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Abstract

Mixed-Precision Quantization (MQ) can achieve a com-
petitive accuracy-complexity trade-off for models. Con-
ventional training-based search methods require time-
consuming candidate training to search optimized per-layer
bit-width configurations in MQ. Recently, some training-
free approaches have presented various MQ proxies and
significantly improve search efficiency. However, the cor-
relation between these proxies and quantization accuracy
is poorly understood. To address the gap, we first build the
MQ-Bench-101, which involves different bit configurations
and quantization results. Then, we observe that the exist-
ing training-free proxies perform weak correlations on the
MQ-Bench-101. To efficiently seek superior proxies, we de-
velop an automatic search of proxies framework for MQ via
evolving algorithms. In particular, we devise an elaborate
search space involving the existing proxies and perform an
evolution search to discover the best correlated MQ proxy.
We proposed a diversity-prompting selection strategy and
compatibility screening protocol to avoid premature con-
vergence and improve search efficiency. In this way, our
Evolving proxies for Mixed-precision Quantization (EMQ)
framework allows the auto-generation of proxies without
heavy tuning and expert knowledge. Extensive experiments
on ImageNet with various ResNet and MobileNet families
demonstrate that our EMQ obtains superior performance
than state-of-the-art mixed-precision methods at a signifi-
cantly reduced cost. The code will be released.

1. Introduction
Deep Neural Networks (DNNs) have demonstrated out-

standing performance on various vision tasks [20, 25].
However, their deployment on edge devices is challeng-
ing due to high memory consumption and computation cost
[14]. Quantization techniques [19, 6, 8] have emerged as
a promising solution to address this challenge by perform-
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Figure 1. Illustration of the search space for EMQ. Our pro-
posed search space encompasses the handcrafted proxies in mixed-
precision quantization, whose input sources are activation(A), gra-
dient (G), weight(W), Hessian(H), as well as their combinations
(e.g., G×W ). The proposed search space highlights the extensive
range of possible combinations, emphasizing the significant effort
required to discover new MQ proxies.

ing computation and storing tensors at lower bit-widths than
floating point precision, and thus speed up inference and re-
duce the memory footprint.

Mixed-precision quantization (MQ) [40, 18, 10, 12, 8,
13] is a technique that assigns different bit-widths to the
layers of a neural network to achieve a better accuracy-
complexity trade-off and allows for the full exploitation of
the redundancy and representative capacity of each layer.
MQ methods can be categorized into training-based and
training-free approaches. Training-based methods for MQ
present it as a combinatorial search problem and adopt time-
consuming Reinforcement Learning (RL) [40], Evolution
Algorithm (EA) [41], one-shot [16], or gradient-based [42]
methods to find the optimal bit-precision setting. How-
ever, these methods can be computationally intensive and
require several GPU days on ImageNet [40, 3], limiting
their applicability in scenarios with limited computing re-
sources or high real-time requirements. Recently, training-
free approaches [35, 28, 36, 8, 7, 21] have emerged for
mixed-precision quantization, which starkly reduces the
heavy computation burden. These approaches aim to re-
duce the computational burden by building alternative prox-
ies to rank candidate bit-width configurations. For exam-
ple, QE [35] uses the entropy value of features to automat-
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ically select the bit-precision of each layer. These training-
free methods have shown commendable effectiveness in as-
signing bit-precision to each layer in MQ. However, these
training-free methods [8, 7, 44, 35, 28] have two signifi-
cant limitations: (i) Lack of correlation analysis between
training-free proxies and quantization accuracy. For in-
stance, HAWQ-V2 [7] report quantitative results, which
couple with quantified strategies and proxies. Thus, it is
still unclear whether they can accurately predict the per-
formance of different bit configurations. (ii) The discovery
processes for proxies require expert knowledge and exten-
sive trial tuning, which might not fully exploit the potential
of training-free proxies. These limitations raise two funda-
mental but critical questions: (1) How can we accurately
assess the predictive capability of existing proxies? and (2)
How can we efficiently devise new proxies?

To address the first question, we develop a benchmark,
namely, MQ-Bench-101, which comprises numerous bit
configurations using the post training quantization strategy.
Using this benchmark, we evaluated the performance of
several existing training-free proxies, as reported in Tab. 1.
Our results demonstrate that the current proxies exhibit lim-
ited predictive capabilities. Moreover, we attempt the prox-
ies in training-free NAS and observe that the proxies require
bit-weighting for effective quantification [8]. These obser-
vations1 motivate us to devise improved proxies for MQ.

As for the second question, we present a general frame-
work, Evolving proxies for Mixed-precision Quantiza-
tion (EMQ), whose aim is to use a reformative evolving
algorithm to automate the discovery of MQ proxies. Specif-
ically, we devise an elaborate and expressive search space
encompassing all existing MQ proxies. As shown in Fig. 2,
we formula MQ proxies as branched computation graphs
composed of primitive operations and evolve them accord-
ing to their predictive ability on MQ-Bench-101. We notice
the importance of the ranking consistency of the top per-
forming bit-widths rather than the overall rank consistency.
To better account for the correlation of the top bit config-
urations, we introduce Spearman@topk(ρs@k) as the fit-
ness function. To avoid premature convergence and im-
prove search efficiency of the evolution process, we pro-
posed the diversity-prompting selection strategy and com-
patibility screening protocol, respectively. We validate our
framework on quantization-aware training and post-training
quantization tasks. The experiments show that our searched
MQ proxy is superior to the existing proxies in predictive
capacity and quantization accuracy.

Main Contributions:

1There are two routines for proxies in MQ: scoring bit configurations
as a whole and evaluating layer-wise sensitivity separately. In this paper,
we focus on tackling the former and compare both methods in experiments
that are discussed in detail in the App. D.1

Table 1. Ranking correlation (%) of training-free proxies on MQ-
Bench-101. The Spearman@topk(ρs@k) are adopted to measure
the correlation of the top performing bit configurations on MQ-
Bench-101. We reported the mean and std of ρs@k of 5 runs for all
MQ proxies. All implementations are based on the official source
code. The ’Time’ column indicates the evaluation time (in sec-
onds) for each bit-width configuration.

Method ρs@20% ρs@50% ρs@100% Time(s)

BParams 28.67±0.24 32.41±0.07 55.08±0.13 2.59
HAWQ [8] 23.64±0.13 36.21±0.09 60.47±0.07 53.76
HAWQ-V2 [7] 30.19±0.14 44.12±0.15 74.75±0.05 42.17
OMPQ [28] 7.88±0.16 16.38±0.08 31.07±0.03 53.76
QE [35] 20.33±0.09 24.37±0.13 36.50±0.06 2.15
SNIP [21] 33.63±0.20 17.23±0.09 38.48±0.09 2.50
Synflow [37] 39.92±0.09 44.10±0.11 31.57±0.02 2.23
EMQ(Ours) 42.59±0.09 57.21±0.05 79.21±0.05 1.02

• We introduce MQ-Bench-101, the first benchmark for
training-free proxies in mixed-precision quantization
(Sec. 4.2).

• We propose Evolving training-free proxies for Mixed-
precision Quantization (EMQ) framework, which in-
cludes the diversity-prompting selection to prevent
premature convergence and the compatibility screen-
ing protocol to improve the evolution search efficiency
(Sec. 3).

• Experimental results demonstrate the superiority of the
searched MQ proxy, indicating the effectiveness and
flexibility of our proposed approach (Sec. 4).

2. Related Work
2.1. Mixed-precision Quantization

Quantization [30, 17, 32, 5] has been widely investi-
gated as an effective technique to accelerate the inference
phase of neural networks by converting 32-bit floating-point
weight/activation parameters into low-precision fixed-point
values. However, the contribution of each layer to the over-
all performance is to varying extents, and mixed-precision
quantization [40, 27, 42, 46, 8, 7, 2] has been proposed to
achieve a better trade-off between accuracy and complex-
ity by assigning different bit-precision to different layers.
Existing mixed-precision quantization methods can be clas-
sified into four categories: reinforcement learning-based
approaches [27, 40, 9], evolutionary algorithm-based ap-
proaches [41], one-shot approaches [42, 18, 13] (includ-
ing differentiable search approaches), and zero-shot ap-
proaches [8, 7, 35, 28] (also known as heuristic-based
methods). Reinforcement learning-based approaches [40]
use hardware feedback to search the bit-precision in dis-
crete space. Evolutionary algorithm-based approaches [41]
jointly search the pruning ratio, the bitwidth, and the ar-
chitecture of the lightweight model from a hypernet. How-
ever, these search-based methods require an extremely large
amount of computational resources and are time-consuming
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due to the exponential search space. One-shot methods,
such as DNAS [42] and Adabits [18], alleviate the search-
ing problem greatly by constructing a supernet or hypernet
where each layer consists of a linear combination or paral-
lel blocks of outputs of different bit-precisions, respectively.
Nevertheless, a differentiable search for mixed-precision
quantization [42, 13] still needs a large amount of time due
to the optimization of the large hypernet.

To address the bit-precision selection issue, heuristic
criterion-based methods utilize zero-cost quantization prox-
ies to rank the importance of layers. One approach is the
Hessian-based quantization framework, which uses second-
order information as the sensitivity metric. For instance,
HAWQ [8] measures the sensitivity of each layer using
the top Hessian eigenvalue and manually selects the bit-
precision based on the relative sensitivity. HAWQ-V2 [7]
proves that the average Hessian trace is a better sensitiv-
ity metric and proposes a Pareto frontier-based method for
automatic bit-precision selection. Zero-cost proxies are
also developed to handle mixed-precision quantization. QE
Score [35] evaluates the entropy of the last output fea-
ture map without training, representing the expressiveness.
OMPQ [28] proposes an Orthogonality Metric (ORM) that
incorporates function orthogonality into neural networks
and uses it to find an optimal bit configuration without any
searching iterations.

These hand-crafted proxies used in previous works re-
quire expert knowledge and are often computationally inef-
ficient [8, 7, 28]. These works suffer from major limitations.
First, estimating the average Hessian trace using an implicit
iterative approach based on the matrix-free Hutchinson al-
gorithm [1] can lead to computational excesses and unstable
iterative results. Second, the automatic bit-precision selec-
tion can only yield sub-optimal solutions, as the constraint
space of the optimization problem is limited. For example,
HAWQ-V2 [7] considers only one constraint on memory
footprint when drawing the Pareto frontier of accuracy per-
turbation and model size, limiting the solutions to local op-
tima in low-dimensional spaces. To overcome these chal-
lenges, we commence by automatically searching for the
most effective training-free quantization proxy, capable of
achieving competitive results with hand-crafted solutions.

2.2. Zero-cost Proxies for NAS

Recently, research has been focused on zero-shot/zero-
cost neural architecture search (NAS), which estimates the
performance of network architectures using zero-cost prox-
ies based on small batches of data. Zero-shot NAS out-
performs early NAS since it can estimate model perfor-
mance without the need for complete training and training
of super-networks in a single NAS, and without the need
for forward and backward propagation of neural networks,
which makes the entire process cost negligible. Zero-shot

NAS is classified into architecture-level and parameter-level
zero-shot NAS. Architecture-level zero-shot NAS evaluates
the discriminative power of different architectures through
inference. For example, NWOT [29] found that better-
performing models can better distinguish the local Jacobian
values of different images and proposed an indicator based
on the correlation of input Jacobian for evaluating model
performance. Parameter-level zero-cost NAS aims to eval-
uate and prune redundant parameters from neural networks.
Several indicators have been proposed for this purpose, in-
cluding GradNorm [31], Plain [31], SNIP [21], GraSP [39],
etc. While both aim to alleviate the computational burden of
traditional NAS, parameter-level zero-shot NAS has gained
more attention due to its similarity with existing MQ prox-
ies. Zero-cost proxies operate at the parameter level and are
useful in measuring the sensitivity of each layer in a neu-
ral network. Parameter-level zero-cost proxies offer a more
fine-grained approach to evaluating the performance of dif-
ferent network architectures, which can be used to optimize
the overall performance of the system. Inspired by the ex-
isting MQ proxies, we adopt the zero-cost proxies in neural
architecture search to measure the sensitivity of each layer
by weighting the bit-width.

2.3. Revisiting Training-free Proxies

Mixed-precision quantization [40, 27, 42, 46, 8, 7, 2]
aims to optimize the bit-width of each layer in a neu-
ral network to strike a balance between accuracy and effi-
ciency. To achieve this, the mixed-precision quantization
task can be formulated as a search for the best bit-width us-
ing training-free proxies. The search objective function is
written as the following bi-level optimization form:

min
Q

Lval(W
∗(Q),Q)

s.t. W ∗(Q) = argmin Ltrain(W ,Q)

Ω(Q) ⩽ Ω0 (1)
where W refers to the quantized network weights, while
Q denotes the quantization policy that assigns different bit-
widths to weights and activations in various layers of the
network. The computational complexity of the compressed
network with the quantization policy Q is represented by
Ω(Q). The task loss on the training and validation data is
denoted by Ltrain and Lval, respectively. The resource
constraint of the deployment platform is represented by Ω0.
In order to obtain the optimal mixed-precision networks, the
quantization policy Q and the network weights W (Q) are
alternatively optimized until convergence or the maximal
iteration number. However, training-free approaches [35,
28] take different routine. we formula the problem as:

Q∗ = max
Q

ρ(Q),Q ∈ S (2)

where Q∗ denotes the best MQ proxy in the search space
S and ρ denotes the rank consistency of Q. Given a neural
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network of L layers, the MQ proxy can measure the sensi-
tivity of i-th layer by Q∗(θi). Then, the objective function
is:

b∗ = max
b

L∑
i=1

(bi ×Q∗(θj)) , s.t.

L∑
i=0

M (bi) ≤ Ω0. (3)

where M (bi) denotes the model size of the i-th layer under
bi bit quantization and b∗ represents the optimal bit-width
configuration under the constraint of Ω0.

To dive into the design of training-free proxies, we sum-
marizes the existing MQ proxies in Tab. 2, which include
the training-free proxies in neural architecture search [21,
36] and mixed precision quantization proxies [35, 28, 8, 7].
The proxies are categorized based on four types of network
statistics as follows: (1) Hessian as input: HAWQ [8]
employ the highest Hessian spectrum as the MQ proxy in
Eqn. 2, where H is the Hessian matrix and λi(H) is the i-th
eigenvalue of H . HAWQ-V2 [7] adopt the average Hessian
trace as proxy in Eqn. 2, where tr(Hi) denotes the trace of
Hi. (2) Activation as input: OMPQ [28] take the activation
{z}Ni from the the i-th layer as input in Eqn. 2, where || · ||F
denotes the Frobenius norm. QE [35] take the variance of
the activation σ2

act as input in Eqn. 2, where Cl represents
the product of the kernel size Kl and input channel number
Cl−1 for layer l. Fisher [38] take the activation z as input in
Eqn. 2. (3) Gradient as input: The formula of SNIP [21]
is shown in Eqn. 2, where L is the loss function of a neural
network with parameters θ, and ⊙ is the Hadamard product.
Synflow [37] take the weight θ and gradient ∂R

∂θ as input but
do not require any data. (4) Weight as input: Plain [31],
SNIP [21], and Synflow [36] employ the weights as input,
as depicted in Eqn. 2, Eqn. 2, and Eqn. 2. For more related
work, please refer to App. A.

3. EMQ Framework

3.1. EMQ Search Space Design

To ensure the effectiveness and flexibility of our search
space, we devise a comprehensive set of primitives that
goes beyond the simple combinations of existing MQ prox-
ies. Our search space comprises four input types, 56 primi-
tive operations, and three types of computation graphs. We
can construct existing MQ proxies by leveraging these ele-
ments, as depicted in Fig. 1. The abundance of operations
in our search space enables us to explore a wide range of
possible proxies and discover potential ones that previous
handcrafted approaches may have overlooked.
Network Statistics as Input. As depicted in Fig. 1 and
Tab. 2, the EMQ search space incorporates four distinct
input types: activation, gradient, weight, and Hessian of
convolutional layers, providing a comprehensive founda-
tion of the sensitivity of each layer. Activation represent
the feature map of a convolutional layer, while weight de-

Table 2. Revisiting mainstream handcrafted training-free proxies
for mixed-precision quantization. The proxies are categorized
based on four types of network statistics: Hessian matrix (denoted
as “H”), activation (denoted as “A”), gradient (denoted as “G”),
and weights (denoted as “W”).

Type MQ Proxy Formula

H HAWQ [8] spectrum(H) = max
i

{λi(H)}

HAWQ-V2 [7] trace(H) =
1

n

n∑
i=1

tr(Hi)

A OMPQ [28] orm(z) =
||zTj zi||2z

||zTi zi||2z||zTj zj ||2z

QE [35] qe(σact) =

L∑
l=1

log

[
Clσ

2σ2
act

σ2
act

]
+ log(σ2

act)

G&A Fisher [38] fisher(z) =
∑
zi∈z

(
∂L
∂z

z

)2

G&W
Plain [31] plain(θ) =

∂L
∂θ

⊙ θ

SNIP [21] snip(θ) =

∣∣∣∣∂L∂θ ⊙ θ

∣∣∣∣
Synflow [37] synflow(θ) =

∂R
∂θ

⊙ θ,R = 1T

(∏
θi∈θ

|θi|

)
1

note the weight of each convolutional layer. Gradient and
Hessian matrix are the first and second derivatives of the
loss function with respect to the convolution parameters, re-
spectively. By combining these inputs with a diverse set of
operations, the search algorithm can explore a vast search
space and discover novel MQ proxies.
Primitive Operations. We employ a set of primitive op-
erations encompassing both unary and binary operations to
effectively process the neural network statistics. To ensure
that the search space is sufficiently expressive and encom-
passes the existing MQ proxies, it is imperative to develop
a varied range of operations. Inspired by AutoML-based
methods [34, 11, 26], we provide a total of 24 unary oper-
ations and four binary operations to form the EMQ search
space. Since the intermediate variables can be scalar or ma-
trix, the total number of operations is 56. To efficiently ag-
gregate information from different types of input, we pro-
pose aggregation functions to produce the final scalar out-
put of the computation graph. The opulence of operations in
the EMQ framework serves as the cornerstone to construct
a diverse and expressive search space that can effectively
capture the essence of MQ proxies and yield high-quality
solutions. The Appendix F describes all the primitive oper-
ations in our search space.
Proxy as Computation Graph. We present each MQ
proxy as a computation graph, which can be classified into
three structures: sequential structure, branched structure,
and Directed Acyclic Graph (DAG) based structure. The
sequential structure is a fundamental computation graph,
comprising a sequence of nodes with only one input. The
branched structure is a hierarchical data structure composed
of only one branch with two inputs, as shown in Fig. 2. It

17079



Parent

Compatibility Screening Protocol

Population

Next Generation

Tournament
Selection 

CrossOverMutation

MQ-Bench-101
Evaluation

Rank Consistency=0.68

Operation
Sampling

Prioritization

Equivalent 
Checking

Early 
Rejection

Abs Norm

Invert No

Add

Output

Pow

Log Exp

Add

No

Output

Norm

Log Exp

Add

No

Output

Pow

Log Softmax

Add

No

Output

Abs Norm

Invert No

Add

Output

Pow

Log Exp

Add

No

Output

L1 Sqrt

Exp No

Mul

Output

Abs Norm

Invert No

Add

Output

Pow

Log Exp

Add

No

Output

L1 Sqrt

Exp No

Add

Output

Norm

Log Exp

Add

No

Output

Step1Step2

Step3

Step4

Input Node

Unary OP

Binary OP

Offspring

Diversity
Prompting
Selection

Pass

Output Node

Spearman@topk

Figure 2. Overview of the Evolving training-free proxies for Mixed-precision Quantization (EMQ) framework. The framework involves
four main steps: sampling a population of |P| candidate proxies from the EMQ search space using operation sampling prioritization (Step
1); generating parent proxies through tournament selection (Step 2); producing offspring via crossover, mutation, diversity-prompting se-
lection and compatibility screening protocol (Step 3); and evaluating the offspring on the MQ-Bench-101 to measure the Spearman@topk
as the fitness function (Step 4).

offers a more potent representational capacity than the se-
quential structure. The DAG-based structure is most com-
plex and expressive one, which allows for representing in-
tricate dependencies between nodes. Each intermediate
node is computed based on all of its predecessors, making
it highly expressive yet complex. However, the intensive
computation may suffer from sparsity resulting from di-
mension incompatibility issue or mathematical errors. Due
to the trade-off between expressive ability and complexity,
we predominantly utilize branched structure in the EMQ
framework. For more details, please refer to the App. C.

Sparsity of the Search Space. We measure the sparsity of
a search space using the validity rate metric, which repre-
sents the ratio between the number of valid proxies and the
total number of sampled proxies. As shown in Tab. 3, the
DAG-based structure achieves a validity rate of only 5.4%,
indicating the sparsity of this search space. The sparsity
can be attributed to the dimension incompatibility problem
and the mathematical invalidity, which presents a challenge
when searching for an effective proxy for EMQ. The di-
mension incompatibility issue arises from the fact that the
input tensors for each proxy may have different dimensions,
which not all operations can accommodate. The mathemat-
ical invalidity issue arises due to conflicting requirements
of various operations, leading to violations of fundamental
mathematical principles in the proxy representation. To en-
hance the validity rate of the search space and to improve
the effectiveness of EMQ, it is crucial to address these chal-
lenges.

3.2. Evolutionary Framework

Inspired by AutoLoss-Zero [23] and AutoML-Zero[34],
we introduce the Evolving proxies for Mixed-precision
Quantization (EMQ) search algorithm. As depicted in
Fig. 2 and Alg. 1, the EMQ pipeline involves several crucial
steps. Firstly, we sample |P| candidate MQ proxies from
the search space via operation sampling prioritization strat-
egy. In each evolution, we select two parent proxies using
tournament selections with a selection ratio of r. The par-
ents then undergo crossover and mutation with probability
pc and pm, respectively, to produce offspring. To prevent
premature convergence, we propose a diversity-prompting
selection (DPS) method to introduce diversity into the pop-
ulation and avoid population degradation. We also employ
compatibility screening protocol to ensure the quality of the
offspring before evaluating them on MQ-Bench-101. We
adopt Spearman@topk as the fitness function to better cor-
relate with the top performing bit-widths. Finally, we only
preserve the top-performing proxies within the population
at each iteration. This process is repeated to identify the
promising proxy for N generations.
Diversity-prompting Selection To introduce diversity into
the population and prevent premature convergence, we im-
plemented a diversity-prompting selection method. Instead
of directly adding the offspring into the population, we em-
ploy additional random proxies and select the proxy with
better performance in the population. There are mainly
two benefits: (1) It can explore more candidate proxies
with a very small population size and prevent premature
convergence. (2) By selecting the best-performing indi-
vidual among the newly generated individuals and the ran-
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Algorithm 1 Evolution Search for EMQ
Input: Search space S, population P , sample ratio r, sampling
pool Q, top-k k, selection ratio r, max iteration N .
Output: Best MQ proxy with highest ρs@k.

1: Initialize sampling pool Q := ∅;
2: P0 := Initialize population(Pi) with SOP;
3: for i = 1 : N do
4: Clear sampling pool Q := ∅;
5: Randomly select r × P subnets P̂i ∈ P to get Q;
6: Candidates {Ai}k := GetTopk(Q, k);
7: Parent A1

i , A
2
i := RandomSelect({Ai}k);

8: Crossover Ac
i := CrossOver(A1

i , A
2
i ) with probability pc;

9: Mutate Am
i := MUTATE(Ac

i ) with probability pm;
10: Randomly sample An

i from S with OSP;
11: // Diversity-prompting selection.
12: if ρs@k(A

n
i ) ≤ ρs@k(A

m
i ) then

13: Select Am
i as offspring Ao

i ;
14: else
15: Select An

i as offspring Ao
i ;

16: end if
17: // Compatibility screening protocol.
18: if CSP(Ao

i ) is true then
19: Append Ao

i to P ;
20: else
21: Perform line 7;
22: end if
23: Remove the proxy with the lowest ρs@k;
24: end for

dom individual, the evolution algorithm can converge more
quickly and efficiently to an optimal solution.
Spearman@topk as Fitness All individuals are evaluated
for rank consistency to determine the fitness function in
the EMQ evolutionary algorithm. Intuitively, the correla-
tion of the top-performing bit configurations outweigh the
overall rank consistency, because we prioritize the ability to
find the optimal bit configuration. To address this, we de-
vise the Spearman@topk coefficient, which is based on the
vanilla Spearman coefficient but focuses only on the top-k
performing bit-widths. We denote the number of candidate
bit-widths as M , the ranking of ground-truth (GT) perfor-
mance and estimated score (ES) of bit-widths {bi}Mi=1 are
{pi}Mi=1 and {qi}Mi=1, respectively.

ρs@k = 1−
6
∑

i∈Dk
(pi − qi)

2

k(k2 − 1)
(4)

where ρs@k is the Spearman coefficient computed on the
top-k performing bit-widths based on the GT performance,
and Dk is the set of indices of the top-k performing bit-
widths based on GT performance Dk = {i|pi < k ×N}.
Compatibility Screening Protocol To address the spar-
sity issues, we propose Compatibility Screening Protocol
(CSP), which includes the equivalent checking and early re-
jection strategy. Equivalent checking identify distinct struc-

tures that are mathematically equivalent, thereby reducing
redundant computation. For branched structure, equiva-
lent checking involves the de-isomorphic process, which
employ the Weisfeiler-Lehman Test [22] to filter out the
equivalent structures. For more details, please refer to the
App. D.2. The early rejection strategy aims to efficiently
filter out invalid MQ proxies. By leveraging the character-
istics of MQ proxies, the early rejection strategy employs
meticulous techniques to identify and discard invalid prox-
ies before performing a full evaluation on the MQ-Bench-
101. This strategy significantly reduce the time cost of
the evolution process or accelerate the convergence of the
evolving algorithm. The early rejection strategy comprises
three techniques: sensitivity perception, conflict awareness,
and naive invalid check. Sensitivity perception refers to
the ability of a proxy to percept whether it is insensitive to
the varying of bit-widths, which denotes the incapable of
measuring different bit-width and can be rejected at early
stage. Conflict awareness allows for the identification of
conflicting operations during the search process. For in-
stance, the invert operation is in conflict with itself, as
is the revert operation. For more detail please refer to
App. D.3. Naive Invalid Check technique is employed
to determine if the estimated score of a proxy is one of
{−1, 1, 0,nan, inf }, indicating that it is indistinguishable.
Consequently, such proxies can be rejected at an early stage.
For more details, please refer to App. D.4.
Operation Sampling Prioritization When searching for
MQ proxies, random operation sampling results in a large
number of invalid candidates. To mitigate this issue, we
propose Operation Sampling Prioritization (OSP), which
assigns different probabilities to different operations. For
unary operations, we assign a higher probability to the
no op operation to sparsify the search space. For bi-
nary operations, we assign a higher probability to the
element wise add operation to ensure that most cases can
function well. The proposed OSP can effectively reduce the
number of invalid candidates and improve the efficiency of
the search process.

3.3. Effectiveness of EMQ

Searched Training-Free Proxy Here is the formula of the
searched MQ proxy:

emq(θ) = log(|∂R
∂θ

|)

√ ∑n
i=1 |θi|

numel(θ) + ϵ
(5)

where numel(θ) =
∏n

i=1 di and it denotes the total num-
ber of elements in the weight θ, and di is the size of the i-th
dimension. The R = 1T

(∏
θi∈θ |θi|

)
1 denotes synaptic

flow loss proposed in Synflow [36]. The input type of pro-
posed proxy is similar to existing MQ proxies [21, 31, 36].
It comprises two components: the logarithm of the absolute
value of the derivative of the scalar loss function R, and the
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Figure 3. Left: Correlation between the searched EMQ proxy and
the quantization accuracy. Right: Correlation between the model
size and quantization accuracy.

Figure 4. Left: Comparison of the evolutionary search and ran-
dom search processes, with diversity-prompting selection strat-
egy, denoted as “DPS”. Right: Comparison between sequential,
branched, and DAG-based structures during the evolution search.

square root of the normalized of the absolute values of the
weight θ. Table 1 illustrates the effectiveness of our pro-
posed EMQ, which outperforms the ρs@100% of SNIP [21]
and Synflow [36] by a substantial margin of 40.73% and
47.64% ↑, respectively. Additionally, EMQ takes less time
to evaluate one bit configuration (about ×2 faster).
Correlation of the Searched EMQ Proxy To evaluate the
predictive capability of our searched MQ proxy, we mea-
sure the ranking correlation between the searched MQ prox-
ies and the accuracy for bit configurations on MQ-Bench-
101. The correlation of the searched EMQ proxy with quan-
tization accuracy is exhibited in Fig. 3. The figure on the
left demonstrates an obvious positive correlation between
our searched EMQ method and quantization accuracy, with
a Spearman correlation coefficient of 76%. The color bar in
the figure indicates the corresponding model size of the bit
configuration. Conversely, the figure on the right indicates a
weak correlation between model size and quantization accu-
racy, with a Spearman correlation coefficient of only 48%.
The results suggest that the EMQ proxy has significantly
better predictive capability than the baseline (model size as
proxy) by a large margin of 28% ↑.
Superiority of Branched Structure We present a compar-
ative analysis of the efficiency of three distinct structures:
sequential, branched, and DAG-based structure. We assess
the validity rate of each search space and investigate the
impact of Operation Sampling Prioritization (OSP). Tab. 3
reveals that the sequential structure has the highest valid-
ity rate (41.7%) due to the simplicity of its computation
graph. Nonetheless, this simplicity limits its expressive-
ness. The DAG-based structure is theoretically the most

Table 3. Validity rate of different search spaces. After applying the
operation sampling prioritization strategy, the validity rate of the
search spaces is prompted.

Computation Graph w/o OSP (%) w/ OSP (%)

Sequential structure 41.70 45.85
Branched structure 26.40 36.45
DAG-based structure 5.40 6.50

expressive search space, but it suffers from a lower validity
rate (5.4%), which leads to slower convergence and higher
computational costs. As shown in the right of Fig. 4, we
observe that the DAG-based structure fails to achieve bet-
ter performance, while the sequential structure is trapped in
premature convergence due to the lower expressiveness of
the search space. In contrast, the branched structure bal-
ances expressiveness and computational complexity. With
two inputs, the branched structure search space can cover
most of the existing MQ proxies and achieve a higher valid-
ity rate. For further details, please refer to the App. C.

4. Experiments

4.1. Implementation Details

Datasets We perform experiments on the ImageNet dataset,
which includes 1.2 million training samples and 50, 000
validation samples. A total of 64 training samples are ran-
domly selected and the data augmentation techniques used
are consistent with those employed in ResNet [15].
Evolution Settings In the evolutionary search process, we
employ a population size of |P| = 20, and the total num-
ber of iteration N is set to 1000. The selection ratio r for
tournament selection is set to 0.25, and the probabilities of
crossover and mutation, pc and pm, are set to 0.5. If the
offspring pass the CSP, we randomly sample 50 bit con-
figurations from MQ-Bench-101 and measure the ranking
consistency of the offspring. To determine fitness, we cal-
culated the average of ρs@20%, ρs@50%, and ρs@100% as the
fitness function. During the evolution search, EMQ is ex-
tremely efficient, which only needs one NVIDIA RTX 3090
GPU and a single Intel(R) Xeon(R) Gold 5218 CPU. It only
occupies the memory footprint of only one neural network
during the evolution process.
Bit Assignment with Proxy After obtaining the searched
EMQ proxy, we employ it to perform bit assignment by
selecting the bit configuration with the highest MQ proxy
score. Specifically, we first randomly sample a large num-
ber of candidate bit-widths that satisfy the model size con-
straints. We then traverse these candidate bit-widths and
select the one with the highest score as the final bit assign-
ment. The process of performing bit assignment is similar
to [35], and it is extremely fast, taking only a few seconds
to evaluate one bit configuration (shown in Tab. 1).
QAT Settings. For the QAT experiments, we employed two
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NVIDIA Tesla V100 GPUs. The quantization framework
excludes any integer division or floating point numbers in
the network. We set the learning rate to 4e − 4 and the
batch size to 512 for the training process. A cosine learn-
ing rate scheduler and SGD optimizer with 1e − 4 weight
decay are implemented over 30 epochs. We follow the pre-
vious work [28] to keep the weight and activation of the
first and last layers at 8 bits, constraining the search space
to {4, 5, 6, 7, 8}.
PTQ Settings. For the PTQ experiments, we perform them
on a single NVIDIA RTX 3090 GPU. We combine EMQ
with the BRECQ [24] finetuning block reconstruction algo-
rithm. In this experiment, we fix the activation precision of
all layers to 8 bits, and limit the search to weight bit alloca-
tion in the search space of {2, 3, 4}.

4.2. MQ-Bench-101

We propose MQ-Bench-101, the first benchmark for
evaluating the mixed-precision quantization performance of
different bit configurations. To conduct our evaluation, we
conduct post training quantization on ResNet-18 and assign
each layer one of the bit-widths b = {2, 3, 4}, while keeping
the activation to 8 bits. To manage the computational com-
plexity of the search space, we randomly sample 425 con-
figurations and attain their quantization performance under
post-training quantization settings. MQ-Bench-101 enables
us to identify high-performing quantization configurations
and compare different MQ proxies fairly. For more details,
please refer to the App. B.

4.3. Quantization-Aware Training

In this experiment, we conducted quantization-aware
training on ResNet-18/50 and compared the results and
compression ratios with previous unified quantization meth-
ods such as [32, 6, 47] and mixed-precision quantization
methods like [40, 5, 44]. The results of our experiments are
presented in Tab. 4 and Tab. 5.

Our results indicate that EMQ strikes the best balance
between accuracy and compression ratio for ResNet-18 and
ResNet-50. For instance, under the bit-width of activation
as 6, the searched EMQ proxy achieve a quantization accu-
racy of 72.28% on ResNet-18 with 6.67Mb and 71BOPs,
which achieves a 0.20% improvement over OMPQ [28].
Under the bit-width of activation as 8, EMQ can outperform
HAWQ-V3 by 0.75%.

Moreover, compared to HAWQ-V3 [44], EMQ achieve
2.06% higher accuracy while having a slightly smaller
BOPs (71 vs 72). EMQ achieve an accuracy of 76.70% on
ResNet-50 with a model size of 18.7Mb and 148BOPs, and
outperform HAWQ-V3 by 1.31% while having a smaller
model size of 17.86Mb and 148BOPs compared to 18.7Mb
and 154BOPs.

Table 4. Mixed-precision quantization results of ResNet-18. “Int”
means only including integers during quantization. “Uni” repre-
sents uniform quantization. W/A is the bit-width of weight and
activation. ∗ indicates mixed-precision. ▽ represents not quan-
tizing the first and last layers. “MS” denotes the model size with
bit-parameters and “BOPs” denotes the bit operations.

Method W/A Int Uni MS(M) BOPs(G) Top1(%)

Baseline 32/32 % - 44.6 1, 858 73.09

RVQuant [33] 8/8 % % 11.1 116 70.01

HAWQ-V3 [45] 8/8 " " 11.1 116 71.56

OMPQ [28] ∗/8 " " 6.7 97 72.30

EMQ(Ours) ∗/8 " " 6.69 92 72.31

PACT▽ [6] 5/5 % " 7.2 74 69.80

LQ-Nets▽ [47] 4/32 % % 5.8 225 70.00

HAWQ-V3 [45] ∗/∗ " " 6.7 72 70.22

OMPQ [28] ∗/6 " " 6.7 75 72.08

EMQ(Ours) ∗/6 " " 6.69 71 72.28

Table 5. Mixed-precision quantization results of ResNet-50.
Method W/A Int Uni MS(M) BOPs(G) Top1(%)

Baseline 32/32 % - 97.8 3, 951 77.72

PACT▽ [6] 5/5 % " 16.0 133 76.70
LQ-Nets▽ [47] 4/32 % % 13.1 486 76.40

RVQuant [33] 5/5 % % 16.0 101 75.60

HAQ [40] */32 % % 9.62 520 75.48

Onebit-width [4] */8 % " 12.3 494 76.70
HAWQ-V3 [45] */* " " 18.7 154 75.39

OMPQ [28] */5 " " 18.7 156 76.28

EMQ(Ours) */5 " " 17.86 148 76.70

Figure 5. The accuracy and complexity trade-off between MQ
proxies and our proposed EMQ approach for ResNet-18.

4.4. Post-Training Quantization

In this experiment, we conduct experiments on ResNet18
and MobileNetV2. Our proposed EMQ approach achieves
a better trade-off among different model sizes, as illustrated
in Tab. 6 and 7. To achieve this, we adopted the same block
reconstruction quantization strategy as OMPQ [28]. Our
experiments show that under the constraint of model size
{4.0, 4.5, 5.5}, we achieve competitive results, surpassing
OMPQ by 0.97%, 0.74%, and 0.51%, respectively. More-
over, we conducted a series of experiments to evaluate the
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Table 6. Mixed-precision post-training quantization results on
ResNet-18. † means using distillation in the finetuning process.

Method W/A Model size(M) Top-1 (%) #Data

Baseline 32/32 44.6 71.08 -

FracBits-PACT [6] ∗/∗ 4.5 69.10 1.2M
OMPQ [28] ∗/4 4.5 68.69 64
EMQ(Ours) */4 4.5 69.66 64

ZeroQ [2] 4/4 5.81 21.20 -
BRECQ† [24] 4/4 5.81 69.32 -

PACT [6] 4/4 5.81 69.20 -
HAWQ-V3 [45] 4/4 5.81 68.45 -

FracBits-PACT [6] ∗/∗ 5.81 69.70 1.2M
OMPQ [28] ∗/4 5.5 69.38 64
EMQ(Ours) */4 5.5 70.12 64

BRECQ [24] ∗/8 4.0 68.82 1, 024
OMPQ [28] ∗/8 4.0 69.41 64
EMQ(Ours) */8 4.0 69.92 64

Table 7. Mixed-precision post-training quantization results on
MobileNetV2.

Method W/A Model Size (Mb) Top-1 (%) #Data

Baseline 32/32 13.4 72.49 -

BRECQ [24] ∗/8 1.3 68.99 1, 024
OMPQ [28] ∗/8 1.3 69.62 32
EMQ(Ours) ∗/8 1.3 70.72 64

FracBits [43] ∗/∗ 1.84 69.90 1.2M
BRECQ [24] ∗/8 1.5 70.28 1, 024
EMQ(Ours) ∗/8 1.5 70.75 64

performance of different model sizes {3.0, 3.5, 4.0, 4.5, 5.0,
5.5} using various quantization proxies, including QE [35],
Synflow [36], HAWQ [8], HAWQ-V2 [7], and EMQ. To
strike a trade-off between model complexity and quantiza-
tion accuracy, we plot the quantization accuracy of each
proxy against its respective model size, resulting in a pareto
front (as shown in Fig. 5). The results demonstrate that our
EMQ proxy provides a superior trade-off between model
complexity and quantization performance when compared
to the existing proxies.

4.5. Ablation Study

As presented in Tab. 3, we observe that the proposed op-
eration sampling prioritization (OSP) technique improves
the validity rate of the branched structure by 10.05% ↑. As
illustrated in the left of Fig. 3.3, diversity-prompting selec-
tion (DPS) strategy can indeed prevent premature conver-
gence (Blue line) and outperform the random search base-
line (Yellow line) by a large margin. These findings suggest
that the OSP and DPS strategy are indispensable compo-
nents of EMQ. Tab. 8 demonstrates the effectiveness of the
ablation study on improving efficiency through equivalent
checking and early rejection when searching for branched
structures. By implementing these strategies, we are able to
proactively filter out approximately 97% of failed proxies,
resulting in a significant reduction in computational cost.

Table 8. Efficiency improvement with equivalent checking and
early rejection strategy on branched structure.

Equivalent Checking Early Rejection #Evaluated Proxies

% % ∼ 1× 104

" % ∼ 9× 103

" " ∼ 3× 102

Figure 6. Assignment of bit configurations for weights under 18M
and 16M model size constraints for ResNet-50. The bit-widths are
searched for configurations of {4, 5, 6, 7, 8}

4.6. Visualization and Analysis

To intuitively demonstrate the bit-width assignment gen-
erated by the searched EMQ proxy, we visualize the quan-
tization strategy of weights in different layers of ResNet50
with model size constraints of 16M and 18M in Fig. 6. We
observe that for the bit-width assignment under different
model constraints, the 29th, 32nd, 35th, and 49th layers are
assigned lower bit-width, indicating that these layers are not
as sensitive as others. Additionally, we can see from the bit-
width assignment that the first and last layers have higher
bit-width to achieve quantization accuracy.

5. Conclusion
In this paper, we present the Evolving proxies for Mixed

precision Quantization (EMQ), a novel approach for explor-
ing proxies for mixed-precision quantization (MQ) without
requiring heavy tuning or expert knowledge. To fairly eval-
uate the MQ proxies, we build the MQ-Bench-101 bench-
mark. We leverage evolution algorithm to efficiently search
for superior proxies that strongly correlate with quantiza-
tion accuracy, using our diversity-prompting selection and
compatibility screening protocol. The extensive experi-
ments on the ImageNet dataset on ResNet and MobileNet
families demonstrate that our EMQ framework outperforms
existing state-of-the-art mixed-precision methods in terms
of both accuracy and efficiency. We believe that our work
inspires further research in developing efficient and accurate
MQ techniques and enables deploying more efficient deep
learning models in resource-constrained environments.
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