the capability of the model in
detecting all categories of long-tailed datasets. Specifically,
we build smooth-tail data where the long-tailed distribu-
tion of categories decays smoothly to correct the bias to-
wards head classes. We pre-train a model on the whole
long-tailed data to preserve discriminability between all cat-
egories. We then fine-tune the class-agnostic modules of
the pre-trained model on the head class dominant replay
data to get a head class expert model with improved de-
cision boundaries from all categories. Finally, we train a
unified model on the tail class dominant replay data while
transferring knowledge from the head class expert model
to ensure accurate detection of all categories. Extensive
experiments on long-tailed datasets LVIS v0.5 and LVIS
v1.0 demonstrate the superior performance of our method,
where we can improve the AP with ResNet-50 backbone from
27.0% to 30.3% AP, and especially for the rare categories
from 15.5% to 24.9% AP. Our best model using ResNet-101
backbone can achieve 30.7% AP, which suppresses all exist-
ing detectors using the same backbone. Our source code is
available at https://github.com/dongnana777/
Long-tailed-object-detection.

1. Introduction

The success of deep learning are seen in many computer
vision tasks including object detection. Many deep learning-
based approaches [5, 29, 4, 17, 23, 20, 18, 1, 39] are pro-
posed and have shown impressive performance in localizing
and classifying objects of interest in 2D images. However,
it is important for these deep learning-based approaches
to be trained on balanced and representative datasets. Un-
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Figure 1. LST [10] is more susceptible to catastrophic forgetting
due to their incremental learning scheme with numerous data splits.
We alleviate the problem by building smooth-tail data that flattens
long-tailed datasets and always maintains data from all categories.

fortunately, most real-world datasets always follow a long-
tailed distribution, where the head classes have a significantly
larger number of instances than the tail classes. Training on
such imbalanced datasets often leads to bias towards head
classes and significant performance degeneration of the tail
classes due to the extremely scarce samples.

To circumvent the long-tailed distribution problem of ob-
ject detection task, many attempts exploit data re-sampling
and loss re-weighting approaches. Data re-sampling meth-
ods [6, 31] re-balance the distribution of the instance num-
bers of each category. Loss re-weighting methods [28, 30,
15] adopt different re-weighting strategies to adjust the loss
of different categories based on each category’s statistics. As
shown in Figure 2, Hu et al. [10] proposes LST which is a
"divide & conquer" strategy that leverages class-incremental
few-shot learning to solve the long-tailed distribution prob-
lem. The model is first trained with abundant labeled data of
the head classes. The categories in the long-tailed training
data is then sorted and divided according to the number of
samples to get the corresponding subsets for incremental
learning and merging of each part in N phases.

Despite the innovative adoption of class-incremental few-
shot learning on the long-tailed distribution problem, we
find that [10] catastrophically forgets the knowledge of the
head classes and cannot sufficiently learn the tail classes in
their incremental learning process. We postulate that this
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Figure 2. The incremental learning training strategy of [10] on
numerous smaller and balanced data splits inevitably expedites
catastrophic forgetting.

is attributed to three reasons: 1) Categories with high ap-
pearance similarity get divided into different parts due to the
hard divisions. This leads to lower discriminability since
these categories can only be trained together on the exemplar
replay subsets. 2) There is an apparent discrepancy between
the decision boundaries of the current model trained simul-
taneously on the exemplar replay subsets of the head and
tail classes from the previous model trained solely on the
head class subset. This discrepancy impedes the mainte-
nance of the knowledge on the head classes and the learning
of the tail classes. 3) The method divides the long-tailed
dataset into numerous smaller balanced parts. However, this
leads to more knowledge transfer steps and thus expediting
catastrophic forgetting.

In this paper, we adopt a similar incremental few-shot
learning approach to the long-tailed distribution object de-
tection problem. To mitigate the above issues, we propose
a simple but effective step-wise learning framework. We
note that the main difference of long-tailed learning from
class-incremental leaning is that the data of all categories
can co-occur. In contrast to [10] that starts the training on
only the head classes, we start the learning process from pre-
training the model on the whole long-tailed dataset to better
preserve the discriminative capability between the head and
tail classes. In the subsequent steps, we keep the class-
agnostic modules fixed and only update the class-specific
modules of the pre-trained model trained on the whole long-
tailed data. This circumvents the lack of training data in the
tail end of the long-tailed data by preserving knowledge from
the pre-trained model and limiting the network parameters
that need to be updated.

To avoid severe catastrophic forgetting, we first divide all
categories of long-tailed dataset into two parts: head classes
with more than M images each category, and tail classes
with less than M images each category. We then propose
to build smooth-tail data: 1) a head class dominant data
that contain a roughly balanced subset of the head classes
minored with a roughly balanced subset of tail classes, and
2) a tail class dominant data in similar vein. We leverage
the pre-trained model to select representative exemplars for

the head class dominant and tail class dominant data. Sub-
sequently, we fine-tune the pre-trained model on the head
class dominant data to learn a head class expert model. Fi-
nally, we learn a unified model on the tail class dominant
data while preserving knowledge of the head classes with the
head class expert model. Knowledge distillation at feature
level with a head class focused mask is adopt to facilitate the
learning of tail classes from the head class expert model. In
addition, knowledge distillation at classification head is also
adopted, where object query features from the head class
expert model are shared to the unified model to align the
predictions between them.

Our contributions can be summarized as follows:

1. We propose to build smooth-tail data, i.e., a head class
dominant data and a tail class dominant data, to alleviate
the extreme class imbalance of long-tail data and prevent
catastrophic forgetting in our step-wise learning frame-
work.

2. We design a novel step-wise learning framework that
unifies fine-tuning and knowledge transfer for the long-
tailed object detection task.

3. Our framework is frustratingly simple but effective.
We achieve state-of-the-art performances on long-tailed
datasets LVIS v0.5 and LVIS v1.0 in both the overall
accuracy, and especially the impressive accuracy of the
rare categories.

2. Related Works
General Object Detection. A large number of approaches
have been proposed for object detection task, which can be
briefly summarized into two different types based on their
frameworks. Two-stage object detection methods such as
R-CNN [5] apply a deep neural network to extract features
from proposals generated by selective search [29]. Fast R-
CNN [4] utilizes a differentiable RoI Pooling to improve the
speed and performance. Faster R-CNN [24] introduces the
Region Proposal Network to generate proposals. FPN [17]
builds a top-down architecture with lateral connections to
extract features across multiple layers. In contrast, one-stage
object detection methods such as YOLO [23] directly per-
form object classification and bounding box regression on
the feature maps. SSD [20] uses feature pyramid with dif-
ferent anchor sizes to cover the possible object scales. Reti-
naNet [18] proposes the focal loss to mitigate the imbalanced
positive and negative examples. Recently, transformer-based
object detection methods [1, 39] beyond the one-stage and
two-stage methods have gained popularity, which achieve
comparable or even better performance. They directly super-
vise bounding box predictions end-to-end with Hungarian
bipartite matching. These object detection models require
the training datasets to possess a roughly balanced cate-
gory distribution, e.g. COCO dataset [19]. However, the
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distribution of categories in the real-world scenarios is often
long-tailed and most of these object detection models fail to
maintain their performance. An extreme imbalance leads to
low accuracy on tail classes.

Long-tailed Object Detection. Many existing works have
been proposed to alleviate the challenge of long-tailed ob-
ject detection. These works can be categorized into three
categories. Data re-sampling is the most intuitive among
all methods. Gupta et al. [6] proposes repeat factor sam-
pling (RFS) to create a roughly balanced distribution by
over-sampling data of tail classes based on the frequency
of each category at image-level. Wang et al. [31] pro-
poses a calibration framework to alleviate classification head
bias with a bi-level class balanced sampling approach at
instance-level. Loss re-weighting is another common ap-
proach. EQLv2 [28] adopts a gradient-guided mechanism to
re-weight the loss contribution of each category. EFL [15] in-
troduces a category-relevant modulating factor into focal loss
to overcome the imbalance problem for one-stage object de-
tectors. Wang et al. [30] proposes seesaw loss to re-balance
gradients of positive and negative samples for each category,
with two complementary factors. Wang et al. [32] proposes
to understand the long-tailed distribution in a statistic-free
perspective and present a adaptive class suppression loss.
In addition to the above two common categories of meth-
ods, many works also approach the problem from different
perspectives. AHRL [14] addresses long-tailed object de-
tection from a metric learning perspective, which splits the
whole feature space into hierarchical structure and elimi-
nates the problem in a coarse-to-fine manner. Hu et al. [10]
which mainly focuses on instance segmentation task pro-
poses to alleviate long-tailed distribution problem in a class-
incremental few-shot learning way.

Few-Shot Object Detection and Knowledge Transfer.
Approaches of few-shot object detection can be categorized
into meta-learning based [34, 11, 36, 38] and fine-tuning
based methods [33, 35, 27]. There are two key differences
between few-shot object detection and long-tailed object
detection. On one hand, few-shot object detection merely
focuses on the performance on few-shot categories, which
is different from long-tailed object detection that aims at
detecting all categories accurately. On the other hand, the
datasets of few-shot object detection are comprised of base
data which contains abundant training samples per category
and novel data which contains a few training samples per
category, which are quite different from long-tailed datasets.

Exemplar replay and knowledge distillation are two com-
monly used techniques to transfer knowledge across different
models and remain performance of previous model. In exem-
plar replay based methods, the models strengthen memories
learned in the past through replaying the past information
periodically. They [22, 37, 2] usually keep a small number

Figure 3. Dhead contains a roughly balanced subset of Chead and a
small roughly balanced subset of Ctail. Dtail contains a roughly
balanced subset of Ctail and a small balanced subset of Chead.

of exemplars per category to achieve this purpose. Knowl-
edge distillation first proposed by Hinton et al. [8], where
the knowledge of predicted distribution from the teacher
model is distilled into the student model. Apart from the
final prediction, other types of knowledge, like intermediate
representations [26], can also be used to guide the learning
of the student model.

Our proposed step-wise learning framework unifies fine-
tuning and knowledge transfer techniques for the first time
to alleviate the long-tailed distribution problem for object de-
tection task, which can remain powerful on the head classes
and better adapt to the tail classes.

3. Our Methodology
3.1. Dataset Pre-processing

As shown in Figure 3, given a long-tailed dataset Dl

with Cl categories, we divide the entire set of categories
into: the head classes Chead with each category containing
≥ M images, and the tail classes Ctail with each category
containing < M images. Furthermore, Chead ∪ Ctail =
Cl and Chead ∩ Ctail = ∅. We then form Dhead which is
dominant with a roughly balanced subset of the head classes
Chead and minored with a roughly balanced subset of the tail
classes Ctail. Similarly, we form Dtail which is dominant
with a roughly balanced subset of the tail classes Ctail and
minored with a balanced subset of the head classes Chead.

Smooth-tail Data. We propose a confidence-guided exem-
plar replay scheme for the selection of representative and
diverse exemplars in Dhead and Dtail. The number of ex-
emplars is set to be significantly smaller than the original
dataset. We propose to use the model pre-trained with the
whole long-tailed data (c.f . next subsection) for the selection
of the exemplars to ensure that the model trained on the few
samples can also minimize the loss on the original dataset.
Specifically, we save all instances and corresponding classi-
fication scores {Ij , Sj} predicted by the pre-trained model
for each category. We then sort the instances by the value
of corresponding classification scores in a descending order.
Finally, we select the top-scoring instances as representa-
tive exemplars for replay. Notably, only the annotations
belonging to the selected instances are considered valid in
the training process. Furthermore, the images in original
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Figure 4. Overview of our step-wise learning framework. We first pre-train on the whole long-tailed training data Dl, and then the
class-specific modules are fine-tuned on Dhead. Finally, we train the model on Dtail while concurrently preserves knowledge from Dhead.

dataset are diverse in color, texture and size of region. The
diversity of the exemplars ensures the same robustness and
discrimination of the model as trained on original dataset,
thus instances with classification scores greater than thresh-
old 0.5 and are not in the same image are given the priority
to be chosen as exemplars.

3.2. Step-wise Learning

We use the state-of-the-art Deformable DETR [39] as our
backbone object detector. Given a long-tailed dataset Dl with
Cl categories, we pre-train a model on all categories using the
same loss functions as Deformable DETR. This pre-trained
model serves to: 1) provide output classification confidences
as instance selection cues for building the smooth-tail data;
2) learn discriminative representation and provide separation
capability of all categories for subsequent fine-tuning on
Dhead and knowledge transfer on Dtail.

As shown in Figure 4, we learn a head class expert model
with fine-tuning, and adopt knowledge transfer from the head
class expert model and the final model to unify the capability
of detecting head and tail classes. As the learning proceeds,
the model gradually approaches an optimal performance of
all categories.

Fine-tuning on Dhead. We propose to only update the
class-specific projection layer Φp and classification head
Φcls with Dhead while keeping the class-agnostic modules
frozen. This is to impose a strong constraint on the previous
representation and thus the discrimination representation
does not shift severely in subsequent process. The model
is fine-tuned with the standard Deformable DETR loss [39].
Note that Dhead is dominant with a roughly balanced subset
of Chead to alleviate class imbalance in the head classes, and
minored with a roughly balanced subset of Ctail to make
sure the decision boundary in the feature space has smaller
gap compared to the final unified model in subsequent step.

Let the detection targets in Dhead be denoted as y =
{yi}Ni=1 = {(ci, bi)}Ni=1, where ci and bi are the object cat-
egory and bounding box. Assume the N predictions for
target category made by the model are ŷ = {ŷi}Ni=1 =

{(p̂(ci), b̂i)}Ni=1, where p̂(ci) is probability of category ci
and b̂i is the predicted bounding box. Following Deformable
DETR, we compute the same matching cost between the
prediction ŷσ̂(i) and the ground truth yi using Hungarian
algorithm [13], where σ̂(i) is the index computed by the op-
timal bipartite matching. The Hungarian loss for all matched
pairs is thus defined as:

Lhg(y, ŷ) =

N∑
i=1

[Lcls(ci, p̂σ̂(i)(ci)) + 1{ci ̸=∅}Lbox(bi, b̂σ̂(i))],

(1)
where Lcls is the sigmoid focal loss [18]. Lbox is a linear
combination of ℓ1 loss and generalized IoU loss [25] with
the same weight hyperparameters as Deformable DETR.

Knowledge Transfer on Dtail. As shown in Figure 5, we
keep the model fine-tuned on Dhead fixed as the head class
expert model. We also keep a unified model initialized with
the parameters from the head class expert model, which we
train on Dtail while preserving the knowledge from Dhead.
Similar to the fine-tuning step, we also update only the class-
specific projection layer Φp and classification head Φcls of
the unified model while keeping the class-agnostic modules
frozen. However, a naive constant updates of the projection
layer and classification head on the tail classes can aggravate
catastrophic forgetting of the head classes. We thus propose
the use of exemplar replay and knowledge distillation to
mitigate the catastrophic forgetting of the head classes.

As mentioned earlier, we keep a small but balanced replay
exemplars of the head classes in Dtail. The head class expert
model is employed as an extra supervision signal to prevent
the projection layer output features of the unified model from
deviating too much from the output features of the head class
expert model. On the other hand, we do not want the head
class expert model to limit the learning process of the unified
model on the tail classes. To this end, we introduce a head
class focused binary mask mask head based on the ground-
truth bounding boxes of the head classes to prevent negative
influence on the tail class learning. Specifically, we set the
value of the pixel on the feature map within the ground truth
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Figure 5. Overview of our proposed knowledge transfer. The framework consists of the fixed head class expert model (top branch) obtained
from fine-tuning on Dhead for knowledge transfer to the unified model (bottom branch) during training on Dtail.

bounding boxes of head classes as 1, and the value of the
pixel outside the ground truth bounding boxes as 0. The
distillation loss on the features with the mask is written as:

Lfm_dis =
1

2Nhead

w∑
i=1

h∑
j=1

c∑
k=1

maskhead
ij

∥∥∥f unify
ijk − f head

ijk

∥∥∥2

, (2)

where N head =
∑w

i=1

∑h
j=1 mask head

ij . f head and f unify de-
note the features of the head class expert model and the
unified model, respectively. w , h and c are the width, height
and channels of the features.

Deformable DETR is built upon the transformer encoder-
decoder architecture combined with a set-based Hungarian
loss that forces unique predictions for each object via bi-
partite matching. Object queries extract features from the
feature maps. Deformable DETR learns different spatial
specialization for each object query, which indicates that
different object queries focus on different position areas and
box sizes. Since there is a mismatch in the object query
features input into the classification head of the head class
expert model and the unified model, the predicted classifi-
cation outputs between the two models can be inevitably
mismatched. To prevent the mismatch during knowledge dis-
tillation on the classification head, we first share the object
query features qhead from the decoder output of the head
class expert model to align the classification probability to
the unified model. The classification outputs of the head
class expert model and the unified model are compared in
the distillation loss function given by:

Lcls_dis = Lkl_div(log(p̂
unify
shared(ci)), p̂

head(ci)), (3)

where we follow [8] in the definition of the KL-divergence

loss Lkl_div between the category probabilities of the head
class expert model and the unified model. p̂unify

shared(ci) de-
notes the probability of category ci with the shared object
queries predicted by the unified model. p̂head(ci) denotes the
probability of category ci predicted by the head class expert
model.

A Hungarian loss Lhg is also applied to the ground truth
set y and the predictions ŷ of the data of tail class dominant
subset Dtail. The overall loss Ltotal is given by:

Ltotal = Lhg(y, ŷ) + λfmLfm_dis + λclsLcls_dis. (4)

λfm and λcls are hyperparameters to balance the loss terms.

4. Experiments
4.1. Experimental Settings

Datasets. To evaluate the performance of our proposed
method, we conduct extensive experiments on the challeng-
ing LVIS v0.5 and LVIS v1.0 datasets. LVIS [6] is a large
vocabulary dataset for long-tailed visual recognition. LVIS
v0.5 contains 1230 categories, where 57k images in the
train set are used for training, and 5k images in the val set
are used for validation. The latest version LVIS v1.0 con-
tains 1203 categories, where 100k images with about 1.3M
instances in the train set are used for training, and 19.8k im-
ages in the val set are used for validation. All the categories
are divided into three groups based on the number of images
of each category that appear in the train set: frequent (more
than 100 images), common (10 to 100 images), and rare (less
than 10 images). We report our results on the widely-used
object detection metric AP b across IoU threshold from 0.5
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Method Backbone Dataset AP b APr APc APf

LST [10]

ResNet-50 LVIS v0.5

22.6 - - -
DropLoss [9] 25.1 - - -
EQLv2 [28] 27.0 - - -
AHRL [14] 27.4 - - -
Our baseline 27.0 15.5 26.9 31.6

Ours 30.3 24.9 31.5 30.9
LST [10]

ResNet-101 LVIS v0.5

26.3 - - -
DropLoss [9] 26.8 - - -
EQLv2 [28] 28.1 - - -
AHRL [14] 29.3 - - -
Our baseline 27.0 14.6 27.3 31.7

Ours 30.7 26.8 31.7 31.1
BAGS [16]†

ResNet-50 LVIS v1.0

26.0 17.2 24.9 31.1
EQLv2 [28]† 25.5 16.4 23.9 31.2

Seesaw loss [30]† 26.4 17.5 25.3 31.5
AHRL [14] 26.4 - - -
EFL [15]† 27.5 20.2 26.1 32.4

Our baseline 25.1 11.9 23.1 33.2
Ours 28.7 21.8 28.4 32.0

BAGS [16]†

ResNet-101 LVIS v1.0

27.6 18.7 26.5 32.6
EQLv2 [28]† 26.9 18.2 25.4 32.4

Seesaw loss [30]† 27.8 18.7 27.0 32.8
AHRL [14] 28.7 - - -
EFL [15]† 29.2 23.5 27.4 33.8

Our baseline 26.3 14.4 24.8 33.2
Ours 29.5 23.6 29.0 32.6

Table 1. Comparisons with the state-of-the-art methods on LVIS v0.5 and LVIS v1.0 datasets. ResNet-50 and ResNet-101 are adopted as the
backbones, respectively. † indicates results taken from [15].

Method Framework Backbone Dataset AP b APr APc APf

AHRL’s baseline [14] Mask R-CNN

ResNet-50 LVIS v0.5

26.7 - - -
AHRL [14] Mask R-CNN 27.4 - - -
Our baseline Deformable DETR 27.0 15.5 26.9 31.6

Ours Deformable DETR 30.3 24.9 31.5 30.9
EFL’s baseline [15] RetinaNet

ResNet-50 LVIS v1.0

25.7 14.3 23.8 32.7
EFL [15] RetinaNet 27.5 20.2 26.1 32.4

Our baseline Deformable DETR 25.1 11.9 23.1 33.2
Ours Deformable DETR 28.7 21.8 28.4 32.0

Table 2. Comparisons with the state-of-the-art methods and corresponding baselines.

to 0.95. Additionally, the boxes AP for frequent (APf ),
common (APc), and rare (APr) categories are also reported,
respectively.

Implementation Details. We implement our method on
Deformable DETR [39]. The ImageNet [3] pre-trained
ResNet-50 and ResNet-101 [7] are adopted as the back-
bone. The training is carried out on 8 RTX 3090 GPUs with
a batch size of 2 per GPU. We train our model using the
AdamW [12, 21] optimizer with a weight decay of 1× 10−4.
In the model pre-training step (step 0 of our framework), we
train our model for 50 epochs with an initial learning rate
of 2× 10−4 and the learning rate is decayed at 40th epoch

by a factor of 0.1. In the model fine-tuning step (step 1 of
our framework), the model is initialized from the pre-trained
model. The parameters of the projection layer and classi-
fication head are updated while keeping the parameters of
other modules frozen. We fine-tune the model for 1 epoch
with a learning rate of 2× 10−5. In the knowledge transfer
step (step 2 of our framework), the model is initialized from
the fine-tuned model. The parameters of the projection layer
and classification head are updated while keeping the other
modules frozen. We train the model for 2 epochs with an
initial learning rate of 2× 10−4 and the learning rate is de-
cayed at 1th epoch by a factor of 0.1. λfm and λcls are set to
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0.1 and 1, respectively. The hyperparameter M is set to 30.

4.2. Comparisons with the State-of-the-art Methods

To validate the effectiveness of our approach, we compare
with state-of-the-art methods for long-tailed object detection
on benchmark datasets LVIS v0.5 and LVIS v1.0. Our base-
line is Deformable DETR [39] trained on long-tailed dataset
Dl with the same loss functions as [39]. As shown in Table 1,
our method achieves the best performance compared to all
other existing methods. Specifically, our proposed method
achieves 30.3% AP on LVIS v0.5 with ResNet-50 backbone.
It improves the baseline by 3.3% AP, and even achieves
9.4% AP improvement on the rare categories. Our proposed
method also outperforms the state-of-the-art AHRL [14] by
2.9% AP. With ResNet-101 as backbone, our approach still
performs well on the baseline (+3.7% AP). Furthermore, our
method outperforms the baseline by 3.6% AP with ResNet-
50 backbone and 3.2% AP with ResNet-101 backbone on
LVIS v1.0. The above results demonstrate that our method
which unifies fine-tuning and knowledge transfer can effec-
tively solve the severe class imbalance problem.

To eliminate the doubt that whether the gain is brought by
different baselines, we present a more detailed comparison
with the state-of-the-art methods on both the baselines and
the final models. The results are present in Table 2. On LVIS
v0.5, our method suppresses AHRL [14] by 2.9% AP with
a slight advantage on baseline (AHRL’s baseline: 26.7%
AP vs Our baseline: 27.0% AP). On LVIS v1.0, while the
performance of the baseline of EFL [15] is better than our
baseline (EFL’s baseline: 25.7% AP vs Our baseline: 25.1%
AP), our method still outperforms EFL [15] by 1.2% AP and
outperforms our baseline by 3.6% AP. Consequently, we can
conclude that the improvements brought by our method ben-
efit from our novel design instead of the different baseline.

4.3. Ablation Studies

FT KT AP b APr APc APf

27.0 15.5 26.9 31.6
✓ 29.7 19.4 31.4 31.6

✓ 29.4 23.2 29.8 31.3
✓ ✓ 30.3 24.9 31.5 30.9

Table 3. Ablation study of each component in our step-wise learning
framework on the smooth-tail data. FT, KT indicate the fine-tuning
and knowledge transfer, respectively.

Effectiveness of Each Component. There are two steps in
our proposed step-wise learning framework, i.e., fine-tuning
on the head class dominant data and knowledge transfer on
the tail class dominant data. We perform ablation study to
demonstrate the effectiveness of each of them. As shown
in Table 3, both the fine-tuning step and knowledge transfer
step on the matched smooth-tail data play significant roles
in step-wise learning framework.

For fine-tuning the model on the head class dominant data,
it improves the performance of our baseline from 27.0% AP
to 29.7% AP, while the performance improvement on rare
categories is still limited (19.4% AP). We then examine the
effectiveness of knowledge transfer. In this setting, we di-
rectly leverage the baseline as the extra supervision in knowl-
edge transfer step instead of using the fine-tuned head class
expert model as the extra supervision. Our method outper-
forms the baseline by 2.4% AP with significant improvement
of the performance on the rare and common categories. How-
ever, the performance of the frequent categories experiences
a slight drop.

Fine-tuning and knowledge transfer work collaboratively
to achieve an improvement from 27.0% AP to 30.3% AP.
Particularly, it achieves 24.9% AP for the rare categories,
which outperforms the baseline by 9.4% AP and outper-
forms the fine-tuned head class expert by 5.5% AP. This
indicates our proposed step-wise learning framework can
sufficiently eliminate the class imbalance problem. However,
our method experiences a further drop in the performance
of the frequent categories after fine-tuning and knowledge
transfer compared to using them separately (FT: 31.6% vs
KT:31.3% vs FT&KT: 30.9% AP). We postulate that the
drop in performance on the frequent categories might be due
to insufficient representation of the frequent categories in our
tail class dominant replay data during knowledge transfer.
Similarly, the selection of a roughly balanced head classes
for the head class dominant replay data might also result
in under representation of the frequent categories. Conse-
quently, catastrophic forgetting has a more detrimental effect
on the frequent categories.

SOQ Lfm_dis Lcls_dis AP b APr APc APf

✓ ✓ 29.4 24.9 30.6 29.8
✓ ✓ 29.7 25.0 30.8 30.3

✓ ✓ 24.4 24.3 26.3 22.0
✓ ✓ ✓ 30.3 24.9 31.5 30.9

Table 4. Ablation study of each component in our knowledge trans-
fer. SOQ indicates the shared object queries.

Effectiveness of Each Component of Knowledge Transfer.
We also demonstrate the effectiveness of each component
of knowledge transfer. The results in Row 1 and Row 2 of
Table 4 show that both knowledge distillation on features and
knowledge distillation on classification output predictions
play significant roles in knowledge transfer. It is worth
noting that the performance decreases drastically when we
do not share the object query features (from 30.3% AP to
24.4% AP), which can be attributed to the mismatch between
the classification outputs of the head class expert model and
the unified model.

Analysis of Divisions. The type of divisions on the long-
tailed data plays an important role in our approach. We
conduct extensive experiments to study the influence of
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Division AP b APr APc APf

[1, 10) ∪ [10,−) 30.1 24.7 31.1 30.8
[1, 30) ∪ [30,−) (Ours) 30.3 24.9 31.5 30.9

[1, 50) ∪ [50,−) 30.2 24.1 31.6 31.0
[1, 100) ∪ [100,−) 30.1 23.9 31.3 31.2

[1, 10) ∪ [10, 100) ∪ [100,−) 29.8 23.7 31.0 30.7
[1, 10) ∪ [10, 30) ∪ [30, 100) ∪ [100,−) 29.3 24.8 30.4 29.8

Table 5. Ablation study of different type of divisions.

Nex of Chead Nex of Ctail AP b APr APc APf

100 30 30.1 25.0 31.3 30.6
200 30 30.3 24.9 31.5 30.9
300 30 30.0 24.6 31.0 31.0
200 10 30.2 24.7 31.3 30.9
200 30 30.3 24.9 31.5 30.9
200 50 30.2 25.0 31.3 30.8
200 100 30.2 25.1 31.5 30.8

Table 6. Ablation study of exemplar memory size of Dhead.

Nex of Chead AP b APr APc APf

10 29.6 24.4 30.8 30.2
30 30.0 24.8 31.2 30.6
50 30.3 24.9 31.5 30.9

100 30.1 23.2 31.4 31.3
Table 7. Ablation study of exemplar memory size of Dtail.

different type of divisions of the long-tailed dataset. As
shown in Table 5, we can see that training the model with
division [1, 30) ∪ [30,−) achieves the best performance.
All two-step divisions can outperform the performance of
three-step or four-step divisions. We attribute this good
performance to the fewer divisions, and the lower perfor-
mance by the divisions [1, 10) ∪ [10, 100) ∪ [100,−) and
[1, 10)∪ [10, 30)∪ [30, 100)∪ [100,−) are caused by severe
catastrophic forgetting from the increase in divisions. The
performance of our two-step division [1, 30) ∪ [30,−) also
surpasses the other three two-step divisions, which clearly
demonstrate the superiority of the division [1, 30) ∪ [30,−)
in adapting to the tail classes while maintaining the perfor-
mance of the head classes.

Analysis of Exemplar Memory Size. We form Dhead

which is dominant with a roughly balanced subset of the
head classes Chead and minored with a roughly balanced
subset of the tail classes Ctail. Similarly, we form Dtail

which is dominant with a roughly balanced subset of the
tail classes Ctail and minored with a balanced subset of
the head classes Chead. We denote Nex as the number of
instances per category. For Dhead and Dtail, we vary Nex

of the head classes Chead and the tail classes Ctail and report
the results in Tables 6 and 7, respectively. We find that
increasing Nex of Chead helps maintain the performance of
head classes. However, we also observe that increasing Nex

of Chead impedes the learning of tail classes and hurts the
performance of tail classes. In addition, increasing Nex of
Ctail to large values does not significantly help the learning
of the tail classes and slightly shows adverse affects on the
performance of the head classes. By validation, we therefore
store 200 instances per category of Chead and 30 instances

Method AP b APr APc APf

Ours w/o step-wise RFS 29.6 19.0 31.6 31.2
Ours 30.3 24.9 31.5 30.9

Table 8. Ablation study of step-wise RFS.

per category of Ctail in Dhead. Similarly, in Dtail, we store
50 instances per category of Chead and introduce all instances
of Ctail. This can eliminate the class imbalance between
Chead and Ctail inside the exemplar sets and achieve a trade-
off of the performance of all categories.

Analysis of Step-wise RFS. Class imbalance still exists
in the exemplar replay data for the head and tail classes
due to the severe imbalance between categories of the long-
tailed dataset, and thus hinders the learning of categories
having fewer data. To narrow the imbalance in the exemplar
replay data, we propose to adopt the repeat factor sampling
(RFS) to over-sample the data from categories having fewer
data. In our proposed step-wise learning framework, RFS is
used in different ways in different steps and thus we terms
it as step-wise RFS. In the fine-tuning step, for the head
class dominant replay data, we over-sample the categories
having fewer data among the dominant head classes. In the
knowledge transfer step, we also over-sample the categories
having few data among the dominant tail classes for the
tail class dominant replay data. As shown in Table 8, the
comparisons between our method using and without using
step-wise RFS indicate that applying step-wise RFS does
help alleviate the imbalance inside the subsets.

5. Conclusion
In this work, we propose a simple yet effective method

that leverages incremental learning on the long-tailed dis-
tribution problem for the object detection task. We identify
that a pre-trained model on the whole long-tailed dataset
can achieve high discriminability in all categories for sub-
sequent training steps. We propose to build the smooth-tail
distributed data for calibrating the class imbalance in long-
tailed datasets, and maintaining representative and diverse
head and tail class exemplar replay data. We propose a
novel step-wise learning framework that first fine-tune the
pre-trained model on the head class dominant replay data to
get the head class expert model. Subsequently, knowledge
is transferred from the head class expert model to a unified
model trained on the tail class dominant replay data. Our
method brings large improvements with notable boost on the
tail classes on different backbones and various long-tailed
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datasets. Furthermore, our method achieves state-of-the-art
performance on the challenging LVIS benchmarks for object
detection task.

6. Acknowledgements

The first author is funded by a scholarship from the China
Scholarship Council (CSC). This research is supported by
the National Research Foundation, Singapore under its AI
Singapore Programme (AISG Award No: AISG2-RP-2021-
024), and the Tier 2 grant MOE-T2EP20120-0011 from the
Singapore Ministry of Education.

References

[1] Nicolas Carion, Francisco Massa, Gabriel Synnaeve,
Nicolas Usunier, Alexander Kirillov, and Sergey
Zagoruyko. End-to-end object detection with trans-
formers. In European Conference on Computer Vision,
pages 213–229. Springer, 2020. 1, 2

[2] Francisco M Castro, Manuel J Marín-Jiménez, Nicolás
Guil, Cordelia Schmid, and Karteek Alahari. End-to-
end incremental learning. In Proceedings of the Eu-
ropean conference on computer vision (ECCV), pages
233–248, 2018. 3

[3] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In 2009 IEEE conference on computer
vision and pattern recognition, pages 248–255. Ieee,
2009. 6

[4] Ross Girshick. Fast r-cnn. In Proceedings of the IEEE
international conference on computer vision, pages
1440–1448, 2015. 1, 2

[5] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jiten-
dra Malik. Rich feature hierarchies for accurate object
detection and semantic segmentation. In Proceedings
of the IEEE conference on computer vision and pattern
recognition, pages 580–587, 2014. 1, 2

[6] Agrim Gupta, Piotr Dollar, and Ross Girshick. Lvis: A
dataset for large vocabulary instance segmentation. In
Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 5356–5364, 2019.
1, 3, 5

[7] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition.
In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 770–778, 2016.
6

[8] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distill-
ing the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2015. 3, 5

[9] Ting-I Hsieh, Esther Robb, Hwann-Tzong Chen, and
Jia-Bin Huang. Droploss for long-tail instance seg-
mentation. In Proceedings of the AAAI conference on
artificial intelligence, volume 35, pages 1549–1557,
2021. 6

[10] Xinting Hu, Yi Jiang, Kaihua Tang, Jingyuan Chen,
Chunyan Miao, and Hanwang Zhang. Learning to
segment the tail. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition,
pages 14045–14054, 2020. 1, 2, 3, 6

[11] Bingyi Kang, Zhuang Liu, Xin Wang, Fisher Yu, Jiashi
Feng, and Trevor Darrell. Few-shot object detection via
feature reweighting. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages
8420–8429, 2019. 3

[12] Diederik P Kingma and Jimmy Ba. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014. 6

[13] Harold W Kuhn. The hungarian method for the as-
signment problem. Naval research logistics quarterly,
2(1-2):83–97, 1955. 4

[14] Banghuai Li. Adaptive hierarchical representation
learning for long-tailed object detection. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 2313–2322, 2022. 3, 6,
7

[15] Bo Li, Yongqiang Yao, Jingru Tan, Gang Zhang, Feng-
wei Yu, Jianwei Lu, and Ye Luo. Equalized focal loss
for dense long-tailed object detection. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 6990–6999, 2022. 1, 3, 6, 7

[16] Yu Li, Tao Wang, Bingyi Kang, Sheng Tang, Chunfeng
Wang, Jintao Li, and Jiashi Feng. Overcoming classifier
imbalance for long-tail object detection with balanced
group softmax. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition,
pages 10991–11000, 2020. 6

[17] Tsung Yi Lin, Piotr Dollar, Ross Girshick, Kaiming
He, Bharath Hariharan, and Serge Belongie. Feature
pyramid networks for object detection. In IEEE Con-
ference on Computer Vision and Pattern Recognition,
2017. 1, 2

[18] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming
He, and Piotr Dollár. Focal loss for dense object detec-
tion. In Proceedings of the IEEE international confer-
ence on computer vision, pages 2980–2988, 2017. 1, 2,
4

[19] Tsung-Yi Lin, Michael Maire, Serge Belongie, James
Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and
C Lawrence Zitnick. Microsoft coco: Common objects

6948



in context. In European conference on computer vision,
pages 740–755. Springer, 2014. 2

[20] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Chris-
tian Szegedy, Scott Reed, Cheng Yang Fu, and Alexan-
der C. Berg. Ssd: Single shot multibox detector. In
European Conference on Computer Vision, 2016. 1, 2

[21] Ilya Loshchilov and Frank Hutter. Decoupled weight
decay regularization. arXiv preprint arXiv:1711.05101,
2017. 6

[22] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov,
Georg Sperl, and Christoph H Lampert. icarl: In-
cremental classifier and representation learning. In
Proceedings of the IEEE conference on Computer Vi-
sion and Pattern Recognition, pages 2001–2010, 2017.
3

[23] Joseph Redmon, Santosh Divvala, Ross Girshick, and
Ali Farhadi. You only look once: Unified, real-time
object detection. In Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, pages
779–788, 2016. 1, 2

[24] Shaoqing Ren, Kaiming He, Ross Girshick, and Sun
Jian. Faster r-cnn: Towards real-time object detection
with region proposal networks. In International Confer-
ence on Neural Information Processing Systems, 2015.
2

[25] Hamid Rezatofighi, Nathan Tsoi, JunYoung Gwak,
Amir Sadeghian, Ian Reid, and Silvio Savarese. Gen-
eralized intersection over union: A metric and a loss
for bounding box regression. In Proceedings of the
IEEE/CVF conference on computer vision and pattern
recognition, pages 658–666, 2019. 4

[26] Adriana Romero, Nicolas Ballas, Samira Ebrahimi Ka-
hou, Antoine Chassang, Carlo Gatta, and Yoshua Ben-
gio. Fitnets: Hints for thin deep nets. arXiv preprint
arXiv:1412.6550, 2014. 3

[27] Bo Sun, Banghuai Li, Shengcai Cai, Ye Yuan, and Chi
Zhang. Fsce: Few-shot object detection via contrastive
proposal encoding. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recogni-
tion, pages 7352–7362, 2021. 3

[28] Jingru Tan, Xin Lu, Gang Zhang, Changqing Yin, and
Quanquan Li. Equalization loss v2: A new gradient
balance approach for long-tailed object detection. In
Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 1685–1694, 2021.
1, 3, 6

[29] Jasper RR Uijlings, Koen EA Van De Sande, Theo Gev-
ers, and Arnold WM Smeulders. Selective search for
object recognition. International journal of computer
vision, 104(2):154–171, 2013. 1, 2

[30] Jiaqi Wang, Wenwei Zhang, Yuhang Zang, Yuhang
Cao, Jiangmiao Pang, Tao Gong, Kai Chen, Ziwei
Liu, Chen Change Loy, and Dahua Lin. Seesaw loss
for long-tailed instance segmentation. In Proceedings
of the IEEE/CVF conference on computer vision and
pattern recognition, pages 9695–9704, 2021. 1, 3, 6

[31] Tao Wang, Yu Li, Bingyi Kang, Junnan Li, Junhao
Liew, Sheng Tang, Steven Hoi, and Jiashi Feng. The
devil is in classification: A simple framework for long-
tail instance segmentation. In European conference on
computer vision, pages 728–744. Springer, 2020. 1, 3

[32] Tong Wang, Yousong Zhu, Chaoyang Zhao, Wei Zeng,
Jinqiao Wang, and Ming Tang. Adaptive class suppres-
sion loss for long-tail object detection. In Proceedings
of the IEEE/CVF conference on computer vision and
pattern recognition, pages 3103–3112, 2021. 3

[33] Xin Wang, Thomas E Huang, Trevor Darrell, Joseph E
Gonzalez, and Fisher Yu. Frustratingly simple few-shot
object detection. arXiv preprint arXiv:2003.06957,
2020. 3

[34] Yu-Xiong Wang, Deva Ramanan, and Martial Hebert.
Meta-learning to detect rare objects. In Proceedings of
the IEEE/CVF International Conference on Computer
Vision, pages 9925–9934, 2019. 3

[35] Jiaxi Wu, Songtao Liu, Di Huang, and Yunhong Wang.
Multi-scale positive sample refinement for few-shot
object detection. In European Conference on Computer
Vision, pages 456–472. Springer, 2020. 3

[36] Xiongwei Wu, Doyen Sahoo, and Steven Hoi. Meta-
rcnn: Meta learning for few-shot object detection. In
Proceedings of the 28th ACM International Conference
on Multimedia, pages 1679–1687, 2020. 3

[37] Yue Wu, Yinpeng Chen, Lijuan Wang, Yuancheng Ye,
Zicheng Liu, Yandong Guo, and Yun Fu. Large scale
incremental learning. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition,
pages 374–382, 2019. 3

[38] Gongjie Zhang, Zhipeng Luo, Kaiwen Cui, and Shi-
jian Lu. Meta-detr: Few-shot object detection via
unified image-level meta-learning. arXiv preprint
arXiv:2103.11731, 2, 2021. 3

[39] Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang
Wang, and Jifeng Dai. Deformable detr: Deformable
transformers for end-to-end object detection. arXiv
preprint arXiv:2010.04159, 2020. 1, 2, 4, 6, 7

6949


