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Abstract

Almost all previous text-to-video retrieval works assume
that videos are pre-trimmed with short durations. How-
ever, in practice, videos are generally untrimmed contain-
ing much background content. In this work, we investigate
the more practical but challenging Partially Relevant Video
Retrieval (PRVR) task, which aims to retrieve partially rel-
evant untrimmed videos with the query input. Particularly,
we propose to address PRVR from a new perspective, i.e.,
distilling the generalization knowledge from the large-scale
vision-language pre-trained model and transferring it to a
task-specific PRVR network. To be specific, we introduce a
Dual Learning framework with Dynamic Knowledge Distil-
lation (DL-DKD), which exploits the knowledge of a large
vision-language model as the teacher to guide a student
model. During the knowledge distillation, an inheritance
student branch is devised to absorb the knowledge from
the teacher model. Considering that the large model may
be of mediocre performance due to the domain gaps, we
further develop an exploration student branch to take the
benefits of task-specific information. In addition, a dynami-
cal knowledge distillation strategy is further devised to ad-
just the effect of each student branch learning during the
training. Experiment results demonstrate that our proposed
model achieves state-of-the-art performance on ActivityNet
and TVR datasets for PRVR.

1. Introduction
With the explosion of online videos, searching the videos

of interest has been an indispensable activity in people’s

daily lives. Meanwhile, text-to-video retrieval (T2VR), re-

trieving videos w.r.t. a textual query from a large num-
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Query: A man opens the door and enters the room.
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Figure 1. (a) An illustrative example of the PRVR task; (b)

Mean values of video duration of different datasets; (c) Perfor-

mance comparisons between the state-of-the-art (SOTA) [8] and

the vanilla CLIP-based [2] methods, where CLIP shows huge per-

formance divergences for different PRVR datasets.

ber of unlabeled videos, attracts growing attention re-

cently [1, 6, 25, 35, 50, 59]. One basic assumption prereq-

uisite for mainstream T2VR is that videos are pre-trimmed

with short duration and supposed to be fully relevant to the

query [29, 48, 61]. However, in practical applications, the

majority of the existing videos are untrimmed. Besides, as

queries are not known a priori, pre-trimmed video clips may

not contain sufficient content to fully meet the query. There-

fore, there is a huge gap between the literature and the real

world for the mainstream T2VR task [8].

To fill the gap, a new text-to-video retrieval subtask, i.e.,

Partially Relevant Video Retrieval (PRVR), has been pro-

posed recently in [8]. Different from previous T2VR, PRVR

aims to retrieve the partially relevant untrimmed videos that

contain at least one internal moment relevant to the given

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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query (as exemplified in Fig. 1(a)). Besides, videos used for

PRVR are much longer than that for T2VR (see Fig. 1(b)).

In this work, we target the PRVR task, considering it is more

consistent with practical video retrieval scenarios.

Recently, we notice an increasing use of large-scale

pre-trained vision and language models, e.g., Contrastive

Language-Image Pre-training (CLIP) [46], for various

cross-modal tasks, recognition [49, 53], semantic segmen-

tation [55,65] and person Re-Identification [20,56], such as

text-image retrieval [19,47], visual question answer [4,13],

and achieving dominant performances. For text-to-video re-

trieval task, current works [2, 15, 36, 39] mainly focus on

the learning of temporal aggregation layers on top of CLIP

features, this is because the videos are mainly composed

of image sequences while CLIP is trained only on image-

text pairs. Different from short videos in these works, the

PRVR task contains more complicated untrimmed videos

with longer-duration moments of mixed query-relevant and

query-irrelevant activities. Therefore, directly treating

PRVR as mainstream text-to-video retrieval and aggregat-

ing the CLIP features across all the frames may lead to huge

performance divergences on PRVR datasets. As shown in

Fig. 1 (c), a vanilla CLIP performs superior on ActivityNet

but depressing on TVR. Therefore, how to effectively trans-

fer the knowledge of CLIP to PRVR models is still an open

problem.

To this end, we propose a Dual Learning framework with

Dynamic Knowledge Distillation (DL-DKD) to purify the

knowledge of CLIP into the PRVR. Specifically, we develop

an effective teacher-student network where the CLIP model

is adopted as the teacher and a dual-branch student model is

devised to acquire the knowledge. The reason why we intro-

duce two student branches is that CLIP may suffer from do-

main gap issues due to complicated datasets. Therefore, one

inheritance student branch is introduced to directly absorb

the beneficial knowledge of the teacher model on a specific

domain, while another exploration student branch is uti-

lized to only explore the task-specific property of the train-

ing data. In addition, motivated by the fact that human be-

ings first learn from teachers and slowly carry out self-living

evolutionary learning once they have formed their own pre-

liminary cognition. Thus, a dynamic knowledge distillation

strategy is devised, namely, the inheritance branch takes the

prime position at the beginning and the exploration branch

gradually becomes more prominent during the training pro-

cess. In this manner, our DL-DKD is able to take the ad-

vantage of both the powerful generalization-ability of CLIP

and the benefits of task-specific model convergence on the

PRVR data while alleviating their limitations, achieving

more robust and effective retrieval. To sum up, the con-

tributions of this work are threefold:

• We propose a knowledge distillation framework that

contains a dual-branch student network to acquire ap-

propriate knowledge selectively for partially relevant

video retrieval. Meanwhile, our framework supports

single-teacher and multiple-teacher distillation.

• We explore how to take the advantage of the powerful

generalization-ability of the large model and the ben-

efits of the task-specific model simultaneously while

alleviating their limitations, and propose a dynamical

knowledge distillation strategy.

• Extensive experiments demonstrate the effectiveness

of the above contributions, and our proposed model

achieves state-of-the-art performance on the challeng-

ing PRVR task.

2. Related Work
2.1. Text-to-video Retrieval

Given a textual query, the task of T2VR [1,25,32,34,35,

58, 61] aims to retrieve relevant videos with the query from

a set of pre-trimmed video clips. The dominant methods

typically project videos and queries into a common space

for measuring the cross-modal similarity [17, 18, 35, 52].

They usually learn the cross-modal similarity using a large

amount of video-text pairs, based on the initial video fea-

tures extracted by pre-trained vision models and the text

features obtained by pre-trained language models. Addi-

tionally, we observe an increasing use of large-scale pre-

training vision-language models, such as CLIP [46], for

text-to-video retrieval [2,15,23,36,39]. For instance, Hu et
al. [23] utilize CLIP to extract both video and text features

as extra features. Other works adapt CLIP for text-to-video

retrieval by introducing the similarity calculation module

between the representation of text and video frames [39],

frame-wise attentions [2], and a temporal difference block

for capturing motions between frames [15].

In practice, videos are generally untrimmed containing

much background content [24, 45, 54, 60, 64]. However, in

the traditional T2VR, videos are typically pre-trimmed with

short duration and are supposed to be fully relevant to the

query [29–31,33,48,61], which leads to a huge gap between

the literature and the real world. To overcome this limita-

tion, a new text-to-video retrieval subtask, i.e., PRVR, has

been proposed [8]. By contrast, videos in PRVR are typ-

ically untrimmed, and it aims to retrieve partially relevant

videos with the query. An untrimmed video is considered

to be partially relevant to a given textual query if it contains

a moment relevant to the query. Although it is more consis-

tent with real applications, PRVR had been neglected for a

long time.

2.2. Knowledge Distillation

Knowledge distillation is the process of transferring

knowledge from a large model (teacher) to a smaller one
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Figure 2. An overview of our proposed DL-DKD framework. Given an untrimmed video and query input, we design a teacher-student

network to transfer the knowledge of a large-scale pre-training model CLIP into the PRVR. In detail, we first take the CLIP model as the

teacher to provide the generalization knowledge. Then, a dual-branch student model is devised to control the learning effect on knowledge

transfer with a dynamic knowledge distillation strategy. In particular, an inheritance student branch is introduced to absorb the beneficial

knowledge of the teacher model, while an exploration student branch is utilized to explore the task-specific property of the training data.

(student) [22], which has been widely employed in vari-

ous tasks, such as image classification [44], and object de-

tection [5]. Recently, a number of works demonstrate that

knowledge distillation is also beneficial to learning text-to-

video retrieval models [7, 16, 41]. For instance, Croitoru

et al. [7] distill multiple strong text encoders into one text

encoder. Miech et al. [41] aims to learn an efficient text-to-

visual retrieval model via distilling from a cross-attention

model of high performance to a dual encoder model. These

works usually have a prerequisite that teacher models have

pretty good performance. In this work, we relax this pre-

requisite, allowing teacher models of mediocrity to be used

for knowledge distillation.

3. Method

We propose a dual learning framework with dynamic

knowledge distillation for the PRVR task, which exploits

the knowledge of CLIP as the teacher guidance to dy-

namically distill and balance the learning of dual student

branches. As shown in Fig. 2, the whole architecture mainly

consists of two parts: 1) Teacher model: To leverage the

powerful generalization ability of the large model trained on

the large-scale data, a vision-language pre-training model

like CLIP [46] is taken to serve as the teacher model to

guide the task-specific model converge on the PRVR data.

2) Student model: Since the vanilla pre-trained large mod-

els may have huge performance differences on different

datasets due to their task-specific domain gaps, a single-

branch student model may simply get stuck into the under-

fitting problem by the above teacher model. To learn to se-

lectively acquire appropriate knowledge from the teacher

model when it performs differently on various data, we

propose a two-branch, i.e., Inheritance-Exploration student

network. This student model is split into two branches, in

which one branch is utilized to inherit the beneficial knowl-

edge of the teacher model on a specific data domain, while

the other is to explore and fit the domain-specific property

on the training data. A dynamical knowledge distillation

strategy is further applied on the teacher-student framework

to adjust the effect of each student branch learning during

the training. In the following, we will illustrate the details

of each component.

3.1. CLIP Teacher Model

The large-scale vision-language model CLIP [46] was

pre-trained on a great amount of image-text data, and is now

commonly employed as a strong vision-language backbone

enabling zero-shot knowledge transfer to various down-

stream tasks [36, 51]. Therefore, we also resort to CLIP,

utilizing it as the teacher model to appropriately guide our

student model training. Note that other vision-language pre-

training models, such as TCL [39], can also be employed

here. We conduct experiments with different teacher mod-

els in Section 4.4, showing the remarkable generalizability

of our proposed framework.

As depicted in the top of Fig. 2, given a video-text pair

(V,Q) consisting of a video V = {Ii}ki=1 of k frames

and a textual query Q as input, we feed them into the

CLIP’s image and text encoders to obtain the correspond-

ing video feature F t = {f t
i }ki=1 ∈ R

d×k and query fea-

ture qt ∈ R
d, respectively. The video feature is comprised
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of a sequence of k frame features, and the dimensions of

the frame and the query features are both d. Consider-

ing that semantic-aligned similarity matters a lot in our re-

trieval task, we aim to transfer the collected knowledge of

video-query semantic-aware similarity distribution from the

teacher model to the student model. Formally, for a pair of

video V and query Q, their semantic similarity distribution

Ct ∈ R
k is formulated as:

Ct = [cos(f t
1, q

t), cos(f t
2, q

t), ..., cos(f t
k, q

t)], (1)

where cos denotes the cosine similarity.

Different from many works [21,40] devoting to distilling

image features from a teacher model to a student model, our

teacher model is committed to guide the student model by

constraining the consistent semantic similarity distributions

between the teacher-student models.

3.2. Dual-branch Student Model

To inherit the beneficial knowledge of the teacher model

on a specific data domain while learning to explore and fit

the domain-specific property on the training data, we de-

velop a dual-branch student model. As illustrated in Fig. 2,

the student model contains two branches, i.e., an inheritance

branch and an exploration branch. Specifically, the inher-

itance student branch is devised to absorb the large-scale

knowledge from the teacher branch. Besides, the explo-

ration student branch is introduced to learn the data-specific

property by fitting the training data to alleviate the teacher’s

performance-drop problem due to the domain gaps. By

jointly training the two student branches, we can obtain

prime performance not only on datasets with a similar dis-

tribution to the training data of CLIP but also on datasets

with distinct domain gaps.

3.2.1 Inheritance Student Branch

As for the inheritance branch, it is expected to learn the col-

lected knowledge from the semantic similarity distribution

Ct of the teacher model.

Multi-Modal Encoding. Given an input video V =
{Ii}ki=1, a pre-trained 2D CNN with an FC layer is em-

ployed to extract the higher-level CNN features of the video

as F s′ ∈ R
z×k, where each video frame is represented as

a z-dimensional feature vector. Then, after an operation of

a standard Transformer with positional embedding and an-

other FC layer, F s′ is projected into the joint latent space

for the latter multi-modal similarity measurement. This en-

coded visual feature F s ∈ R
z×k is denoted as:

F s = {fs
1 , f

s
2 , ..., f

s
k} = FC(Trans(FC(F s′) + PE)),

(2)

where PE stands for positional embedding, and Trans is

a standard Transformer.

For an input query Q, following [8, 27], we utilize the

pre-trained RoBERTa [38] with an FC layer to generate the

word-level features Qs′ = {ws′
i }ns

i=1 ∈ R
z×ns . To further

obtain the contextual features of the query text, we first feed

Qs′ into a standard Transformer to obtain Qs = {ws
i }ns

i=1 ∈
R

z×ns , and then employ an attention layer to generate the

sentence-level feature qs ∈ R
z via attentive aggregation as:

qs =

ns∑

i=1

αi × ws
i , α = Softmax(WQs), (3)

where Softmax denotes the softmax layer, W ∈ R
1×z is

a trainable variable, and α ∈ R
1×ns indicates the attention

vector. qs is in the joint latent space with F s.

Transferring Knowledge from Teacher to Student.
To absorb knowledge from the teacher by learning the con-

sistency of video-query semantic similarity distribution be-

tween the teacher and student branches further, we first cal-

culate the similarity distribution Cs ∈ R
k of current student

branch between F s and qs:

Cs = [cos(fs
1 , q

s), cos(fs
2 , q

s), ..., cos(fs
k , q

s)]. (4)

Then, we design a distribution distillation to transfer knowl-

edge from the pre-trained teacher model to the inheritance

student branch. Specifically, our distribution distillation

strategy is to capture the consistency of the similarity dis-

tributions of the teacher and the student. A similarity con-

sistency constraint is configured to guide the learning of the

inheritance branch with the teacher model [51]. In detail,

given the teacher-similarity distribution Ct and the student-

similarity distribution Cs of a video-text pair (V,Q), the se-

mantic consistency loss Lc is formulated by exploiting the

KL divergence as:

Lc = DKL(C
s||Ct) =

k∑

i=1

Cs
i log

Cs
i

Ct
i

, (5)

where the subscript i indicates the i-th elements in the cor-

responding similarity distribution.

Besides, we also employ self-similarity learning to make

the partially relevant video-text pairs near and irrelevant

pairs far away in the learned space. Following the previous

work [8], by constructing the positive and negative video-

text samples, both triplet ranking loss [11,14] and InfoNCE

loss [42, 63] are jointly utilized to self-train the inheritance

branch, which can be noted as Ls. Overall, to train our in-

heritance student branch, we simultaneously optimize both

Ls and Lc to learn the self-similarity and the similarity con-

sistency. The final loss LI of this branch can be termed as a

weighted sum of Ls and Lc as:

LI = Ls + wLc, (6)

where w is a hyper-parameter to balance the contribution of

Ls and Lc.
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3.2.2 Exploration Student Branch

Since the teacher model can not always perform well on

various data due to the domain gap, the inheritance stu-

dent branch may be prone to its mistake when the teacher

model is of mediocre performance. Therefore, we design

another student branch, called the exploration branch, to

only learn the data-specific property of the training set with-

out any guidance from the teacher branch. By jointly opti-

mizing the two branches in a dual learning manner, we can

effectively take advantage of the teacher models on well-

performing data while mitigating the negative impact of the

teacher model’s performance degradation on certain data.

In contrast to the inheritance branch that updates its sim-

ilarity distribution by referring to the teacher knowledge,

the exploration branch is devised to learn the data-specific

knowledge directly from the on-site training data. As shown

in Fig. 2, both two branches share the same network archi-

tecture. We also utilize the triplet ranking loss [11, 14] and

InfoNCE loss [42,63] to jointly train the exploration branch,

and note the overall loss as LE .

3.3. Dynamic Knowledge Distillation

Although we can directly joint learn the two student

branches, this training process remains two-aspect con-

cerns: (1) Firstly, as we mentioned, the CLIP teacher

model may have huge performance differences on differ-

ent datasets due to their task-specific domain gaps. There-

fore, when the teacher model is of mediocre performance,

how to reduce the impact of the inheritance branch while

strengthen the exploration branch learning is important. (2)

Secondly, it is worth noticing that continuously pushing the

student model to mimic the similarity distribution of the

teacher model during the whole training period may limit

the student model in acquiring the data-specific knowledge.

Based on the above two observations, we propose a dy-

namical learning paradigm to adjust and distill the knowl-

edge learned from the dual branches. The main idea is:

learning more knowledge from the teacher at the beginning

of the training when the knowledge of the teacher is bene-

ficial, while learning more from the on-site data gradually

otherwise when the student model getting stronger. Specifi-

cally, to obtain a more balanced and better distillation result

from the dual-branch learning, a dynamic distillation strat-

egy is introduced. It is devised to tune the hyper-parameter

w in Eq.(7) online during the model training instead of set-

ting it to a fixed constant one like most previous works. At

the beginning of the training, we set a larger initial value to

w to learn more knowledge from the teacher, then we decay

w smoothly according to the training epochs. Formally, w
is computed as:

w = w0g(t), (7)

where w0 is an initial weight, t indicates t-th epoch during

0 20 40 60 80 100
t

0.0

0.2

0.4

0.6

0.8

1.0

g(
t)

Exponential
Linear
Sigmoid

Figure 3. Different decay strategies during the training.

the training, and g(·) is the decay strategy function.

Particularly, inspired by [3, 37], we implement the dy-

namic distillation strategy with three different types of de-

cay strategy functions, and the experiments demonstrate the

results are all promising. As illustrated in Fig. 3, the three

decay strategy functions are:

• Exponential decay: g(t) = kt, where k < 1 is the

factor that control the decay trend.

• Linear decay: g(t) = kt+ b, where k < 0 and b is for

controlling the downward trend of the slash.

• Sigmoid decay: g(t) = k

k+e
t
k

, where k is a hyper-

parameter to control the decay.

3.4. Training and Inference

During the whole framework training, we only optimize

the student model by jointly minimizing the losses of the

inheritance branch and the exploration branch. The overall

training loss L is formulated as:

L = LI + LE . (8)

During the inference, only the student model is utilized

to obtain the retrieval results. Given a video-text pair, we

first calculate their similarities from both inheritance and

exploration branches, resulting in SI(Q, V ) and SE(Q, V ).
The final similarity is computed as:

S(Q, V ) = (1− β)SI(Q, V ) + βSE(Q, V ), (9)

where β is a hyper-parameter to balance the two similari-

ties. Given a textual query, all candidate videos are sorted

in terms of their final similarities with the query.

4. Experiments
4.1. Experimental Setup

4.1.1 Datasets

In order to validate the effectiveness of our model, we

adopt the long untrimmed video datasets ActivityNet Cap-

tions [26] and TVR [27]. Note that the pre-trained CLIP
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Table 1. The effectiveness of dual learning with both inheritance and exploration branches. Our proposed model not only outperforms the

single-branch counterparts but also performs better than simple two-branch baselines.

Branch ActivityNet TVR
Inheritance Exploration R@1 R@5 R@10 R@100 SumR R@1 R@5 R@10 R@100 SumR

� � 7.6 23.4 35.4 76.2 142.6 11.1 28.8 39.3 80.5 159.7

� � 5.9 20.0 32.3 73.7 131.9 11.0 28.5 39.1 81.9 160.6

� � 8.0 25.0 37.5 77.1 147.6 14.4 34.9 45.8 84.9 179.9
Double-Inheritance 6.9 22.4 34.8 75.9 140.0 12.5 31.9 43.0 83.1 170.5

Double-Exploration 6.5 22.4 34.6 75.8 139.3 13.1 32.9 43.4 83.4 173.1

performs well on Activitynet Captions, but mediocrely on

TVR. Here we briefly introduce these two datasets.

ActivityNet Captions [26] is originally developed for

dense video captioning task. As captions are partially rel-

evant with the corresponding videos (a caption is typically

associated with a specific moment in a video), it has been

re-purposed for partially relevant video retrieval. It contains

around 20K videos from YouTube, and the average length

of videos is around 118 seconds. On average, each video

has around 3.7 moments with a corresponding sentence de-

scription. For a fair comparison, we adopt the same data

partition used in [8]. For ease of reference, we refer to the

dataset as ActivityNet.

TV show Retrieval (TVR) [27] is originally developed

for video corpus moment retrieval, and now can be also

used for partially relevant video retrieval. It contains 21.8K

videos collected from 6 TV shows, and the average length

of videos is around 76 seconds. Each video is associated

with 5 natural language sentences that describe a specific

moment in the video. As a moment is typically a part of a

video, sentences are partially relevant to videos. We utilize

the same data partition in [8, 62, 63].

4.1.2 Evaluation Metrics

Following the previous work [8], we utilize the rank-based

metrics, namely R@K (K = 1, 5, 10, 100). R@K stands

for the fraction of queries that correctly retrieve desired

items in the top K of the ranking list. The performance

is reported in percentage (%). The SumR is also utilized as

the overall performance, which is defined as the sum of all

recall scores. Higher scores indicate better performance.

4.1.3 Implementation Details

For the CLIP teacher model, we adopt a Vision Transformer

based ViT-B/32 provided by OpenAI1, and encode video

frames and query sentences to 512-D features. For the stu-

dent model, we directly utilize the video and sentence fea-

tures provided by [8] as the input. For the model training,

we set the initial learning rate to 0.00025 and use the same

1https://github.com/openai/CLIP

learning schedule as [27]. We use the early stop schedule

that the model will stop when the evaluated SumR exceeds

10 epochs without promotion. The maximum number of

epochs is set to 100. We choose exponential decay as the

default one unless otherwise stated, where the initial weight

w0 is 0.1 and the hyper-parameter k in exponential decay is

0.95. During the inference, we empirically set the weights

of the inheritance branch and the exploration branch to 0.3

and 0.7 for similarity fusion. Additionally, we use PyTorch

to build the model framework and train models on NVIDIA

RTX 3090 GPU with a batch size of 128.

4.2. Ablation Studies

4.2.1 Effectiveness of Dual Learning

In order to verify the effectiveness of our proposed dual

learning with both inheritance and exploration branches, we

compare it to the counterparts with the inheritance branch

or exploration branch only. The results on both Activi-

tyNet and TVR are summarized in Table 1. Note that the

teacher model CLIP we used performs pretty well on Ac-

tivityNet, while it performs mediocrely on TVR. On both

datasets, the model with both branches consistently per-

forms the best, which demonstrates the effectiveness of our

proposed dual learning structure with both inheritance and

exploration branches. Especially on TVR where the pre-

trained CLIP only achieves SumR score of 110, the model

using dual learning obtains a relative SumR gain of around

12% when compared to single-branch counterparts, which

is more significant than that on ActivityNet. The result

demonstrates that dual learning is more important when the

teacher model is of mediocre performance.

Additionally, we also try to verify whether the improve-

ments come from the combination of two branches. We

compare our model to the baselines of simply combining

two exploration branches (Dual-exploration) or two inheri-

tance branches (Dual-inheritance) without our dynamic dis-

tillation strategy. Their worse performance compared to

ours demonstrates that the architecture of our dual-branch

exploration and inheritance with the dynamic distillation

contributes a lot to the final performance.
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Table 2. The effectiveness of dynamic knowledge distillation. Note that Fixed indicates the model using knowledge distillation with a fixed

weight during the training.

Branch Distillation
ActivityNet TVR

R@1 R@5 R@10 R@100 SumR R@1 R@5 R@10 R@100 SumR

� 5.9 20.0 32.3 73.7 131.9 11.0 28.5 39.1 81.9 160.6

Single � (Fixed) 7.6 23.4 35.4 76.2 142.6 11.1 28.8 39.3 80.5 159.7

� (Dynamic) 7.5 24.1 36.2 76.0 143.8 12.3 30.3 41.1 82.5 166.1
� 6.8 22.3 34.5 75.6 139.1 13.4 32.9 43.4 83.4 173.1

Dual � (Fixed) 7.7 24.9 36.6 77.1 146.4 14.1 33.1 44.1 84.6 175.9

� (Dynamic) 8.0 25.0 37.5 77.1 147.6 14.4 34.9 45.8 84.9 179.9

4.2.2 Effectiveness of Dynamic Knowledge Distillation

Table 2 shows the ablation study results of dynamic knowl-

edge distillation for both single-branch and dual-branch net-

works. We compare it to the counterparts without any

knowledge distillation or using knowledge distillation with

a fixed weight. The fixed weight is set to 0.1 which is the

same as the initial weight used in our full model. To ease

of reference, we refer to the latter as fixed knowledge dis-

tillation. For the single-branch, we observe a phenomenon

that the fixed knowledge distillation is beneficial on Activ-

ityNet, but it hurts the performance on TVR. It allows us

to conclude that the common knowledge distillation with

a fixed weight is not suitable when the performance of the

teacher model is mediocre. By contrast, on both datasets

our proposed dynamic knowledge distillation consistently

achieves performance gain over the ones without the dis-

tillation. For the dual-branch, the fixed knowledge distil-

lation also consistently improves the performance on both

datasets, but still worse than our dynamic knowledge distil-

lation. The results not only again confirm the effectiveness

of our dual learning with two branches, but also demon-

strate the advantage of the dynamic knowledge distillation.

4.2.3 Influence of Decay Strategies

In this section, we explore three decay strategies with var-

ious initial weights, and also include the model using the

distillation with the fixed weight as the baseline. The results

on ActivityNet and TVR are demonstrated in Fig. 4. On the

whole, the three decay strategies give similar results. Con-

sidering the relatively more stable performance of exponen-

tial decay, we choose it as the default decay strategy. Ad-

ditionally, all three variants with dynamic knowledge dis-

tillation consistently outperform the baseline, which again

confirms the effectiveness of our proposed model. What is

more, we find that dynamic knowledge distillation is much

less sensitive to the initial weight than the baseline. It makes

the dynamic knowledge distillation more appealing, as it al-

leviates the cumbersome efforts of hyper-parameter tuning.
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Figure 4. The influence of decay strategies in our dynamic knowl-

edge distillation. The three decay strategies give comparable per-

formances. Besides, they are not very sensitive to the initial

weight, making them appealing for hyper-parameter tuning. 7

4.3. Comparison with the State-of-the-Art

Table 3 summarizes the comparison results with other

methods on ActivityNet. Our proposed model outperforms

all the competitor models with clear margins. Among all

methods, only our model utilizes the knowledge distillation,

the results justify the viability of using the knowledge dis-

tillation for partially relevant video retrieval. In addition, al-

though the previous best-performing model MS-SL also uti-

lizes two branches, their two branches solely learn from the

training data without extra knowledge. By contrast, in our

model with the dual learning paradigm where one branch
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Table 3. Performance comparison on ActivityNet. Models are

sorted in ascending order in terms of their overall performance.

Model R@1 R@5 R@10 R@100 SumR
W2VV [9] 2.2 9.5 16.6 45.5 73.8

HTM [43] 3.7 13.7 22.3 66.2 105.9

HGR [6] 4.0 15.0 24.8 63.2 107.0

RIVRL [12] 5.2 18.0 28.2 66.4 117.8

VSE++ [14] 4.9 17.7 28.2 67.1 117.9

DE++ [11] 5.3 18.4 29.2 68.0 121.0

DE [10] 5.6 18.8 29.4 67.8 121.7

W2VV++ [28] 5.4 18.7 29.7 68.8 122.6

CE [35] 5.5 19.1 29.9 71.1 125.6

ReLoCLNet [63] 5.7 18.9 30.0 72.0 126.6

XML [27] 5.3 19.4 30.6 73.1 128.4

MS-SL [8] 7.1 22.5 34.7 75.8 140.1

DL-DKD (Ours) 8.0 25.0 37.5 77.1 147.6

Table 4. Performance comparison on the TVR dataset.

Model R@1 R@5 R@10 R@100 SumR
W2VV [9] 2.6 5.6 7.5 20.6 36.3

HGR [6] 1.7 4.9 8.3 35.2 50.1

HTM [43] 3.8 12.0 19.1 63.2 98.2

CE [35] 3.7 12.8 20.1 64.5 101.1

W2VV++ [28] 5.0 14.7 21.7 61.8 103.2

VSE++ [14] 7.5 19.9 27.7 66.0 121.1

DE [10] 7.6 20.1 28.1 67.6 123.4

DE++ [11] 8.8 21.9 30.2 67.4 128.3

RIVRL [12] 9.4 23.4 32.2 70.6 135.6

XML [27] 10.0 26.5 37.3 81.3 155.1

ReLoCLNet [63] 10.7 28.1 38.1 80.3 157.1

MS-SL [8] 13.5 32.1 43.4 83.4 172.4

DL-DKD (Ours) 14.4 34.9 45.8 84.9 179.9

mainly learns from the teacher model and the other learns

from the training data. The better performance of our model

demonstrates the effectiveness of our proposed dual learn-

ing paradigm. Table 4 demonstrates the results on TVR,

where our proposed model still performs the best in terms

of all metrics.

Thus far all the comparisons are holistic. To gain a more

fine-grained comparison, we group the test queries accord-

ing to their moment-to-video ratio (M/V) [8]. M/V of the

query is defined as its relevant moment’s length ratio in the

entire video. The smaller M/V indicates less relevant con-

tent while more irrelevant content in the target video with

respect to the query, showing more challenging of the cor-

responding queries. Fig. 5 demonstrates the results on Ac-

tivieyNet and TVR. Our proposed model consistently per-

forms the best, which again verifies its effectiveness. Ad-

ditionally, for each competitor model, they usually perform

worse in the group of lower M/V than that of higher M/V.
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Figure 5. Performance of different models on different types of

queries. Queries are grouped according to their M/V. The smaller

M/V indicates more challenging of queries.

Table 5. Performance with different teacher models. Our proposed

framework supports various teacher models, and also allows for

distilling for multiple teachers jointly.

Dataset Teacher R@1 R@5 R@10 R@100 SumR

ActivityNet
CLIP 8.0 25.0 37.5 77.1 147.6

TCL 7.3 24.1 36.2 76.4 144.0

CLIP+TCL 8.1 25.3 37.7 77.6 148.6

TVR
CLIP 14.4 34.9 45.8 84.9 179.9

TCL 13.5 33.1 44.6 84.1 175.3

CLIP+TCL 15.1 35.4 46.5 84.5 181.6

By contrast, our proposed model achieves more balanced

performance in all groups, which shows that our model is

less sensitive to irrelevant content in videos.

4.4. Extension to Multi-Teacher Distillation

While the focus of our work in the Method Section is

only the single-teacher distillation, it is natural to consider

whether the framework can be extended to multi-teacher

distillation. Therefore, we adopt another vision-language

pre-training model TCL [57] as an extra teacher model. As

shown in Table 5, utilizing TCL as the teacher model still

gives better performance than the previous state-of-the-art

works. Additionally, with the joint use of CLIP and TCL as

teacher models (their output distributions are fused by sim-

ple summation), it brings a further performance boost over

the single-teacher distillation. We believe this extension

may be useful in scenarios where various vision-language

pre-training models are available during training.
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4.5. Complementarity between the two branches

Recall that our proposed model consists of an inheri-

tance branch and an exploration branch, here we explore

their complementarity. We measure the complementar-

ity via Pearson correlation coefficient between the simi-

larity distributions of two branches, i.e., Ct and Cs. Be-

sides our model, we also compute the correlation coeffi-

cient of the common two-branch baseline without distilla-

tion (i.e. Double-Exploration). On the ActivityNet dataset,

our model achieves a coefficient of 0.622, while the base-

line obtains a coefficient of 0.749. Note that the lower co-

efficient indicates the less correlated between two branches

and more complementary. The result demonstrates that the

two branches of our model are more complementary, which

to some extent illustrates why our model is better than the

two-branch baseline.

5. Conclusions
In this paper, we have investigated the meaningful but

challenging text-to-video subtask of PRVR from a new per-

spective of knowledge distillation. A novel framework, i.e.,

KL-DKD, has been proposed to distill the generalization

knowledge from the large-scale vision-language pre-trained

model to a task-specific network. Extensive experiments

on both ActivityNet and TVR datasets support the follow-

ing conclusions: (1) Dual learning of an inheritance branch

and an exploration branch is necessary for knowledge dis-

tillation. (2) Besides, the dynamic knowledge distillation

further improves performance, especially when the teacher

model is of mediocre performance. (3) For state-of-the-art

performance, we recommend dual learning with dynamic

knowledge distillation for PRVR.
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