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Abstract

Multi-view clustering aims to extract valuable informa-
tion from different sources or perspectives. Over the years,
the deep neural network has demonstrated its superior rep-
resentation learning capability in multi-view clustering and
achieved impressive performance. However, most existing
deep clustering approaches are dedicated to merging and
exploring the consistent latent representation across mul-
tiple views while overlooking the abundant complementary
information in each view. Furthermore, finding correlations
between multiple views in an unsupervised setting is a sig-
nificant challenge. To tackle these issues, we present a novel
Cross-view Topology based Consistent and Complementary
information extraction framework, termed CTCC. In detail,
deep embedding can be obtained from the bipartite graph
learning module for each view individually. CTCC then
constructs the cross-view topological graph based on the
OT distance between the bipartite graph of each view. Uti-
lizing the above graph, we maximize the mutual information
across views to learn consistent information and enhance
the complementarity of each view by selectively isolating
distributions from each other. Extensive experiments on five
challenging datasets verify that CTCC outperforms existing
methods significantly.

1. Introduction
With the proliferation and diversity of unlabeled data,

multi-view clustering[26, 21, 13, 44, 7] has become an in-
creasingly popular unsupervised paradigm. Its goal is to
group data with similar features together by leveraging in-
formation from multiple views. Conventional multi-view
clustering[41, 19, 42, 31, 55] methods commonly rely on
shared information after multi-view fusion for clustering.
Due to the limited ability of shallow methods to extract
high-level information from data, their clustering perfor-
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Figure 1: W represents the topology graph between views.
We selectively combine consistent and complementary in-
formation between views using a cross-view topology graph
W. Specifically, we utilize the mutual information maxi-
mization module to obtain consistent information between
different views. To selectively further the views incorpo-
rating view-specific information, we use the view topology
graph to identify views with rich view-specific information.
We pull them apart from other views to allow Z to obtain
more complementary information.

mance is highly contingent upon the quality of the raw data.
With the rapid development of deep learning[6, 25, 22],
deep multi-view clustering(DMVC) approaches[49, 8, 15,
29, 10, 12] employ the powerful learning ability of neu-
ral networks to learn a high-level common representation
from multiple views that is beneficial for clustering, thus
overcoming the drawback of traditional methods. As a re-
sult, DMVC has made remarkable progress and attracted
widespread attention in real-world applications.

Existing DMVC methods can be categorized into three
types: graph-based methods[4, 45, 52, 20], subspace-based
methods[37, 39, 53], and reconstruction-based methods[26,
51, 3, 40, 46]. These methods often utilize autoencoders or
convolutional neural networks to learn the structural infor-
mation by exploring the common representation or struc-
ture in the latent space[49, 8, 15]. Their fundamental con-
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cepts revolve around fusing different views to uncover the
common representation and achieve improved clustering ef-
fects. However, in real-world scenarios, multi-view data is
collected in diverse ways, and each view contains a sub-
stantial amount of view-specific information. Solely focus-
ing on the consistent information between multiple views
can lead to significant information loss. Effectively utilizing
the view-specific information in each view poses a pressing
challenge. [50] has achieved remarkable results by decou-
pling the view-common information from the view-specific
information. However, it overlooks the affinity between
views, treating each view equally. In real multi-view data,
different views contribute differently to the clustering task.
Not all information within a view is equally essential. The
correlation between pairwise views plays a crucial role in
learning clustering-friendly representations, especially un-
der unsupervised conditions. Thus, striking a balance be-
tween consistent and complementary information from dif-
ferent views is a challenging problem.

To tackle these challenges, we propose a novel multi-
view deep clustering framework that leverages consistency
and complementarity information, as well as cross-view
topology. We establish a topological graph between views
using bipartite graphs and balance the consistent and com-
plementary information based on this graph. As illustrated
in Fig. 1, we introduce the cross-view topology graph W
into the framework to selectively learn consistent and com-
plementary information. Specifically, to learn consistent
representations across views, we maximize the mutual in-
formation between views and also between views and con-
sistent representations. Since different views contribute dif-
ferently to consistent representations, we generate weights
based on cross-view topological graphs to constrain the mu-
tual information between different views. Furthermore, to
utilize view-specific information, we split the views into
two sets via the topological graph and use the OT distance
between views to pull the two sets farther in the latent space,
thereby retaining more view-specific information. In gen-
eral, we integrate consistent and complementary informa-
tion in the same framework through the topological graph.
We define the relationship between views according to the
topological graph to obtain better clustering performance.

The contributions and novelties are summarized as fol-
lows:

• In the paradigm of unsupervised learning, we propose
a multi-view deep clustering framework based on bi-
partite graphs. We employ OT distance to define the
topological graph between views and selectively inte-
grate the information from multiple views into a deep
neural network framework.

• By introducing the topological graph between views,
we can define semantic-level relationships between

views and balance the consistent and complementary
information from multiple views, thereby improving
the clustering performance.

• Sufficient experiments demonstrate the effectiveness
of selectively unifying consistent and complementary
information of multi-view data into a deep clustering
framework.

2. Related Work
In this section, We review and rethink the role of con-

sistent and complementary information in multi-view data
for clustering and the limitation of deep multi-view cluster-
ing in this regard. In addition, we also briefly introduce the
latest research progress of mutual information in exploring
the commonality and differences among views, which are
closely related to our work.

2.1. Rethinking Consistency and Complementarity
in MVC

Different from tasks such as cross-view re-
trieval and cross-view transformation[16], multi-view
clustering(MVC)[19, 30, 18, 21] is a task that coordinates
information from multiple views. MVC aims to coordinate
and fuse two or more view information[23, 38] to achieve
the purpose of information complementation and ultimately
improve the clustering accuracy and generalization ability
of the model. The information in multi-view data can
be divided into consistent properties among views and
view-specific properties[24, 48, 50, 37], which imply the
commonality among views and individuality within each
view, respectively.

Most traditional multi-view clustering methods analyze
the differences between views while fusing consistent in-
formation to fully use all effective information in multi-
ple views and make the clustering results more accurate.
For example, CSMSC[24] explicitly splits the information
of all views into low-rank common representations, intra-
view specific representations, and noise. CDMGC[9] uni-
fies measuring graph diversity and learning consistent clus-
ter label assignments into a framework. Current deep multi-
view clustering methods use neural networks to directly
learn consistent representations for all views in the latent
space[15, 35, 47], while ignoring the important role of
view-specific discriminative information for clustering. For
example, EAMC[57] uses adversarial learning to align the
latent distribution between views to learn a consistent rep-
resentation. DCP[17] achieves consistent learning by max-
imizing the mutual information of different views and does
not mention the important function of complementary in-
formation of views.

To the best of our knowledge, there is no deep method
that explicitly unifies the view graph to balance consis-
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tent information and complementary information into one
framework so that the two can jointly promote the improve-
ment of clustering performance.

2.2. Mutual Information in Multi-view Clustering

Over the years, information theory has been extensively
applied in the field of multi-view representation learning,
yielding remarkable results[36, 28, 5, 43]. Among these, the
information bottleneck[33] is an approach grounded in in-
formation theory, offering a reliable theoretical explanation
for related work. Ideally, the information bottleneck maxi-
mizes task information I(Z,Y) while minimizing raw fea-
ture information I(Z;X(1),X(2)) to obtain a high-quality
representation. However, information bottleneck theory ne-
cessitates label information [1, 34], and even pseudo-labels
constructed in unsupervised scenarios are not reliable, hin-
dering the accurate removal of redundant information and
the acquisition of robust representations. Consequently, in
our work, rather than employing the information bottle-
neck to explore the nonlinear relationship between multi-
ple views, we directly investigate the consistent information
represented across views by maximizing the mutual infor-
mation I(Z(1),Z(2)).

3. Method
In this section, we initially present the framework dia-

gram of the proposed model, as illustrated in Fig. 2. Subse-
quently, we delve into the learning process of each module
in detail.

3.1. Overview

In the realm of multi-view clustering, the majority of
existing approaches primarily focus on achieving consis-
tency across multiple views, often overlooking the efficacy
of view-specific information. The interplay between these
two types of information presents a conflict, prompting the
need to strike a balance between consistency and specificity
within multi-view settings. To address this challenge, we
propose a novel model comprising three main components:
bipartite graph learning, mutual information maximization
between views for obtaining consistent information, and the
utilization of optimal transport (OT) distance to measure the
bipartite graph distance between views. This framework al-
lows for the selective incorporation of view-specific infor-
mation based on view graph.

3.2. View-Independent Bipartite Graph Learning

Given multi-view data X = {X(1),X(2), · · · ,X(V )}
with n samples and V views. Denote G =
{G(1),G(2), · · · ,G(V )}, where G(i) is a bipartite graph
on the i-th view. We introduce three spaces: the target
space Y , the raw data space X , and the learned latent space

Z . In the proposed framework, we define three mappings:
f(⋆) : X 7→ Z , which transforms the input space into the
latent space; g(⋆) : Z 7→ X , which maps the latent space
back to the input space; and h(⋆) : Z 7→ Y , which connects
the latent space to the target space. To initialize the bipartite
graph G(i) ∈ Rn×m(i)

for the i-th view, we employ clus-
tering algorithms to obtain anchor points within each view.
Subsequently, we utilize an encoder-decoder architecture to
map the initial G(i) and obtain the refined graph Ĝ(i) as
follows:

Ĝ(i) = g(f(G(i))). (1)

After the mapping process, we obtain a representation Zi

for the i-th view in the latent space, as well as the recon-
structed graph Ĝ(i). In order to reconstruct the sample-to-
sample relationships within each view, we proceed to recon-
struct these relationships in the input space as follows:

Lre =

V∑
i=1

∥∥∥∥Ĝ(i)Ĝ(i)
T
−G(i)G(i)T

∥∥∥∥2
F

. (2)

After the pre-training phase, we update the initial bipar-
tite graph G(i) by constructing a new bipartite graph using
the representation of the latent space. This procedure cor-
responds to the mapping from the raw data space X to the
learned latent space Z .

3.3. Cross-view Topology Graph Construction

After pre-training, the latent representation Z(i) for each
view is acquired. Subsequently, these potential representa-
tions are mapped to generate the bipartite graph structure
G̃(i) for each respective view. Notably, the bipartite graph
structures on each view share a common dimensionality. In
order to ascertain the comprehensive relationship between
views, our objective is to individually assess the bipartite
graph transition distances between them. Assume that for
each node in g

(i)
a , it has ua units transferred to g

(j)
b . For a

node in g
(j)
b , it has tb units to receive. Then, in this case,

for a given pair of nodes g(i)a and g
(j)
b , the cost of each unit

transfer is Pab, and the total number of transfers is Rab.
Π(u, r) denotes the set of all possible distributions whose
marginal weights are u and t. u and t are the marginal
weights of Rab, respectively. Then, we can get the follow-
ing optimization problem according to the above definition.

Dw(G̃
(i), G̃(j)) = min

R∈Π(u,r)

n∑
a

n∑
b

PabRab,

s.t. Rab ≥ 0, a, b = 1, 2, . . . , n,

(3)

where Π(u, t) =
{
Γ ∈ Rn×n | Γ1n = u,ΓT1n = t

}
, 1n

denotes an n-dimensional all-one vector. And Pab is the
cost function of transferring unit g(i)a to g

(j)
b , as follows:
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Figure 2: The framework of our proposed CTCC. The entire model consists of three main modules: bipartite graph learning,
cross-view consistency maximization of information, and maximization of specific view Optimal Transport (OT) distance
through the view topology graph W to obtain complementary information from the view. The goal of bipartite graph learning
is to learn representative information in each view. Cross-view consistency information maximization aims to learn cross-
view consistency, while distribution isolation seeks to preserve view-specific information.

Pab = 1−
g
(i)
a

T
g
(j)
b∥∥∥g(i)a

∥∥∥∥∥∥g(j)b

∥∥∥ . (4)

Then, we solve the Eq.(3) for every two views to get the
view relation matrix W ∈ RV×V , the specific formula is
listed as follows:

Wij = Dw(G̃
(i), G̃(j)). (5)

The matrix Wij encapsulates the relationship between
the i-th and j-th views. Consequently, the interrelationships
among multiple views can be assessed via the matrix W. It
is evident that a smaller value of Wij signifies a greater de-
gree of shared information, thereby implying a higher sim-
ilarity between the i-th and j-th views.

After optimizing the bipartite graph G̃(i), we proceed
to fuse information from each view. Utilizing the view re-
lation matrix W, we can concentrate on and incorporate
view-specific information. As illustrated in Fig. 2, based
on the calculation method of W, we can deduce that the
W3j between the third view and all other views is large,
signifying that the third view contains more view-specific
supplementary information. During the fusion process, we
aim to incorporate this information.

However, the third view may also contain a significant
amount of noise for some data. To address this issue, we in-
troduce a hyperparameter δ, which represents the tolerance
of the data to view-specific information. For each view, we
perform the following operations according to the view re-
lationship W:

Z
(v)

=

(
V
∑V

i=1 Wvi∑V
i=1

∑V
j=1 Wij

)δ

Z(v). (6)

Then, we concatenate the manipulated representations
on each view to obtain a common representation Z:

Z = Z
(1) ⊕ Z

(2) ⊕ · · ·Z(v)
. (7)

3.4. Consistency Maximization via Mutual Infor-
mation

To obtain consistent information among multiple views,
we utilize an approach that maximizes the mutual informa-
tion between different views. The consistent information is
optimized as the neural network refines the representation
of each view. Initially, we define I

(
Z(1);Z(2)

)
as the mu-

tual information between view 1 and view 2. Additionally,
I
(
Z(i);Z

)
denotes the mutual information between the i-th

view and the shared view.
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Definition 1. Among the representations of multiple views
Z(v), Z = {Z(1),Z(2), · · · ,Z(V )} is considered consis-
tent if and only if I

(
Z(1);Z(2); · · · ;Z(i); · · · ;Z(V )

)
≥

I
(
Z(1);Z(2); · · · ; Ẑ(i); · · · ;Z(V )

)
, for ∀i, Ẑ(i) ∈

Ω(X(i)), where Ω(X(i)) is the set of latent representations
for the i-th view.

Based on Definition 1, it is evident that to achieve con-
sistency among multiple views, we aim to identify the max-
imum mutual information across these views in the latent
space. For multiple views, we maximize the mutual infor-
mation between any two views. As illustrated in Fig. 2, we
obtain the fused Z through the relationship between views.
To maximize the mutual information between views, we
maximize the mutual information between each view and
the shared Z, thereby maximizing the mutual information
between views. Consistent information between views can
be maximized by maximizing the mutual information be-
tween each view representation and the shared view repre-
sentation. However, to maximize mutual information, the
dimensions of the two representations must be identical.
Therefore, we employ an MLP to reduce the dimension-
ality of the shared Z, making it the same dimension as the
representation Z(i) for each view: Z̃ = σ(Z). Please re-
fer to [17, 5] for the specific calculation method of mutual
information. Nonetheless, assigning equal weight to more
distant views will diminish the mutual information between
views, as demonstrated in the third view in Fig. 1. Conse-
quently, we utilize the view graph to impose varying penal-
ties on the relationship between different views. For views
similar to the third view, we apply a smaller weight when
maximizing the mutual information to optimize the view
information. The specific loss function is as follows:

Lmci = −
V∑
i=1

V∑
j ̸=i

(
CijI

(
Z(i);Z(j)

))
+

V∑
i=1

εiI
(
Z(i); Z̃

)
,

(8)

where Cij ∝ 1
Wij

, εi is the row sum of the i-th row of C.

3.5. Distribution Isolation via Cross-view Topology

After analyzing the view graph, it becomes apparent that
solely maximizing the mutual information of latent repre-
sentations between each view overlooks the specific infor-
mation present within each view. As demonstrated in Fig. 2,
much specific information of view three is neglected when
maximizing the mutual information of view latent represen-
tations. Ideally, we would like to leverage the unique in-
formation from certain special views. In instances where
this information is not noise, it can significantly contribute

to clustering tasks. Consequently, we consider the optimal
transport (OT) distance between the view farthest from all
other views and the view closest to other views as the train-
ing objective, maintaining it within a specific range to ef-
fectively utilize the unique information of the view. We de-
fine ∆ as the set ∆ =

{
σ|
∑V

i wσi > η
}

. Additionally,

we define Λ as the set Λ =
{
ε|
∑V

i wεi < ρ
}

. We com-

pute the distance Dw(G̃
(∆), G̃(Λ)) between the bipartite

graphs formed by the view latent representations in the two
sets. However, for consistent information, we do not want
to separate the views in these two collections too much.
Therefore, we introduce a regularization term β for this loss.
We aim to use this optimization formula to counterbalance
Eq.(8), thereby learning both the consistency information of
the view and the specific information within the view. The
specific formula is as follows:

Loci =
∑
i∈∆

∑
j∈Λ

1

Dw(G̃(i), G̃(j))
. (9)

In summary, the final loss is:

Lall = Lre + φLmci + βLoci, (10)

where φ and β is the regularization coefficient.The specific
algorithm flow is shown in Algorithm 1.

Algorithm 1 The Proposed CTCC

Input:
{
X(i)

}V
i=1

∈ Rn×di , number of clusters k, learning
rate αt.

1: for i = 1 : V do
2: Obtain the bipartite graph G(i) on the i-th view via

k-means;
3: Use the initial bipartite graph to pre-train the network

through minimize Eq. (2);
4: After pre-training, update the initial anchors;
5: end
6: while not reaching the maximal epochs do
7: Obtain the bipartite graph G̃(v) corresponding to the

latent space representation on each view;
8: Obtain the view topology graph W between views

by optimizing Eq.(5);
9: Update Z

(v)
on each view through the view topology

graph by Eq.(6);
10: Obtain Z by minimizing Eq.(10);
11: end while
12: Output: Perform k-means on Z to achieve the final

result.
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Table 1: Multi-view datasets used in experiments.

Dataset Samples Clusters Views Dimensionality

MSRCV 210 7 6 256/48/100/512/210/1302
Leaves 1600 100 3 64/64/64

HandWritten 2000 10 6 216/76/64/6/240/47
UCI-digit 2000 10 3 64/76/216

ALOI 10800 100 4 77/13/64/125

4. Experiment
4.1. Datasets and Experimental Setting

In this section, we evaluate the performance of our pro-
posed model in comparison with CTCC and nine state-of-
the-art algorithms on five benchmark multi-view datasets.
Table 1 presents the number of samples, number of clusters,
and feature dimensionality for each dataset. MSRCV is an
image dataset comprising 210 images with categories such
as people, animals, buildings, and natural objects. UCI-
digit is a handwritten digit dataset containing 2,000 sam-
ples. Leaves is a dataset of 100 plant species’ leaves, con-
sisting of 1,600 samples. For each feature, a 64-element
vector is provided per leaf sample. ALOI is a color im-
age collection of 1,000 small objects, resulting in a total of
10,800 images for the collection. In this model, there are
several hyperparameters. The range of values for hyperpa-
rameters β and φ is [0.001, 1000], and the range for hyper-
parameter δ is [0.1, 1]. The specific settings for sets ∆ and
Λ are η = 0.8, ρ = 0.3. The learning rate (lr) employed in the
model is 0.001. Our model is implemented using PyTorch
1.7.1 and trained on a desktop computer equipped with an
NVIDIA GeForce RTX 3080 and 64GB RAM. We utilize
the Adam optimizer with its default parameters.

4.2. Compared Methods

We conducted a comparison of CTCC with nine state-of-
the-art multi-view clustering algorithms on five real-world
multi-view datasets.

• RMKM[2] integrates heterogeneous representations
of large-scale data to cluster large-scale multi-view
data effectively.

• LMVSC[11] efficiently handles a vast number of
views by exploiting the data structure, achieving lin-
ear time complexity.

• FMR[14] introduces a flexible multi-view representa-
tion learning approach for subspace clustering, which
learns a shared latent space representation for multiple
views while accommodating view-specific transforma-
tions.

• BMVC[56] is an innovative binary multi-view cluster-
ing method that employs graph-based techniques to in-

fer the cluster structure of each view and subsequently
integrates the results of different views into a final clus-
tering outcome.

• AE2-Nets[54] utilizes a nested autoencoder architec-
ture to encode data from diverse perspectives into a
comprehensive embedding.

• SDMVC[51] proposes a self-supervised feature learn-
ing approach for deep multi-view clustering, leverag-
ing a contrastive loss to learn discriminative features
from multiple views.

• MFLVC[52] introduces a multi-level feature learning
method for contrastive multi-view clustering, aiming
to learn discriminative and complementary features
from multiple views.

• COMIC[27] presents a parameter-free multi-view
clustering method named COMIC, which leverages
the consensus of multiple co-association matrices to
achieve clustering results without the need for param-
eter tuning.

• DSMVC[32] incorporates a safe clustering module
that uses the predictive variance of a deep neural net-
work to identify potentially unsafe regions in the fea-
ture space.

4.3. Clustering Performance

We assessed the performance of our proposed method
(CTCC) by comparing it to nine other baseline algorithms,
utilizing four widely accepted clustering evaluation metrics:
accuracy (ACC), normalized mutual information (NMI),
Purity, and F-score. The clustering performance of our
method, as well as the other baseline algorithms, is pre-
sented in Table 2. Based on the findings in Table 2, we
can draw the following conclusions: (1) Our method ex-
hibits a substantial improvement over the other nine multi-
view clustering algorithms across all datasets and eval-
uation metrics. With respect to ACC, our method out-
shines the baseline algorithms, particularly on the MSRCV,
100Leaves, and ALOI-100 datasets. Our algorithm sur-
passes the second-best algorithm by 9.6%, 15.07%, and
11.75%, respectively. These results suggest that emphasiz-
ing the consistency and complementarity among multiple
views, as well as optimizing based on the relationships be-
tween views, has achieved remarkable results. (2) As ob-
served in Table 2, the clustering performance of our model
notably enhances as the number of data views increases.
This is particularly evident in the MSRCV and HandWrit-
ten datasets, which demonstrate the effectiveness of view
relationships.
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Table 2: ACC, NMI, Purity and F-score comparison of different clustering algorithms on benchmark datasets. The best result
is highlighted in bold, while the second best is marked with an underlined number. ’O/M’ refers to out-of-memory failure.
’-’ indicates the error of the method itself.

Datasets Conventional Methods Deep Methods
RMKM LMVSC FMR BMVC AE2-Nets SDMVC MFLVC COMIC DSMVC CTCC

ACC(%)
MSRCV 71.42 83.73 76.16 26.66 32.10 48.10 38.57 46.19 64.29 93.33

HandWritten 67.10 85.10 59.62 75.50 87.82 49.45 86.20 45.15 95.25 97.45
UCI 81.85 89.35 54.44 85.45 80.57 63.00 92.00 73.55 85.45 95.65

Leaves 48.81 66.31 48.21 74.38 47.94 67.31 13.00 40.69 51.81 81.38
ALOI-100 33.74 42.40 O/M 63.54 26.90 O/M 23.12 9.940 14.89 75.29

NMI(%)
MSRCV 63.03 78.93 68.38 8.290 27.44 49.24 32.78 66.52 54.29 87.27

HandWritten 65.33 80.56 49.19 77.52 80.18 5.190 85.53 67.85 91.19 94.52
UCI 76.04 83.27 45.57 82.52 69.51 64.29 85.40 81.80 80.67 91.95

Leaves 78.13 85.22 71.41 89.37 75.15 88.28 60.20 74.16 79.24 91.99
ALOI-100 63.55 55.82 O/M 76.99 49.47 O/M 67.88 30.92 40.57 82.87

Purity(%)
MSRCV 74.76 85.25 77.77 27.14 33.10 51.90 38.57 85.24 64.29 93.33

HandWritten 75.95 85.10 60.98 79.45 87.82 49.85 86.20 96.75 95.25 97.45
UCI 81.85 89.35 56.96 85.45 80.57 67.05 92.00 81.35 85.40 95.65

Leaves 74.19 70.09 50.66 78.06 49.94 70.44 13.00 45.44 53.12 84.88
ALOI-100 64.02 44.09 O/M 65.49 27.58 O/M 23.12 10.44 15.79 76.49

F-score(%)
MSRCV 59.98 77.43 66.69 16.01 32.50 44.84 33.04 — 60.12 93.58

HandWritten 59.21 77.23 41.49 71.13 79.35 42.10 85.82 — 95.27 97.45
UCI 81.85 89.35 35.77 85.45 67.65 62.77 92.05 — 86.09 95.66

Leaves 38.70 57.07 35.54 66.61 45.82 64.46 5.290 — 44.13 81.43
ALOI-100 28.82 31.68 O/M 50.98 24.59 O/M 12.02 — 0.360 80.81

Table 3: Ablation study on MSRCV. denotes CTCC with
the component.

Components Metrics(%)
Lre Lmci Loci ACC NMI Purity F-score

74.29 67.20 74.29 76.71
90.00 82.19 90.00 89.93
87.62 82.38 87.62 87.44
93.33 87.27 93.33 93.58

Table 4: Ablation study on HandWritten. denotes CTCC
with the component.

Components Metrics(%)
Lre Lmci Loci ACC NMI Purity F-score

84.80 84.23 84.80 84.09
91.75 88.17 91.75 91.62
90.40 87.41 90.40 90.48
97.45 94.52 97.45 97.45

4.4. Ablation of Mutual Information Maximization
Module

To substantiate the efficacy of our mutual information
maximization module, we carried out ablation experiments
on both the MSRCV and Handwritten datasets. The specific
results are delineated in Tables 3 and 4. Our observations
reveal that maximizing mutual information between views
can considerably enhance clustering performance. This un-
derscores the pivotal role that shared information between
views plays in clustering tasks. Notably, our mutual infor-
mation maximization module surpassed models that solely
focused on specific information within each view.

As depicted in Fig. 6, on the MSRCV and Handwrit-
ten datasets, maximizing mutual information across multi-
ple views yielded a more consistent representation that out-
performed clustering based on representations from individ-
ual views. This demonstrates that maximizing mutual infor-
mation can effectively integrate shared information across
multiple views, resulting in representations that are advan-
tageous for clustering tasks. This confirmation supports the
effectiveness of the mutual information maximization mod-
ule. By maximizing mutual information between views, we
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were able to obtain more consistent representations in the
latent space, leading to improved multi-view clustering per-
formance.

4.5. Ablation of cross-view topology module

To demonstrate the effectiveness of the cross-view topol-
ogy module, we conducted an ablation experiment in which
we eliminated the mutual information maximization mod-
ule. Additionally, we conducted clustering on the represen-
tations obtained from each view, as illustrated in Tables 5
and 6, and Fig. 6. Our findings reveal that the clustering
performance of the representations derived from the cross-
view topology graph is markedly superior to that of each
individual view. This implies that view-specific informa-
tion can be advantageous to multi-view clustering. These
observations provide compelling evidence for the effective-
ness of the cross-view topology graph module within our
proposed framework.

Nonetheless, our results demonstrated that complemen-
tarity information alone did not enhance clustering perfor-
mance as substantially as consistency information. How-
ever, when the view consistency module and the comple-
mentarity module were amalgamated, we discovered that
the combination exerted a significant impact on clustering
performance, signifying that complementary information is
valuable for improving clustering performance. From Ta-
bles 3 and 4, We can also see impressive clustering perfor-
mance by combining the two modules. Consequently, to
a certain extent, integrating both consistency and comple-
mentary information can substantially augment clustering
performance.

(a) MSRCV (b) HandWritten

Figure 3: Sensitivity analysis of φ and β for our method
over MSRCV and HandWritten.

4.6. Visualization of bipartite graphs

To visually demonstrate the impact of cross-view topol-
ogy on bipartite graph fusion for each view, we depicted
the bipartite graphs learned on each view of the HandWrit-
ten dataset, as shown in Fig. 5. Upon scrutinizing the fig-
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(d) After training(ACC=95.65%)

Figure 4: The visualization results on the HandWritten and
UCI-digit datasets.

ure, it becomes apparent that the best view of the bipartite
graph results in poor performance. However, a more effec-
tive bipartite graph outcome was achieved under the guid-
ance of view topology, as demonstrated in (b) and (c). The
influence of the bipartite graph, molded by consistent and
complementary information, was markedly amplified. In
(b) and (c), the likelihood of a sample being associated with
a specific cluster increased after incorporating supplemen-
tary information. This observation can be ascribed to the
acquisition of particular supplementary information in the
view, which corroborates the validity of the supplementary
information.

4.7. Parameter Sensitivity Analysis

In our parameter sensitivity analysis, we maintained a
learning rate of 0.001 for all experiments. Our loss function
includes two hyperparameters: a regularization parameter
φ to explore consistency information between views and
a regularization parameter β for complementarity informa-
tion. To evaluate the impact of these two parameters, we
varied their values within the range of [0.001, 0.01, 0.1, 10,
100, 1000], as depicted in Fig. 3. Our findings revealed an
initial increase followed by a decrease in performance. No-
tably, alterations in parameter φ exerted a substantial im-
pact on the outcomes, demonstrating the effectiveness of
complementary information in improving clustering perfor-
mance. Specifically, our model attained maximum accuracy
on the MSRCV dataset when φ was assigned a value of 10
and β was set to 0.1, whereas on the HandWritten dataset,
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(a) best view (b) consistent representation (c) consistent and complementary (d) view graph

Figure 5: The visualization of the bipartite graph on the best view, consistent representation of all views, adding complemen-
tary information to the bipartite graph, and view topology graph on the HandWritten dataset.

the maximum accuracy was achieved when φ was assigned
a value of 100 and β was set to 0.01.

4.8. Visualization of clustering performance

Additionally, we performed visualization of the clus-
tering effect of CTCC on the HandWritten and UCI-digit
datasets. We generated visualizations for both the original
features and the final results obtained through our deep net-
work. As illustrated in Fig. 4, it is evident that the results
achieved through our proposed network framework surpass
those of the original features. The final representations suc-
cessfully cluster similar samples together, resulting in accu-
racy values of 97.45% and 95.65% on the HandWritten and
UCI-digit datasets, respectively. This serves as compelling
evidence for the effectiveness of our proposed framework,
which integrates consistency and complementarity informa-
tion through the cross-view topological graph.

Table 5: Clustering performance comparison of single-view
and multi-view on MSRCV dataset.

Metrics V1 V2 V3 V4 V5 V6 CTCC
ACC 76.67 60.00 62.86 69.05 54.29 49.05 93.33
NMI 67.47 55.30 60.12 59.25 47.41 43.15 87.27

F-score 77.43 58.68 63.53 68.54 56.48 49.20 93.58

Table 6: Clustering performance comparison of single-view
and multi-view on HandWritten dataset.

Metrics V1 V2 V3 V4 V5 V6 CTCC
ACC 72.55 59.45 79.95 64.95 73.65 55.55 97.45
NMI 70.50 65.74 83.18 65.61 73.18 65.97 94.52

F-score 70.86 57.85 78.48 63.78 73.19 52.43 97.45

(a) MSRCV (b) HandWritten

Figure 6: The clustering performance of latent represen-
tations on each view and representations containing con-
sistency and complementarity information is compared on
datasets MSRCV and HandWritten.

5. Conclusion

To make full use of the complementary information of
each view while learning consistent representation and to
explore the correlation between multiple views, this paper
present CTCC, which unifies the two seemingly opposite
pieces of information into a framework. In brief, the pro-
posed CTCC utilize the constructed cross-view topology to
guide the maximization of the mutual information between
views and the isolation of distributions to tackle the above
issues. Comprehensive experiments demonstrate our pro-
posed CTCC’s superiority compared with conventional and
deep SOTA methods. We believe that our motivation is wor-
thy to be discussed and will bring some new insights to the
multi-view clustering community.
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