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Abstract

Class-incremental learning (CIL) has achieved remark-
able successes in learning new classes consecutively while
overcoming catastrophic forgetting on old categories. How-
ever, most existing CIL methods unreasonably assume that
all old categories have the same forgetting pace, and neglect
negative influence of forgetting heterogeneity among differ-
ent old classes on forgetting compensation. To surmount
the above challenges, we develop a novel Heterogeneous
Forgetting Compensation (HFC) model, which can resolve
heterogeneous forgetting of easy-to-forget and hard-to-forget
old categories from both representation and gradient as-
pects. Specifically, we design a task-semantic aggrega-
tion block to alleviate heterogeneous forgetting from rep-
resentation aspect. It aggregates local category informa-
tion within each task to learn task-shared global represen-
tations. Moreover, we develop two novel plug-and-play
losses: a gradient-balanced forgetting compensation loss
and a gradient-balanced relation distillation loss to alleviate
forgetting from gradient aspect. They consider gradient-
balanced compensation to rectify forgetting heterogeneity
of old categories and heterogeneous relation consistency.
Experiments on several representative datasets illustrate ef-
fectiveness of our HFC model. The code is available at
https://github.com/JiahuaDong/HFC.

1. Introduction
Class-incremental learning (CIL) [40, 12, 5] has attracted

appealing attentions recently by accumulating previous
learned experience to learn new classes incrementally. It
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Figure 1. Forgetting heterogeneity versus accuracy on CIFAR-100
[33] when the backbone is ViT-Base and number of tasks is 5.

plays an indispensable role in developing a large number
of intelligent learning systems, such as autonomous driving
[38] and automated surveillance [26]. When learning new
classes continuously under the settings of limited memory
to replay all previous data of old classes [45], these CIL
systems heavily suffer from forgetting on old classes caused
by severe class imbalance between old and new categories
[40, 31, 14]. To surmount catastrophic forgetting, a growing
amount of CIL methods mainly perform knowledge distilla-
tion [24] to preserve past experience [34, 12, 35]; introduce
a rehearsal strategy to replay part of old data [40, 17]; or
dynamically expand network architectures [28, 41, 54].

However, most existing CIL methods [40, 45, 54, 18] ne-
glect heterogeneous forgetting speeds of different old classes.
They unrealistically assume that all old classes suffer from
the same degree of catastrophic forgetting, and compensate
forgetting for each old classes equally and independently.
Such impracticable assumption enforces existing CIL mod-
els [40, 56, 61] to suffer from imbalanced gradient optimiza-
tion among different old classes, thus favoring more forget-
ting compensation for hard-to-forget old classes while ne-

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

11742



glecting those easy-to-forget old classes (i.e., heterogeneous
forgetting). More importantly, such forgetting heterogeneity
can significantly worsen the forgetting on hard-to-forget old
categories, when new streaming classes becomes part of old
categories continually. For example, some old classes with
various modalities and appearances (e.g., person and car)
in autonomous driving [38] are more difficult to explore task-
shared representations across different incremental tasks,
when compared with other hard-to-forget old classes (e.g.,
road and traffic sign) with easily-distinguished vi-
sual properties. This phenomenon causes imbalanced gradi-
ent propagation between easy-to-forget and hard-to-forget
old categories, thus exacerbating heterogeneous forgetting
speeds among different old classes. When autonomous ve-
hicles [38] learn new classes continually, such forgetting
heterogeneity aggravates forgetting on those hard-to-forget
old classes (e.g., traffic sign) to some extent.

Inspired by the above practical scenario, we investigate
that different old classes have significant forgetting hetero-
geneity in this paper, as shown in Fig. 1. This heterogeneous
forgetting might heavily weaken forgetting compensation on
hard-to-forget old classes, as new classes become a subset
of old classes consecutively. In summary, the challenges to
tackle heterogeneous forgetting lie in two major aspects:

• Representation Aspect: Some easy-to-forget old classes
(e.g., car and bus) with diverse appearances are more
difficult for existing CIL methods [45, 54, 12, 3] to learn
intrinsic task-shared representations, and thus are sig-
nificantly easier to be forgotten than hard-to-forget old
classes (e.g., road) with distinctive attributes. Thus, ex-
ploring task-shared representations is essential to address
heterogeneous forgetting among different old classes.

• Gradient Aspect: To learn complex visual characteriza-
tions for easy-to-forget old classes with various modalities
and appearances, existing CIL methods [40, 4, 49] are re-
quired to allocate more network architectures for gradient
updating. It can result in imbalanced gradient propagation
between easy-to-forget and hard-to-forget old categories,
thus aggravating forgetting heterogeneity of old classes.

To overcome the above challenges, we propose a novel
Heterogeneous Forgetting Compensation (HFC) model,
which is an earlier exploration to address heterogeneous
forgetting from both representation and gradient perspec-
tives in the CIL field [40, 4]. Specifically, we propose a task-
semantic aggregation (TSA) block to alleviate heterogeneous
forgetting from representation perspective. It can explore
task-shared global representations for each class via aggre-
gating long-range local category information within each
task. Meanwhile, to tackle heterogeneous forgetting from
gradient perspective, we develop two novel plug-and-play
losses: a gradient-balanced forgetting compensation (GFC)
loss and a gradient-balanced relation distillation (GRD) loss.
The GFC loss can rectify heterogeneous forgetting speeds

of easy-to-forget and hard-to-forget old classes, while nor-
malize different learning paces of new categories to achieve
gradient-balanced propagation. Besides, the GRD loss can
distill heterogeneous relation consistency brought by forget-
ting heterogeneity among different old classes. Experiments
show our model has large improvements on several repre-
sentative datasets, compared with baseline methods [40, 36].
More importantly, we apply two plug-and-play losses into
existing distillation-based CIL methods [40, 17, 4] to signifi-
cantly improve their performance from gradient aspect. The
novel contributions of this paper are presented as follows:

• We develop a novel Heterogeneous Forgetting Compen-
sation (HFC) model to address different forgetting speeds
of easy-to-forget and hard-to-forget old classes. To our
best knowledge, this paper is the first exploration to tackle
forgetting heterogeneity among old categories from rep-
resentation and gradient aspects in the CIL field.

• We design a task-semantic aggregation (TSA) block to
alleviate heterogeneous forgetting from representation
aspect. It can explore robust task-shared representations
for each class via aggregating local category information.

• We propose two novel plug-and-play losses: a gradient-
balanced forgetting compensation (GFC) loss and a
gradient-balanced relation distillation (GRD) loss to sur-
mount forgetting heterogeneity from gradient aspect.
They can balance different forgetting of old classes and
heterogeneous category-relation consistency to improve
performance when applying them into existing methods.

2. Related Work

We discuss some class-incremental learning (CIL) meth-
ods [60, 37, 18], and divide them into three categories:

Knowledge Distillation: After Li et al. [34] apply knowl-
edge distillation [24] to continual learning, [40, 39, 59] fol-
low them to transfer past experience from old model to new
model. iCaRL [40] and EEIL [6] perform knowledge distil-
lation in the output space. [44] aims to preserve consistent
topology feature space for old and new tasks. [16] proposes
feature-level knowledge distillation when applying continual
learning [37] into semantic segmentation task [53, 52, 11].

Rehearsal Strategy: For replaying past experience, lots
of CIL methods [49, 8, 42] allocate a memory to store ex-
emplars of old classes or synthesize samples via generative
adversarial model [21, 58]. For saving large memory over-
head, [29] proposes to store low-dimension features rather
than raw samples. [51] proposes a “white box” framework
deviated from rate reduction to preserve past experience.

Dynamic Architecture: Many works [28, 54, 1] allo-
cate dynamical networks for new classes as the growing of
learned classes. Yoon et al. [55] dynamically expand archi-
tecture capacity via selective retraining. [54, 18] address the
problem of relying on task index when performing dynamic
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architectures. However, the above-mentioned CIL methods
[40, 27] neglect negative influence of heterogeneous forget-
ting of old classes on forgetting compensation.

3. The Proposed Model

3.1. Problem Definition and Overview

Problem Definition: Following class-incremental learn-
ing (CIL) methods [40, 50, 17, 18, 54], we set a series of con-
secutive learning tasks as T = {T t}Tt=1, where T indicates
the total task quantity. The t-th task T t = {xt

i,y
t
i}N

t

i=1 is
composed of N t pairs of image xt

i and one-hot groundtruth
yt
i ∈ Yt, and Yt denotes label space of the t-th incremen-

tal task containing Kt new categories. The label spaces
between any two incremental tasks have no overlap: Yt ∩
(∪t−1

j=1Yj) = ∅. Namely, Kt new classes belonging to the
t-th task T t are different from Ko =

∑t−1
i=1 K

i ⊂ ∪t−1
j=1Yj

old classes learned from previous tasks {T i}t−1
i=1 . As intro-

duced in CIL baselines [40, 50, 54], we set a fixed exemplar
memory M, and store only few images (i.e., |M|

Ko ) for each
old class in the t-th task T t, where M satisfies Nt

Kt ≫ |M|
Ko .

In the t-th task, we aim to identify both Kt new classes and
Ko old classes via optimizing the model on T t and M.

Overview: The overview of our HFC model to surmount
forgetting heterogeneity of different old categories from both
representation and gradient aspects is shown in Fig. 2. De-
note the proposed HFC model learned at the (t−1)-th and
t-th tasks as old and new models (i.e., Θt−1 and Θt), where
Θt is inherited from Θt−1 and only expands the number of
output neurons in the classifier to identify Kt new classes.
In the t-th incremental task, given an image xt

i ∈ T t ∪M,
we forward it into Θt−1 and Θt to extract task-shared global
representation via task-semantic aggregation (TSA) block,
which alleviates heterogeneous forgetting from represen-
tation aspect (Section 3.2). After obtaining probabilities
Pt−1(xt

i,Θ
t−1) ∈ RKo

and Pt(xt
i,Θ

t) ∈ RKo+Kt

pre-
dicted via Θt−1 and Θt, we develop two plug-and-play
losses: a gradient-balanced forgetting compensation (GFC)
loss LFC and a gradient-balanced relation distillation (GRD)
loss LRD to surmount heterogeneous forgetting from se-
mantic aspect (Sections 3.3 and 3.4). LFC and LRD can
normalize heterogeneous forgetting of old classes and distill
heterogeneous relation consistency between Θt−1 and Θt.

3.2. Task-Semantic Aggregation Block

To explore long-range semantic dependencies across dif-
ferent tasks, Douillard et al. [18] introduce Vision Trans-
former (ViT) [15, 46, 22] into class-incremental learning
(CIL). However, it significantly increases the memory over-
head to store task tokens and task-specific decoders, when
learning large-scale new classes. Besides, it cannot aggre-
gate local category information to explore task-shared global

representations, resulting in heterogeneous forgetting from
representation aspect. To tackle these issues, we develop
a task-semantic aggregation (TSA) block to extract task-
shared global representations, which is effective to tackle
heterogeneous forgetting from representation aspect. More
importantly, the TSA block cannot dynamically increase
memory cost with the arrival of large-scale new categories.

Specifically, as presented in Fig. 2, the proposed model
Θt = Θt

c ◦ Θt
f at the t-th task is composed of a feature

extractor Θt
f to extract task-shared global representations,

and a task classifier Θt
c to classify Ko old classes and Kt

new classes. In the t-th task, the network parameters of Θt−1
f

and Θt−1
c in Θt−1 learned at the (t−1)-th task are frozen to

preserve semantic knowledge for old classes. Different from
[18] that uses vanilla ViT [15, 30, 57, 7] to extract features,
we employ lm multi-head self-attention (MSA) blocks [20]
and lt task-semantic aggregation (TSA) block as feature
extractor Θt

f to obtain task-shared global representations.
• Multi-Head Self-Attention (MSA): Given an image

xt
i ∈ T t ∪ M in the t-th task, following ViT [15, 9], we

crop it into N patches with equal dimension, flatten these
patches and map them into a D-dimension feature space via
a linear projection to obtain patch embedding Ze ∈ RN×D.
Then we concatenate Ze with a class token Zcls ∈ RD, and
perform element-wise sum operation with a position token
Zp ∈ R(N+1)×D to get Z0 = [Ze⊕Zcls]+Zp ∈ R(N+1)×D,
where ⊕ is concatenation function. As shown in Fig. 2, Z0 is
fed into Θt

f including lm MSA blocks to extract long-range
semantics across different tasks. For the l-th (l = 1, · · · , lm)
MSA block, we regard Zl−1 ∈ R(N+1)×D learned from
the (l−1)-th MSA block as input, and execute parallel self-
attention H times. Thus, the self-attention Ah

l ∈ R(N+1)×d

of Zl−1 for the h-th (h = 1, · · · , H) head is:

Ah
l = σ(

Zl−1W
h
q (Zl−1W

h
k)

⊤
√
d

)(Zl−1W
h
v ), (1)

where Wh
q ,W

h
k ,W

h
v ∈ RD×d are query, key and value

mapping matrices. d = D
H represents channel dimen-

sion of each head and σ is the softmax function. Then
we concatenate {Ah

l }Hh=1 along channel dimension and
project this concatenated result via a mapping matrix Wo ∈
RD×D to perform MSA: MSA(Zl−1) = Zl−1 + [A1

l ⊕
A2

l , · · · ,⊕AH
l ]Wo, where ⊕ is concatenation function. Af-

ter obtaining MSA(Zl−1) ∈ R(N+1)×D (D = dH), we
utilize a multi-layer perceptron (MLP) block to obtain out-
put Zl ∈ R(N+1)×D of the l-th MSA block:

Zl = MSA(Zl−1) +MLP(MSA(Zl−1)). (2)

• Task-Semantic Aggregation (TSA): The patch em-
bedding Zlm ∈ R(N+1)×D encoded via the lm-th MSA
block contains rich long-range semantic dependencies shared
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Figure 2. Illustration of the HFC model. It mainly contains a task-semantic aggregation (TSA) block to alleviate heterogeneous forgetting
from representation aspect via exploring task-shared global representations, and two novel plug-and-play losses (i.e., a gradient-balanced
forgetting compensation loss LFC and a gradient-balanced relation distillation loss LRD) to overcome forgetting heterogeneity from
gradient aspect by compensating gradient-imbalanced propagation and heterogeneous class-relation consistency.

across different tasks. Zlm is then forwarded into lt task-
semantic aggregation (TSA) blocks to extract task-shared
global embedding. The TSA block aggregates local category
context from long-range semantic dependencies to global
representations shared across all incremental tasks, which
is essential to alleviate heterogeneous forgetting from repre-
sentation aspect. In the t-th task, as depicted in Fig. 2, we
introduce a learnable task-shared embedding Et

0 ∈ RD that
is initialized via Et−1

0 learned in the (t−1)-th task. Then we
forward Et

0 along with Zlm to lt TSA blocks. For the l-th
(l = 1, · · · , lt) TSA block, Et

l−1 ∈ RD learned at (l− 1)-th
TSA block and Zlm are used to perform task-semantic atten-
tion H times in parallel. Thus, we formulate task-semantic
attention Sh

l ∈ Rd for the h-th (h = 1, · · · , H) head as:

Sh
l = σ(

Et
l−1V

h
q (ZlmVh

k)
⊤

√
d

)(ZlmVh
v ), (3)

where Vh
q ,V

h
k ,V

h
v ∈ RD×d are projection matrices of

query, key and value. After utilizing Eq. (3) to obtain
{Sh

l }Hh=1, we concatenate them along channel dimension
and project this fused result via Vo ∈ RD×D to execute
H-head task-semantic attention: TSA(Et

l−1) = [S1
l ⊕

S2
l , · · · ,⊕SH

l ]Vo ∈ RD. TSA(Et
l−1) is encoded via a

MLP block to get output Et
l ∈ RD of the l-th TSA block:

Et
l = TSA(Et

l−1) +MLP(TSA(Et
l−1)). (4)

As aforementioned, we obtain the task-shared global rep-
resentation Et

lt
∈ RD via the lt-th TSA block in feature

extractor Θt
f . Obviously, the proposed TSA blocks can

aggregate local category context of the t-th task from long-
range semantic dependencies to task-shared global represen-
tation Et

lt
. It is essential to alleviate heterogeneous forgetting

among different old classes from representation aspect, by

exploring task-shared semantic context across different tasks.
Note that we employ layer norm before TSA, MSA and MLP
blocks, while we omit it for simplicity in this paper.

• Task Classifier: The task-shared global representation
Et

lt
obtained via Θt

f is fed into task classifier Θt
c to predict

Ko old classes and Kt new classes. Given a mini-batch
{xt

i,y
t
i}bi=1 ∈ T t ∪M, the classification loss LCE is:

LCE =
1

b

b∑
i=1

DCE(P
t(xt

i,Θ
t),yt

i), (5)

where Pt(xt
i,Θ

t) ∈ RKo+Kt

is softmax probability pre-
dicted by Θt in the t-th learning task. DCE(·, ·) indicates
traditional cross-entropy loss, and b is the batch size.

However, the severe class imbalance (i.e., Nt

Kt ≫ |M|
Ko )

among old and new categories in the t-th task enforces the
prediction Pt(xt

i,Θ
t) in Eq. (5) to suffer from catastrophic

forgetting [40] on old categories. Moreover, the gradient
optimization of Eq. (5) neglects heterogeneous forgetting
speeds of easy-to-forget old classes with various appearances
and hard-to-forget old classes with easily-distinguished at-
tributes. To address heterogeneous forgetting from gradi-
ent aspect, we propose two novel plug-and-play losses: a
gradient-balanced forgetting compensation (GFC) loss LFC

in Section 3.3 and a gradient-balanced relation distillation
(GRD) loss LRD in Section 3.4.

3.3. Gradient-Balanced Forgetting Compensation

As incremental tasks arrive consecutively, easy-to-forget
and hard-to-forget old categories change dynamically, thus
aggravating difficulty to tackle heterogeneous forgetting
from gradient aspect. In light of this, we develop a gradient-
balanced forgetting compensation (GFC) loss LFC. It adap-
tively balances large forgetting heterogeneity of old classes
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via performing balanced gradient propagation. Specifically,
we perform task-adaptive gradient normalization for differ-
ent classes, and then reweight classification loss LCE in
Eq. (5) to compensate imbalanced gradients. For the t-th
incremental task, as claimed in [48, 13], the gradient Γt

i of
an given image (xt

i,y
t
i) ⊂ T t ∪M with respect to the k-th

(k = argmaxyt
i) neuron N t

k of classifier Θt
c in Θt is:

Γt
i =

∂DCE(P
t(xt

i,Θ
t),yt

i)

∂N t
k

= Pt(xt
i,Θ

t)k − 1, (6)

where Pt(xt
i,Θ

t)k denotes probability of the k-th class.
To compensate heterogeneous forgetting of easy-to-forget

and hard-to-forget old categories, we compute task-adaptive
gradient means for different tasks. Consequently, given a
mini-batch {xt

i,y
t
i}bi=1 in the t-th learning task, the task-

adaptive gradient mean Γη for the categories learned in the
η-th (1 ≤ η ≤ t) incremental task is formulated as:

Γη =
1∑b

i=1 Iyt
i∈Yη

∑b

i=1
|Γt

i| · Iyt
i∈Yη . (7)

The forgetting heterogeneity of old categories learned from
t−1 old tasks and learning speeds of new categories in the
t-th task can be effectively measured via {Γη}tη=1 in Eq. (7).

When easy-to-forget and hard-to-forget old classes are
varied dynamically as incremental tasks, some noisy pre-
dictions on easy-to-forget old classes may result in large
deviation to measure their forgetting heterogeneity [43, 19].
To tackle this issue, {Γη}tη=1 in Eq. (7) are expected to be
sharper and more distinguishable adaptively [13], as learning
tasks arrive continually. Thus, we rewrite Eq. (7) as follows:

Γs
η =

∑b
i=1 log(|Γt

i|
Ko

Ko+Kt + 1) · Iyt
i∈Yη∑b

i=1 Iyt
i∈Yη

. (8)

The sharper task-adaptive gradient means {Γs
η}tη=1 com-

puted via Eq. (8) are employed to reweight classification
loss LCE in Eq. (5). Then the gradient-balanced forgetting
compensation (GFC) loss LFC is written as follows:

LFC=
1

b

b∑
i=1

log(|Γt
i|

Ko

Ko+Kt+1)∑t
η=1 Γ

s
η · Iyt

i∈Yη

DCE(P
t(xt

i,Θ
t),yt

i). (9)

Obviously, LFC in Eq. (9) encourages the optimization of
Θt to perform gradient-balanced propagation for easy-to-
forget, hard-to-forget old classes and new classes learned
in different tasks. It tackles heterogeneous forgetting on
old classes from gradient aspect, via normalizing forgetting
paces of different old classes adaptively with {Γs

η}tη=1.

3.4. Gradient-Balanced Relation Distillation

The relationships among old and new categories remain
constant in semantic space, regardless of availability of old-
class samples. In light of this, distilling inter-class relations

from old model Θt−1 to new model Θt can address forget-
ting on old classes [6, 25]. However, most knowledge distil-
lation methods used in CIL [40, 2, 50] only utilize prediction
of an individual sample to perform semantic consistency of
old classes between Θt−1 and Θt. They neglect underlying
relations among old and new categories to tackle forgetting,
and heavily suffer from noisy predictions on easy-to-forget
old classes when distilling knowledge via an individual sam-
ple. Moreover, different forgetting speeds of old classes may
result in heterogeneous class-relation consistency between
Θt−1 and Θt. It enforces gradient optimization of Θt to bias
towards some specific relation distillations related to new
classes, causing forgetting heterogeneity on old categories.

To overcome the above issues, we design a gradient-
balanced relation distillation (GRD) loss LRD to distill re-
lations among old and new classes from Θt−1 to Θt. As
introduced in Fig. 2, it can address heterogeneous forget-
ting from gradient aspect via rectifying imbalanced gradient
propagation caused by heterogeneous class-relation consis-
tency. Specifically, we construct class-wise relation proto-
type rather than a prediction of single sample to perform
relation distillation, which can alleviate negative effect of
noisy relation consistency. Then the task-adaptive gradient
means {Γs

η}tη=1 in Eq. (8) are employed to reweight hetero-
geneous class-relation distillation.

A mini-batch {xt
i,y

t
i}bi=1 ⊂ T t∪M is fed into Θt−1 and

Θt to obtain softmax probabilities Pt−1(xt
i,Θ

t−1) ∈ RKo

of old classes and Pt(xt
i,Θ

t) ∈ RKo+Kt

of old and new
classes, as shown in Fig. 2. The first Ko dimensions of
yt
i ∈ RKo+Kt

are replaced with Pt−1(xt
i,Θ

t−1) to get re-
lation groundtruth Yt(xt

i,Θ
t−1) ∈ RKo+Kt

that implies
underlying relations among old and new classes. To tackle
noisy class relations, we construct class-wise relation proto-
type P̃t

k and its relation groundtruth Ỹt
k for the k-th class:

P̃t
k =

1

∆k

b∑
i=1

Pt(xt
i,Θ

t) · Iargmaxyt
i=k, (10)

Ỹt
k =

1

∆k

b∑
i=1

Yt(xt
i,Θ

t−1) · Iargmaxyt
i=k. (11)

where ∆k=
∑b

i Iargmaxyt
i=k. Then we formulate category-

wise gradient mean Γs
k for the k-th category as follows:

Γs
k =

∑b
i=1 log(|Γt

i|
Ko

Ko+Kt + 1) · Iargmaxyt
i=k∑b

i=1 Iargmaxyt
i=k

. (12)

Consequently, we use Γs
k to reweight heterogeneous rela-

tion distillation, and express the proposed LRD as follows:

LRD =
1

Ko+Kt

Ko+Kt∑
k=1

Γs
k · DKL(P̃

t
k, Ỹ

t
k)∑t

η=1 Γ
s
η · Ik∈Yη

, (13)

where DKL(·||·) indicates the Kullback-Leibler divergence.
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Table 1. Results on CIFAR-100 [33]. When M = 2000, we set T ={5, 10, 20, 25, 50} for B=0%, and T ={5, 10, 25, 50} for B=50%.

Comparison Methods Backbone #Params B = 0% B = 50%
5 10 20 25 50 Avg. Imp. 5 10 25 50 Avg. Imp.

iCaRL [40] (CVPR’2017) ViT-Base 85.10M 83.5 80.6 78.5 77.6 76.4 79.3 ⇑5.5 80.6 78.6 75.4 71.0 76.4 ⇑2.9
BiC [50] (CVPR’2019) ViT-Base 85.10M 83.5 82.5 78.7 80.3 78.4 80.7 ⇑4.2 78.2 75.7 74.2 71.9 75.0 ⇑4.3
PODNet [17] (ECCV’2020) ViT-Base 85.10M 75.3 71.8 66.5 64.9 63.0 68.3 ⇑16.6 72.8 73.0 74.2 74.9 73.7 ⇑5.6
SS-IL [2] (ICCV’2021) ViT-Base 85.10M 83.6 82.0 79.1 79.1 77.3 80.2 ⇑4.6 75.8 74.8 72.9 72.0 73.9 ⇑5.4
PODNet [17] + CSCCT [4] (ECCV’2022) ViT-Base 85.10M 75.2 72.0 66.1 65.2 63.8 68.5 ⇑16.4 72.7 72.8 74.0 74.7 73.5 ⇑5.8
FOSTER [47] (ECCV’2022) ViT-Base 85.10M 84.7 83.5 79.6 78.5 77.9 80.8 ⇑4.1 78.4 77.3 76.2 74.0 76.5 ⇑2.8
AFC [32] (CVPR’2022) ViT-Base 85.10M 74.6 75.5 70.3 67.4 64.7 70.5 ⇑14.4 70.8 69.4 68.9 69.9 69.8 ⇑9.5
DyTox [18] (CVPR’2022) ViT-Base 85.10M 85.5 85.8 81.3 80.8 77.4 82.2 ⇑2.7 82.5 81.0 77.3 74.5 78.8 ⇑0.5

HFC (Ours) ViT-Base 85.10M 86.4 86.3 85.5 85.0 81.1 84.9 − 82.9 81.0 77.8 75.5 79.3 −

Upper Bound ViT-Base 85.10M 94.2 94.2 94.2 94.2 94.2 94.2 − 94.2 94.2 94.2 94.2 94.2 −

Table 2. Results on ImageNet-100 [10]. When M = 2000, we set T = {5, 10, 20, 25} for B = 0%, and T = {5, 10, 25, 50} for B = 50%.

Comparison Methods Backbone #Params B = 0% B = 50%
5 10 20 25 Avg. Imp. 5 10 25 50 Avg. Imp.

iCaRL [40] (CVPR’2017) ViT-Base 85.10M 84.1 82.4 80.2 78.6 81.3 ⇑3.2 79.5 78.8 76.6 73.9 77.2 ⇑3.4
BiC [50] (CVPR’2019) ViT-Base 85.10M 81.4 80.2 79.2 78.5 79.8 ⇑4.7 73.9 74.4 73.4 72.2 73.5 ⇑7.1
PODNet [17] (ECCV’2020) ViT-Base 85.10M 82.4 80.1 79.5 78.3 80.1 ⇑4.5 68.4 71.3 75.4 77.6 73.2 ⇑7.4
SS-IL [2] (ICCV’2021) ViT-Base 85.10M 83.0 81.7 80.9 79.4 81.2 ⇑3.3 75.8 74.8 72.9 72.0 73.9 ⇑6.7
PODNet [17] + CSCCT [4] (ECCV’2022) ViT-Base 85.10M 82.3 81.0 79.3 79.0 80.4 ⇑4.1 68.3 71.2 75.0 76.9 72.8 ⇑7.8
FOSTER [47] (ECCV’2022) ViT-Base 85.10M 85.6 84.0 83.8 83.1 84.1 ⇑0.4 81.0 80.5 80.0 79.8 80.3 ⇑0.3
AFC [32] (CVPR’2022) ViT-Base 85.10M 83.2 81.2 80.5 79.4 81.1 ⇑3.5 77.1 78.4 78.9 78.1 78.1 ⇑2.5
DyTox [18] (CVPR’2022) ViT-Base 85.10M 85.1 83.4 80.0 80.3 82.2 ⇑2.3 77.4 78.4 79.7 79.4 78.7 ⇑1.9

HFC (Ours) ViT-Base 85.10M 86.1 85.4 84.0 82.6 84.5 − 81.5 81.1 80.3 79.5 80.6 −

Upper Bound ViT-Base 85.10M 86.3 86.3 86.3 86.3 86.3 − 86.3 86.3 86.3 86.3 86.3 −

Table 3. Results on ImageNet-1000 [10]. When M = 20000, we
set T = {5, 10} for B = 0%.

Comparison Methods Backbone #Params 5 10 Avg. Imp.

iCaRL [40] (CVPR’2017) ViT-Base 85.10M 75.4 72.4 73.9 ⇑3.5
BiC [50] (CVPR’2019) ViT-Base 85.10M 68.9 66.0 67.5 ⇑10.0
PODNet [17] (ECCV’2020) ViT-Base 85.10M 68.4 71.3 69.8 ⇑7.6
SS-IL [2] (ICCV’2021) ViT-Base 85.10M 75.8 74.8 75.3 ⇑2.2
PODNet [17] + CSCCT [4] (ECCV’2022) ViT-Base 85.10M 68.4 63.2 65.8 ⇑11.6
FOSTER [47] (ECCV’2022) ViT-Base 85.10M 76.9 74.3 75.6 ⇑1.9
AFC [32] (CVPR’2022) ViT-Base 85.10M 74.2 71.4 72.8 ⇑4.6
DyTox [18] (CVPR’2022) ViT-Base 85.10M 78.1 74.7 76.4 ⇑1.0

HFC (Ours) ViT-Base 85.10M 78.5 76.4 77.5 −

Upper Bound ViT-Base 85.10M 86.3 86.3 86.3 −

3.5. Optimization Pipeline

Overall, in the t-th (t ≥ 2) learning task, the objective
formulation to optimize Θt is expressed as follows:

Lobj = α1LFC + α2LRD, (14)

where α1, α2 are hyper-parameters. Θt along with learnable
Et

0 are optimized via LCE in Eq. (5) for the first task, and
trained via Lobj in Eq. (14) when t ≥ 2. After optimizing
new model Θt, we store Θt as the frozen old model Θt−1 to
perform the GRD loss LRD for the next incremental task.

4. Experiments
4.1. Implementation Details

For fair comparisons, we follow the same protocols uti-
lized in baseline CIL methods [40, 50, 17, 17, 2, 18, 32] to

set incremental tasks (class order), and do experiments on
CIFAR-100 [33], ImageNet-100 [10] and ImageNet-1000
[10]. Specifically, we consider two task settings in this pa-
per: 1) We divide all categories of each dataset into T tasks
equally [40, 18] (i.e., the base class set B = 0%); 2) We start
by training our model on half of the categories, while divide
the rest of categories into T tasks equally [17, 32] (i.e., the
base class set B = 50%). When B = 0%, we set T =
{5, 10, 20, 25, 50} for CIFAR-100 [33], T = {5, 10, 20, 25}
for ImageNet-100 [10] and T = {5, 10} for ImageNet-1000
[10]. When B = 50%, we set T = {5, 10, 25, 50} for
CIFAR-100 [33] and ImageNet-100 [10].

As introduced in [40, 50], the size of memory M for all
comparison methods is fixed as 2,000 for CIFAR-100 [33]
and ImageNet-100 [10], and 20,000 for ImageNet-1000 [10].
We follow iCaRL [40] to update memory M and use global
memory for [18]. Besides, we employ the same data augmen-
tation proposed in DyTox [18] for all comparison methods,
but don’t use mixup technology. Following [17, 32], we also
consider another memory setting (i.e., storing 20 exemplars
per class), and set T = {5, 10},B = 50% for comparisons
on CIFAR-100 [33] (see Tab. 6). For network architecture,
we use ViT-Base [15] as feature extractor containing lm = 11
MSA blocks and lt = 1 TSA block, where the parameters
are initialized via [22]. The task classifier includes only one
fully-connected layer. The SGD optimizer is employed to
optimize our model, where the learning rate is initialized as
6.25× 10−5. We apply two plug-and-play losses (i.e., LFC
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Table 4. Performance on CIFAR-100 [33] (T = {5, 10, 20, 25, 50}) and ImageNet-100 [10] (T = {5, 10, 20, 25}) when we apply Ours‡

into existing distillation-based CIL methods and set M = 2000,B = 0%. Ours‡ denotes the proposed plug-and-play losses LFC and LRD.

Comparison Methods CIFAR-100 Dataset [33] ImageNet-100 Dataset [10]
Backbone #Params 5 10 20 25 50 Avg. Backbone #Params 5 10 20 25 Avg.

iCaRL [40] (CVPR’2017) ResNet-32 0.46M 66.4 63.9 53.1 50.2 39.1 54.5 ResNet-18 11.22M 76.4 69.5 60.6 57.9 66.1
iCaRL [40] + Ours‡ ResNet-32 0.46M 68.0 65.7 54.2 51.4 40.8 56.0 ResNet-18 11.22M 76.8 70.3 61.7 59.2 67.0

BiC [50] (CVPR’2019) ResNet-32 0.46M 55.3 50.8 48.3 46.4 39.3 48.0 ResNet-18 11.22M 61.5 54.3 46.7 44.5 51.8
BiC [50] + Ours‡ ResNet-32 0.46M 63.2 53.8 52.4 49.3 41.5 52.0 ResNet-18 11.22M 63.2 57.0 50.3 48.4 54.7

PODNet [17] (ECCV’2020) ResNet-32 0.46M 63.8 54.5 48.1 44.4 39.7 50.1 ResNet-18 11.22M 74.9 66.5 55.8 51.7 62.2
PODNet [17] + Ours‡ ResNet-32 0.46M 65.8 60.0 51.6 48.3 44.7 54.1 ResNet-18 11.22M 76.5 69.3 59.4 55.8 65.2

SS-IL [2] (ICCV’2021) ResNet-32 0.46M 65.1 59.0 49.0 48.6 40.7 52.5 ResNet-18 11.22M 60.9 53.5 39.3 35.8 47.4
SS-IL [2] + Ours‡ ResNet-32 0.46M 67.7 64.9 51.6 51.2 42.5 55.6 ResNet-18 11.22M 75.2 67.5 57.9 56.0 64.2

PODNet [17] + CSCCT [4] (ECCV’2022) ResNet-32 0.46M 63.7 54.3 47.8 44.0 39.0 49.8 ResNet-18 11.22M 74.8 66.3 55.4 51.3 62.0
PODNet [17] + CSCCT [4] + Ours‡ ResNet-32 0.46M 66.7 58.5 50.5 46.9 43.3 53.2 ResNet-18 11.22M 76.4 68.7 58.9 55.1 64.8

FOSTER [47] (ECCV’2022) ResNet-32 0.46M 72.0 68.7 67.1 66.0 62.6 67.3 ResNet-18 11.22M 74.9 70.9 67.2 65.7 69.7
FOSTER [47] + Ours‡ ResNet-32 0.46M 72.2 69.9 67.4 66.7 62.8 67.8 ResNet-18 11.22M 75.0 71.3 67.5 66.2 70.0

AFC [32] (CVPR’2022) ResNet-32 0.46M 65.6 57.1 50.9 48.1 42.0 52.7 ResNet-18 11.22M 76.3 69.7 61.1 58.1 66.3
AFC [32] + Ours‡ ResNet-32 0.46M 66.2 63.8 53.2 49.7 44.1 55.4 ResNet-18 11.22M 77.4 71.2 63.3 67.4 69.8

Upper Bound ResNet-32 0.46M 76.6 76.6 76.6 76.6 76.6 76.6 ResNet-18 11.22M 73.2 73.2 73.2 73.2 73.2

DyTox [18] (CVPR’2022) ViT-Tiny 10.71M 75.3 73.5 72.7 72.3 70.5 72.9 ViT-Tiny 10.71M 77.8 75.4 72.9 72.3 74.6
DyTox [18] + Ours‡ ViT-Tiny 10.71M 75.9 74.0 72.9 72.6 70.8 73.2 ViT-Tiny 10.71M 77.9 75.6 73.1 72.9 74.9

Upper Bound ViT-Tiny 10.71M 76.1 76.1 76.1 76.1 76.1 76.1 ViT-Tiny 10.71M 79.1 79.1 79.1 79.1 79.1

Table 5. Ablation studies on CIFAR-100 [33] (the top block)
and ImageNet-100 [10] (the bottom block), when we set T =
{5, 10, 25} under the settings of M = 2000,B = 0%.

Ablation Variants Backbone #Params TSA GFC GRD 5 10 25

Baseline ViT-Base 85.10M % % % 81.6 80.2 78.1
Baseline + TSA ViT-Base 85.10M ! % % 83.1 82.4 81.0
Baseline + TSA + GFC ViT-Base 85.10M ! ! % 84.0 83.7 82.1
HFC (Ours) ViT-Base 85.10M ! ! ! 86.4 86.3 85.0

Baseline ViT-Base 85.10M % % % 82.0 80.5 78.8
Baseline + TSA ViT-Base 85.10M ! % % 83.7 82.8 81.2
Baseline + TSA + GFC ViT-Base 85.10M ! % % 84.3 83.4 82.0
HFC (Ours) ViT-Base 85.10M ! ! ! 86.1 85.4 84.0

and LRD) to existing CIL methods [40, 18] using ResNet-18
[23], ResNet-32 [23] or ViT-Tiny [15] as backbone. For
evaluation, top-1 accuracy is used to compare performances
of our model and baseline methods.

4.2. Comparison Experiments

Comparison Results: Tabs. 1–3 present comparison re-
sults of our HFC model and off-the-shelf CIL methods on
CIFAR-100 [33], ImageNet-100 [10] and ImageNet-1000
[10]. Our model significantly outperforms existing CIL
methods [40, 50, 17, 2, 18, 32, 47] by 0.7% ∼ 16.6% accu-
racy under various incremental settings, when we use the
same backbone (i.e., ViT-Base [15]) as feature extractor for
fair comparisons. Such large performance improvement il-
lustrates the superiority of our model to address forgetting
heterogeneity among easy-to-forget and hard-to-forget old
categories from both representation and gradient aspects.

Improvement of Plug-and-Play Losses: Tab. 4 shows
large performance improvement of existing knowledge-

based CIL methods [40, 50, 17, 4, 18, 32, 47], when we apply
the proposed plug-and-play losses (i.e., LFC and LRD) to
them. The proposed losses LFC and LRD help existing CIL
methods to address heterogeneous forgetting from gradient
aspect, thus largely improving their performance. Besides, it
validates generalization and robustness of our HFC model.

4.3. Ablation Studies

As shown in Tab. 5, we present ablation studies on CIFAR-
100 [33] and ImageNet-100 [10] to investigate the effective-
ness of each module. TSA, GFC and GRD are task-semantic
aggregation blocks, the gradient-balanced forgetting com-
pensation loss LFC and gradient-balanced relation distilla-
tion loss LRD. Baseline denotes the performance of our
model using the traditional classification loss and knowl-
edge distillation loss proposed in DyTox (CVPR’2022) [18],
but without the TSA, GFC and GRD modules. Compared
with Ours, the performance of all ablation variants degrades
significantly. It validates superiority of each module to over-
come forgetting heterogeneity of different old categories.

4.4. Analysis of Task-Wise Comparisons

Figs. 3–4 present task-wise performance comparisons be-
tween our model and other CIL methods [40, 50, 17, 18, 32]
when we set backbone as ViT-Base and different tasks as
T = {5, 10, 20, 25}. Our HFC model outperforms baseline
methods for most task-wise comparisons, which illustrates
the superior performance of our model to surmount hetero-
geneous forgetting from representation and gradient aspects.
To identify new classes continually, the task-semantic aggre-
gation (TSA) block explores task-shared global representa-
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Figure 3. Analysis of task-wise performance comparisons on CIFAR-100 [33]. We set M = 2000,B = 0% when the backbone is ViT-Base.

Figure 4. Analysis of task-wise performance on ImageNet-100 [10]. We set M = 2000,B = 0% when the backbone is ViT-Base.

Table 6. Results on CIFAR-100 [33] when storing 20 exemplars for
each class. We set T = {5, 10} for B = 50%, and Ours‡ denotes
the proposed plug-and-play losses LFC and LRD.

Comparison Methods Backbone #Params 5 10 Avg. Imp.

iCaRL [40] (CVPR’2017) ViT-Base 85.10M 78.8 76.2 77.5 ⇑1.9
BiC [50] (CVPR’2019) ViT-Base 85.10M 75.3 74.5 74.9 ⇑4.5
PODNet [17] (ECCV’2020) ViT-Base 85.10M 71.6 71.6 71.6 ⇑7.8
SS-IL [2] (ICCV’2021) ViT-Base 85.10M 73.0 71.8 72.4 ⇑7.0
PODNet [17] + CSCCT [4] (ECCV’2022) ViT-Base 85.10M 71.5 71.7 71.6 ⇑7.8
FOSTER [47] (ECCV’2022) ViT-Base 85.10M 78.8 78.7 78.8 ⇑0.6
AFC [32] (CVPR’2022) ViT-Base 85.10M 68.2 65.3 66.8 ⇑12.6
DyTox [18] (CVPR’2022) ViT-Base 85.10M 79.3 78.4 78.8 ⇑0.6

HFC (Ours) ViT-Base 85.10M 79.8 78.9 79.4 −

Upper Bound ViT-Base 85.10M 94.2 94.2 94.2 −

iCaRL [40] (CVPR’2017) ResNet-32 0.46M 56.6 53.2 54.9 ⇑0.7
iCaRL [40] + Ours‡ ResNet-32 0.46M 57.3 53.9 55.6 −

PODNet [17] + CSCCT [4] (ECCV’2022) ResNet-32 0.46M 62.2 61.1 61.7 ⇑0.6
PODNet [17] + CSCCT [4] + Ours‡ ResNet-32 0.46M 62.9 61.6 62.3 −

FOSTER [47] (ECCV’2022) ResNet-32 0.46M 67.3 66.4 66.8 ⇑0.5
FOSTER [47] + Ours‡ ResNet-32 0.46M 67.7 66.6 67.2 −

AFC [32] (CVPR’2022) ResNet-32 0.46M 63.8 63.6 63.7 ⇑0.7
AFC [32] + Ours‡ ResNet-32 0.46M 64.4 64.3 64.4 −

Upper Bound ResNet-32 0.46M 76.6 76.6 76.6 −

DyTox [18] (CVPR’2022) ViT-Tiny 10.71M 67.9 66.2 67.1 ⇑0.5
DyTox [18] + Ours‡ ViT-Tiny 10.71M 68.5 66.7 67.6 −

Upper Bound ViT-Tiny 10.71M 76.1 76.1 76.1 −

tions to alleviate forgetting from representation aspect, while
LFC and LRD can achieve gradient-balanced compensation.

4.5. Analysis of Forgetting Heterogeneity

Tab. 7 presents forgetting heterogeneity (FH) of differ-
ent old classes via measuring their variance of gradient
updating. We formulate forgetting heterogeneity (FH) as
FH = 1

T

∑T
t=1

(
1
St

∑St

i=1(|Γt
i| −

∑t
η=1 Γη · Iyt

i∈Yη )2
)
,

where Γt
i and Γη are obtained from Eqs. (6)–(7), and St is

Table 7. Analysis of forgetting heterogeneity (FH) on CIFAR-100
[33] when T = 5,B = 0%. AC denotes the averaged accuracy.

M = 2000,B = 0% Backbone TSA GFC GRD FH AC

iCaRL [40] (CVPR’2017) ViT-Base – – – 131.5 83.5
FOSTER [47] (ECCV’2022) ViT-Base – – – 119.4 85.1

AFC [32] (CVPR’2022) ViT-Base – – – 108.5 74.6
DyTox [18] (CVPR’2022) ViT-Base – – – 105.1 85.5

Baseline ViT-Base % % % 128.9 81.6
Baseline + TSA ViT-Base ! % % 125.4 83.1

Baseline + TSA + GFC ViT-Base ! ! % 120.5 84.0
HFC (Ours) ViT-Base ! ! ! 103.6 86.4

number of samples in test set. Tab. 7 verifies superiority
of our model against other CIL methods to tackle heteroge-
neous forgetting. It also shows effectiveness of all modules
to collaboratively minimize forgetting heterogeneity.

5. Conclusion

In this paper, we develop a novel Heterogeneous Forget-
ting Compensation (HFC) model to surmount heterogeneous
forgetting from representation and gradient aspects. To be
specific, a task-semantic aggregation block is designed to
tackle heterogeneous forgetting from representation aspect
via exploring task-shared global representations. Moreover,
we propose a gradient-balanced forgetting compensation
loss and a relation distillation loss to compensate forgetting
heterogeneity from gradient aspect via performing balanced
gradient propagation and distilling heterogeneous class re-
lations. Experiments verify the superiority of our proposed
HFC model against baseline methods. We will further con-
sider addressing noisy forgetting heterogeneity in the future.
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