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Abstract

Semi-supervised learning has attracted increasing atten-
tion in the large-scale land cover mapping task. How-
ever, existing methods overlook the potential to alleviate the
class imbalance problem by selecting a suitable set of un-
labeled data. Besides, in class-imbalanced scenarios, ex-
isting pseudo-labeling methods mostly only pick confident
samples, failing to exploit the hard samples during train-
ing. To tackle these issues, we propose a unified Class-
Aware Semi-Supervised Semantic Segmentation framework.
The proposed framework consists of three key components.
To construct a better semi-supervised learning dataset, we
propose a class-aware unlabeled data selection method that
is more balanced towards the minority classes. Based on
the built dataset with improved class balance, we propose
a Class-Balanced Cross Entropy loss, jointly considering
the annotation bias and the class bias to re-weight the loss
in both sample and class levels to alleviate the class im-
balance problem. Moreover, we propose the Class Cen-
ter Contrast method to jointly utilize the labeled and un-
labeled data. Specifically, we decompose the feature em-
bedding space using the ground truth and pseudo-labels,
and employ the embedding centers for hard and easy sam-
ples of each class per image in the contrast loss to exploit
the hard samples during training. Compared with state-of-
the-art class-balanced pseudo-labeling methods, the pro-
posed method improves the mean accuracy and mIoU by
4.28% and 1.70%, respectively, on the large-scale Sentinel-
2 dataset with 24 land cover classes.

1. Introduction
Land cover mapping provides pixel-level information

for urban management, climate change research, ecosys-
tem protection, and other sustainability-related applica-
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Figure 1. Examples of the labeled data. The top row shows
Sentinel-2 images containing 13 bands. The bottom row shows
the corresponding labels. We use a fine-grained classification sys-
tem with 24 land cover classes in this work.

tions [21, 27]. With the rapid progress of computer vi-
sion technology, it is desired to automatically gain large-
scale and fine-grained land cover information from remote
sensing images to support the demand of existing earth sys-
tem science studies and bring new opportunities for intel-
ligent city study [31]. However, fine-grained annotations
for land cover mapping are high-cost and time-consuming,
limiting labeled data collection for large-scale applications.
Semi-supervised learning (SSL) is a potential solution to
this problem, as it utilizes both existing labeled data and a
large number of unlabeled data [37].

Large-scale land cover mapping with fine-grained
classes usually suffers from class imbalance, as shown in
Figure 1 and 3. The labeled data tends to be biased due to
the difficulty of data collection and label annotation vary-
ing by class. The class imbalance leads to suboptimal per-
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formance in the minority classes. Most SSL methods for
large-scale land cover mapping are typically based on the
assumption that labeled and unlabeled data have the same
class distribution [41, 37]. However, this assumption does
not hold in most scenarios, resulting in the bias of class esti-
mation. As such, it is non-trivial to jointly utilize the labeled
and unlabeled data to train the network for semi-supervised
semantic segmentation. Although many pseudo-labeling
methods aim to assign pseudo-labels more steadily and cor-
rectly for different classes on the unlabeled data, e.g., dy-
namically setting threshold or proportion [17, 44], they still
rely on setting hyperparameters and empirical principles,
resulting in a lack of flexibility and generalization ability in
applications. Besides, pseudo-labeling methods mostly rely
on easy samples with high confidence scores, thus failing to
exploit the hard samples on the unlabeled data.

To alleviate the above issues, we propose a unified Class-
Aware Semi-Supervised Semantic Segmentation frame-
work. We exploit the potential of the unlabeled data and
alleviate the class imbalance problem in large-scale land
cover mapping with fine-grained classes. The proposed
class-aware unlabeled data selection method constructs an
SSL dataset and compensates for the class imbalance on the
labeled data. Based on the built SSL dataset, we propose
a class-balanced learning method to remove the annotation
bias and class bias on the SSL dataset. We dynamically es-
timate the class prior information on the entire SSL dataset
during training to re-weight both samples and classes of the
loss function for the labeled data. Finally, we propose the
Class Center Contrast method to jointly use the labeled and
unlabeled data for training. The ground truth and pseudo-
labels are leveraged as the guide to decompose the feature
embedding space. We estimate the hard, easy, and over-
all embedding centers for each class per image and apply
the contrastive loss to optimize the distances between class
centers to utilize both easy and hard samples. The class im-
balance issue is alleviated by utilizing the proposed method,
and the performance of large-scale land cover mapping with
fine-grained classes is effectively improved.

2. Related Work
Large-Scale Land Cover Mapping. Land cover map-

ping classifies each pixel of images into a unique class,
which can be regarded as a semantic segmentation prob-
lem [6, 11]. Large-scale land cover mapping with fine-
grained classes can provide necessary information for earth
system science studies and land spatial layout optimiza-
tion. However, manual or semi-manual labeling is high-cost
and time-consuming [34]. Besides, the classification sys-
tems of most large-scale studies are coarse. Thus the pro-
vided land cover information is limited. For example, the
Chesapeake dataset covering 160,000 km2 costs $1.3 mil-
lion but only contains four classes [33]. DynamicEarthNet

dataset covers 17,000 km2 and includes 7 basic land cover
classes [36]. To overcome the limited area of the labeled
data and improve the model generalization, some works uti-
lize openly available produced data (e.g., OpenStreetMap
data and land cover products), which contains many noisy
labels but can provide prior information in a large-scale
area [19, 10]. These works still use coarse classification
systems of land cover mapping. Five-Billion-Pixels [37] is
a large-scale land cover dataset with 24 categories, cover-
ing about 60,000 km2, which opens the door to large-scale
land cover mapping with fine-grained classes. However,
this dataset suffers from a severe class-imbalance problem
(the common categories cover hundreds of times more pix-
els than the rare ones), due to the difficulty of data collection
and label annotation varying by class.

Class-Imbalanced Learning. To solve the class-
imbalance problem, related works include data re-
sampling [3, 4], loss re-weighting [22, 32, 18], margin mod-
ification [5, 35], and decoupled learning [20, 47]. In self-
supervised learning and SSL, recent works devote to re-
balancing the class distribution of SSL data by assigning
pseudo-labels for the unlabeled data to address the class im-
balance issue [41, 15]. For example, Gui et al. [14] propose
a class-aware pseudo-labeling method for SSL, dynamically
adjusting the threshold for selecting pseudo-labels to obtain
better performance on minority classes. Similarly, Hu et
al. [17] propose a label bias removal method and dynami-
cally determine the threshold for each class to assign more
pseudo-labels for minority classes. However, the hard sam-
ples with relatively low confidence scores are ignored for
optimizing the model, leading to sub-optimal performance.

Semi-Supervised Semantic Segmentation. SSL meth-
ods leverage the relationships between the labeled and un-
labeled data to improve the model accuracy and general-
ization, alleviating the limited area of the labeled data [8].
Semi-supervised semantic segmentation methods include
entropy minimization [38], consistency regularization [30],
and pseudo-labeling [42]. Pseudo-labeling is widely used
in semi-supervised semantic segmentation, and many works
contribute to selecting pseudo-labels more steadily and cor-
rectly [29]. For example, Tong et al. [37] propose a dy-
namic pseudo-label assignment method, in which the num-
ber of pseudo-labels is dynamically increased with training
iterations. However, these methods still rely on the manual
setting of hyperparameters and suffer from the uncertainty
of pseudo-labels. Alternatively, contrastive learning meth-
ods in supervised learning [39, 16] and SSL [46, 40] con-
strain the representations of positive samples against these
negative samples in feature space, leading to promising re-
sults. Different from the manner of data augmentation-
based positive sample construction [43, 23] and memory
bank-based negative sample construction [1, 40], we lever-
age the ground-truth and pseudo-labels as a guide to decom-
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pose the feature embedding space, and estimate the embed-
ding centers for each class per image to stably select easy
and hard samples for the proposed Class Center Contrast
method.

3. Methodology
3.1. The Overall Workflow of Our Approach

Our approach consists of four steps. First, a baseline
model is trained on the labeled data. Second, we propose
a class-aware unlabeled data selection method to build an
SSL dataset that is more balanced towards minority classes.
The baseline model is used to predict land cover classes
on all collected data from a large unlabeled data pool and
calculate the statistics of the class distribution for each im-
age patch. The image patches containing pixels of minor-
ity classes are selected as unlabeled data. Then the SSL
dataset is constructed by combining the labeled data and
the selected unlabeled data. Third, we propose a Class-
Balanced Cross Entropy loss and a Class Center Contrast
method. To alleviate the class imbalance problem, we re-
weight the cross entropy loss on labeled data in both sam-
ple and class level by jointly considering the annotation bias
and the class bias on the built SSL dataset. Besides, we
decompose the feature embedding space using the ground
truth and pseudo-labels, and propose an embedding cen-
ter selection and contrast method for class-balanced and
annotation-guided learning on unlabeled data. The pipeline
of the proposed class-aware SSL model is shown in Fig-
ure 2. Finally, we perform model inference for large-scale
land cover mapping.

3.2. Class-Aware Unlabeled Data Selection

A suitable set selection of unlabeled data is important
for SSL model development. Inspired by the observation
in [41] that existing SSL algorithms can produce pseudo-
labels on minority classes with high precision, we pro-
pose an unlabeled data selection strategy that tends to se-
lect unlabeled image patches containing pixels with minor-
ity classes.

First, we train a semantic segmentation model using la-
beled data. We apply the off-the-shelf class balance strat-
egy [4] designed for supervised learning to guarantee the
model ability of minority class estimation. The definition
of minority classes depends on the class proportion and
the class accuracy on the labeled data. Then, we perform
model inference on all candidate unlabeled data to predict
the land cover class of each pixel, thereby obtaining the
class distribution of each candidate image patch. We denote
the proportion of pixels of all minority classes in an image
patch as Pm. Finally, we formulate a principle to automat-
ically select unlabeled data according to the class distribu-
tion of each candidate image patch. Specifically, the pro-

portions of the 24 classes on the labeled dataset are shown
in Figure 3. The classes with a proportion lower than 1%
generally achieve an accuracy of less than 30% within our
dataset. We collect all the images with Pm ≥ 1%, which
leads to about 25,000 images over the about 500,000 can-
didates (see Section 4.3). Then we randomly select another
25,000 images from those with 0 < Pm < 1%, leading to
a total of 50,000 unlabeled images, which is five times the
number of the labeled training data. The authors suggest
selecting unlabeled patches with relatively more pixels of
minority classes (i.e., larger Pm), and those encompassing
rare classes characterized by fewer pixels within the minor-
ity classes. Note that although the prediction on the unla-
beled data is not absolutely accurate, it can preserve image
patches that are most likely to contain pixels with minority
classes, which contributes to building a more balanced SSL
dataset.

3.3. Class-Balanced Learning

In our built SSL dataset, the class distribution of unla-
beled data differs from that of the labeled data. It can be re-
garded as an annotation bias problem on the entire dataset.
Besides, the SSL dataset still suffers from a class imbalance
issue. Consequently, using the class prior information es-
timated on the labeled data to the re-weight loss function
is inappropriate. To solve the above issues, we propose a
class-balanced learning method to jointly remove the anno-
tation bias and class bias on the SSL dataset.

First, we re-weight samples of labeled data to remove
the annotation bias. Owing to our unlabeled data selection
method, the entire SSL dataset is more balanced towards
minority classes than the original labeled dataset. There-
fore, we can estimate the class prior on the entire SSL
dataset to partially remove the annotation bias. Specifically,
we denote L as a label indicator, where L = 0 and L = 1
represent the unlabeled and labeled data, respectively. The
model parameters θ of labeled data in traditional SSL meth-
ods are obtained by maximizing likelihood estimation in the
formula (1).

θ̂ = argmax
θ

logP (Y |X,L = 1; θ)

= argmax
θ

∑
(x,y)∈DL=1

logP (y|x; θ), (1)

where θ̂ is the estimated model parameter, X represents
samples, Y represents classes, and DL=1 denotes the set
of labeled data. Due to the annotation bias in the SSL
dataset, we have P (y|x;L = 1) ̸= P (y|x). Accord-
ing to causal inference [13, 17], in the entire SSL dataset,
X → Y → L can be regarded as a one-way chain, where
the class is dependent on its pixel, and whether the pixel
has a label or not depends on its class. According to the
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Figure 2. The pipeline of the proposed Class-Aware Semi-Supervised Semantic Segmentation framework with class-balanced learning,
embedding center estimation, and class center contrast. The class-aware unlabeled data selection process is not shown in the figure.

conditional independence rule, we obtain the expression,
P (X|Y,L = 1) = P (X|Y ) when conditioning on Y.
Therefore, estimating the model parameters of the entire
SSL dataset can be formalized as in the formula (2) [17],
where s(x, y) = logP (y|x;θ)−logP (y;θ)

logP (y|x;θ) is the loss weight of
each labeled sample (x, y). Thus, it can be interpreted as
modifying the class prior P (y; θ) to remove the annotation
bias of the labeled data.

θ̂ = argmax
θ

logP (X|Y ; θ)

= argmax
θ

∑
(x,y)∈DL=1

logP (x|y; θ)

= argmax
θ

∑
(x,y)∈DL=1

log
P (y|x; θ)P (x; θ)

P (y; θ)

= argmax
θ

∑
(x,y)∈DL=1

log
P (y|x; θ)
P (y; θ)

= argmax
θ

∑
(x,y)∈DL=1

s(x, y) · logP (y|x; θ),

(2)

Second, although the SSL dataset is more balanced than
the labeled data, it still suffers from the class imbalance
problem. Therefore, we further estimate the class bias on
the SSL dataset. A widely used class re-weighting loss
function on supervised learning can be formalized as fol-
lows:

Lwce =

K∑
k=1

Wk

nk∑
i=1

yik log pik, (3)

where Wk = 1
log(1+rk)

and rk is the ratio of the class k
on the labeled data. K is the number of classes, nk is the
number of samples of class k, yik and pik is the ground-
truth and predicted probability of the i-th sample for class
k, respectively. In SSL, we approximate rk with P (y; θ),
the class distribution on the entire dataset.

Finally, we perform an online estimation strategy for
P (y; θ) to simplify the training process. We compute the
average of class probability distributions over all pixels in
a mini-batch, which is denoted as P (Y ;Bt, θt). Bt and θt
are the samples and model parameters of the current batch,
respectively. Then the approximate class distribution, de-
noted as P̃ (Y ), is updated by the weighted sum of the ob-
tained class distribution of this mini-batch and the approx-
imate class distribution in the previous iteration, which is
formalized as follows:

P̃ (Y )← µP̃ (Y ) + (1− µ)P (Y ;Bt, θt), (4)

where µ ∈ [0, 1] is a weighting coefficient. We set µ = B
N ,

in which B is the batch size and N is the total number of
samples in the dataset. We initialize P̃ (Y ) with the class
distribution calculated on the labeled data. As such, the
proposed Class-Balanced Cross Entropy loss on the labeled
data is formulated as follows:

Lcbce =

K∑
k=1

Wk

nk∑
i=1

s(xik, yik)yik log pik. (5)
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3.4. Class Center Contrast

Training via pseudo-labeling is commonly used to utilize
unlabeled data in SSL. In fine-grained classes, assigning re-
liable labels for minority classes is challenging because the
segmentation model tends to be biased towards the majority
classes [26]. Besides, existing label assignment methods
usually use only high-confidence predictions, which may
offer limited information to model learning. In this work,
our method selects reliable and hard samples. Moreover,
instead of directly using the pseudo-labels for supervised
learning on unlabeled data, we leverage the pseudo-labels
as the guide to decompose the feature embedding space. In
general, the distance of feature embeddings from the same
class should be minimized, while the distance of those from
different classes should be maximized. Therefore, we pro-
pose an online embedding center selection method that di-
vides each class into hard and easy sample regions on each
image. Specifically, we use the prediction probabilities of
ground truth or pseudo-labels to separate easy and hard
samples. The predicted probability of each pixel is asso-
ciated with its feature embedding, and we then calculate
the average prediction probability of each class for each
image. Feature embeddings with above-average probabil-
ities for the corresponding class are considered easy sam-
ples and vice versa. Thus we can obtain three feature em-
bedding centers, including easy, hard, and all feature em-
bedding centers, as contrastive samples. With this method,
on the one hand, the obtained feature embeddings for each
class are with relatively high confidence, as the samples are
close to feature local centers for each class in the embed-
ding space. On the other hand, these feature embeddings
include hard samples of each class.

Inspired by the existing contrastive learning method
[39], we perform cross-image contrastive learning in each
mini-batch. Since both labeled and unlabeled data are
trained in a mini-batch, the embeddings of the labeled data
could help the feature embedding learning of the unlabeled
data. Formally, denote Pm and Nm as the feature embed-
ding collections of the positive and negative samples in a
mini-batch for the m-th feature embedding center cm. The
proposed Class Center Contrastive loss for the m-th feature
embedding center is formulated as follows:

Lm
cct = −

1

|Pm|
∑

c
+
m∈Pm

log
e(cm·c+

m/τ)

e(cm·c+
m/τ) +

∑
c
−
m∈Nm

e(cm·c−
m/τ)

,

(6)
in which τ is the temperature parameter, c+m and c−m are the
positive and negative samples, respectively.

The overall loss function can be formulated as follows:

L = Lcbce + λLcct, (7)

where λ is the loss weight.

4. Data

4.1. Image Collection and Preparation

Considering free access, multispectral bands, and rela-
tively high spatial resolution, all satellite images used in
this work are acquired from Sentinel-2 satellites. Sentinel-2
imagery has 13 spectral bands at 10 m (R, G, B, and near-
infrared bands), 20 m (six red edge and shortwave infrared
bands), and 60 m (three atmospheric correction bands) res-
olutions [12]. The abundant multispectral information and
up to 10 m spatial resolution benefit land cover mapping
with a fine-grained classification system.

We collect Sentinel-2 images with radiometric correc-
tion, geometric corrections, and atmospheric correction,
covering more than 60 cities in China. We apply an off-
the-shelf Sentinel-2 sharpening method, DSen2Net [24], to
reconstruct low-resolution bands and uniform the resolution
of all bands of Sentinel-2 images to 10 m.

4.2. Label Collection and Classification System

The land cover labels and classification system are from
the Five-Billion-Pixels dataset [37], labeled with 4 m res-
olution. It includes 24 land cover classes. We resize the
4 m labels to 10 m to match Sentinel-2 images. The la-
beled area covers about 60,000 km2 in China. The clas-
sification system includes the industrial area (C1), paddy
field (C2), irrigated field (C3), dry cropland (C4), garden
land (C5), arbor forest (C6), shrub forest (C7), park (C8),
natural meadow (C9), artificial meadow (C10), river (C11),
urban residential (C12), lake (C13), pond (C14), fish pond
(C15), snow (C16), bare land (C17), rural residential (C18),
stadium (C19), square (C20), road (C21), overpass (C22),
railway station (C23), and airport (C24).

4.3. Dataset

Examples of the labeled data are shown in Figure 1. The
training, validation, and test datasets include 9,995, 2,000,
and 2,503 images with a size of 256 × 256, respectively,
according to the geographical division. The unlabeled data
is from more than 60 dispersed administrative districts in
China and has no overlap with the labeled data. The number
of candidate unlabeled images is about 500,000, each with
a size of 256× 256. According to our minority class-biased
unlabeled data selection strategy, we filter 50,000 images
to build the unlabeled set, which covers more scenes with
minority classes. Figure 3 shows the proportion of each land
cover class on labeled training data, unlabeled training data,
and all training data. The majority classes cover hundreds
of times more pixels than the minority classes on the labeled
training data.
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Method OA mAcc mIoU C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
Baseline 73.24 45.77 35.61 71.24 66.25 88.66 17.90 16.93 62.26 27.01 17.26 44.65 11.33

SimCLR [7]
+finetune 74.07 45.81 35.17 74.49 63.33 90.88 14.10 17.80 62.10 23.57 18.39 48.42 21.02

Pseudo
-labeling [25] 74.61 48.83 38.03 76.85 69.60 91.55 13.47 20.52 59.19 31.63 37.53 44.90 10.68

Advent [38] 74.81 49.25 38.98 75.88 68.38 91.98 12.20 15.01 62.46 25.91 44.77 54.75 8.10
CADR [17] 75.49 47.83 36.63 76.32 52.43 91.48 21.54 24.35 64.74 31.85 22.59 59.88 17.25
DPA [37] 75.36 48.57 37.77 76.05 69.40 92.33 15.51 19.79 66.30 27.05 23.25 52.41 12.48

Ours 75.97 53.53 40.68 81.71 80.07 88.89 22.27 37.32 67.06 34.87 26.44 56.73 17.16

C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 C21 C22 C23 C24
70.86 82.76 78.93 24.49 57.71 3.04 48.67 77.23 10.80 7.90 71.42 45.83 34.95 60.34
71.47 83.27 79.41 30.54 64.73 0.75 48.77 68.82 2.00 0 73.59 44.53 33.87 63.72
72.40 82.90 83.56 16.94 52.44 13.66 55.06 72.58 21.05 13.03 70.27 60.60 38.78 62.83
69.98 83.19 83.38 19.72 49.34 15.50 46.56 75.16 22.40 17.55 70.99 58.04 41.62 69.23
65.90 86.27 84.53 26.09 72.57 0 51.78 74.96 0.95 0 65.23 48.51 33.64 75.02
71.97 83.33 81.80 16.77 50.66 0.88 52.37 72.61 21.42 6.64 72.15 59.10 49.15 72.37
70.61 82.86 81.69 17.13 78.53 26.28 55.80 80.69 31.83 26.49 66.23 64.65 46.39 42.97

Table 1. Quantitative comparison with different methods. We also show the precision of each class. Bold indicates the best results (%).

5. Experiments

5.1. Implementation Details and Metrics

We choose ResUNet [9] in our experiments, as it is sta-
ble and lightweight for land cover mapping. We train for
100 epochs for all experiments using stochastic gradient de-
scent (SGD) with a momentum of 0.9 and a weight decay of
10−4. The initial learning rate is set to 0.05. We adopt the
batch size as 12, including 6 labeled images and 6 unlabeled
images. The loss weight λ is set to 0.005. The temperature

τ of contrastive loss is set to 0.07.
The performance of the proposed approach and other

competing methods are assessed with overall accuracy
(OA), mean accuracy (mAcc), mean intersection over union
(mIoU), and precision of each class.

5.2. Comparison Results

Table 1 shows the comparison results with typical
and state-of-the-art class-balanced pseudo-labeling meth-
ods. For a fair comparison, all competing methods and our
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Method OA mAcc mIoU
Random
selection

75.50 51.35 39.09

Majority class
-biased selection

75.75 49.98 39.33

Minority class
-biased selection

75.97 53.53 40.68

Table 2. Ablation study on the proposed class-aware unlabeled
data selection method. Bold indicates the best results (%).

Method OA mAcc mIoU
Without class balance 75.41 48.16 37.27

Class-balanced method in [38] 73.61 51.33 38.61
Class-balanced method in [37] 75.51 49.66 35.51

Ours 75.97 53.53 40.68

Table 3. Comparison results on different class-balanced learning
methods. Bold indicates the best results (%).

method use the same model architecture. All experiments
are measured on the same computing platform. The base-
line applies the supervised learning method to the labeled
data. The SimCLR+finetune method uses a self-supervised
learning method [7] on the unlabeled data to obtain a pre-
train model and performs fine-tuning on the labeled data.
Pseudo-labeling method [25] first generates pseudo-labels
of the unlabeled data by using the baseline model, then re-
trains the model with ground truth and pseudo-labels. Ad-
vent [38], DPA [37], and CADR [17] are three state-of-the-
art SSL methods.

The results demonstrate that our approach significantly
improved over 4.28% in mAcc, 1.70% in mIoU, and 0.58%
in OA. Compared to the baseline for each class, our method
can significantly improve the accuracy of the minority
classes and maintain the accuracy of the majority classes
simultaneously. In contrast, the competing methods often
tend to predict the pixels to majority classes and suffer from
low precision on minority classes. Regarding the computa-
tional cost, our method incurs 53% additional training time
than the basic SSL algorithm (i.e., Advent) due to Class-
Balanced Learning and Class Center Contrast. The infer-
ence times are the same for all SSL methods, as we use the
same backbone. Please find the visual comparison in the
supplementary.

5.3. Ablation Study

Class-Aware Unlabeled Data Selection. We compare
our method with the opposite strategy (i.e., majority class-
biased data selection) and widely opted random selection
method. Table 2 shows that our method achieves the best re-
sults. On the contrary, the mAcc value of the majority class-
biased data selection method is unsatisfactory because the
SSL model is biased toward predicting the majority classes.
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Figure 4. Results of using the different number of labeled images
(i.e., 500, 1,000, and 3,000) and the different ratios of unlabeled to
labeled images in SSL.

Besides, to verify the effectiveness of unlabeled data se-
lection, we show the statistics of class distribution in Fig-
ure 3. Estimating the class distribution of unlabeled data is
based on the pseudo-labels produced by the baseline model.
Owing to the proposed class-aware unlabeled data selection
method, the class distribution of the unlabeled data is more
balanced than that of the labeled data. As a result, the entire
training dataset is more balanced towards minority classes
than the original labeled dataset. Therefore, we can estimate
the class prior information on the entire dataset to partially
remove the annotation bias.

Class-Balanced Learning. In general, class re-
weighting sacrifices the accuracy of majority classes to im-
prove the accuracy of minority classes, which decreases OA
and mIoU. From Table 3, two comparison methods suf-
fer from the above problem, while our method improves
the mAcc, OA, and mIoU compared to the baseline (i.e.,
without loss weights). The reason is that the two compar-
ison methods use class prior information of labeled data
and ignore the discrepancy of class distributions between
labeled and unlabeled data in SSL. Besides, Table 4 shows
the ablation study on Class-Balanced Cross Entropy loss.
Utilizing sample re-weighting improves performance by re-
moving the annotation bias on the semi-supervised learning
dataset. Using class re-weighting for cross-entropy loss re-
moves class bias and improves the performance of mAcc
and mIoU by a large margin. Furthermore, jointly utiliz-
ing the sample and class weights achieves the best results in
Table 4.

Class Center Contrast Method. Table 5 shows the ab-
lation study on the proposed class center contrast method.
Contrastive loss utilizes inter-class and intra-class informa-
tion and achieves better results than center loss used in [28].
Compared with only training contrastive loss with pseudo-
labels on unlabeled data, using pseudo-labels on both la-
beled and unlabeled data achieves better results. Further-
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Cross entropy loss Sample re-weighting Class re-weighting OA mAcc mIoU
✓ 75.41 48.16 37.27
✓ ✓ 75.74 48.96 38.40
✓ ✓ 75.43 52.06 40.07
✓ ✓ ✓ 75.97 53.53 40.68

Table 4. Ablation study on class-balanced cross entropy loss. Bold indicates the best results (%).

Center
loss

Contrastive
loss

Pseudo
label

Ground
truth

On labeled
data

On unlabeled
data OA mAcc mIoU

✓ ✓ ✓ 74.07 48.13 37.34
✓ ✓ ✓ 75.23 50.06 39.29
✓ ✓ ✓ ✓ 75.26 51.42 39.43
✓ ✓ ✓ ✓ ✓ 75.97 53.53 40.68

Table 5. Ablation study on the class center contrast method. Bold indicates the best results (%).

Method OA mAcc mIoU
Random sample selection 74.68 49.31 38.80
Simple sample selection 74.74 51.57 40.42
Hard sample selection 74.57 51.14 40.31

Feature embedding centers 75.97 53.53 40.68

Table 6. Results of different contrastive sample selection manners.
Bold indicates the best results (%).

Method OA mAcc mIoU
Within-image method 73.36 53.48 40.03
Cross-image method 75.97 53.53 40.68

Table 7. Results of within-image and cross-image contrastive
learning. Bold indicates the best results (%).

more, introducing the ground truth of labeled data to the
training of contrastive loss can significantly improve perfor-
mance. We also compare different sample selection strate-
gies for contrastive learning. We select three contrastive
samples for each class per image for a fair comparison.
As shown in Table 6, leveraging high-confidence predicted
samples from the unlabeled data for semi-supervised learn-
ing yields better results than employing uncertain samples.
Nonetheless, samples with high-confidence predictions pro-
vide limited information for model learning, leading to
only marginal enhancements. The proposed Class Center
Contrast method involves both high-confidence and hard
samples, achieving the best results. Besides, we compare
within-image and cross-image contrastive learning results
in Table 7. Cross-image method uses labeled and unlabeled
images in a mini-batch and achieves better results, while the
within-image method only uses local information of labeled
or unlabeled images.

Hyperparameter Tuning of Loss Weight. λ is to bal-
ance two loss terms in the formula (7). Table 8 shows the

Loss weight OA mAcc mIoU
λ = 0.05 75.07 51.62 40.15
λ = 0.01 75.26 51.42 39.43
λ = 0.005 75.97 53.53 40.68
λ = 0.001 75.27 53.84 40.26

Table 8. Hyperparameter tuning of loss weight. Bold indicates the
best results (%).

results using different loss weights λ. We conclude that a
large loss weight for Lcct reduces the model performance.
In this work, we set λ = 0.005.

The Number and Ratio of Labeled Images in SSL.
We conduct a comparative analysis of the enhancement in
accuracy resulting from the increase of unlabeled data. As
shown in Figure 4, the utilization of a larger quantity of
unlabeled data, specifically ten times the amount of labeled
training data containing only 500 images, has been observed
to result in a substantial improvement in accuracy. Mean-
while, the performance becomes unstable as the ratio be-
tween unlabeled and labeled images increases further be-
cause of the limited number of labeled images. As the
amount of labeled data increased, using the unlabeled data,
which is five times the amount of labeled data, can yield su-
perior results compared to using just one time the amount
of labeled data. Subsequently, the performance is relatively
stable as the number of unlabeled data increases. Therefore,
to balance the computational cost and improvement in ac-
curacy, we use a ratio of 5:1 for unlabeled and labeled data.

5.4. Examples of Land Cover Mapping in China

As an application of the proposed method, we produce
large-scale land cover maps with 24 classes over 1 million
km2. As shown in Figure 5, we compare our land cover
mapping results with two existing public products produced
by ESA [45] and Google [2]. The example in the top row
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Figure 5. Examples of Land Cover Mapping in China. The land cover products of ESA and Google are also generated from Sentinel-2
images but use different classification systems. In the black rectangles, our land cover results with fine-grained classes can provide more
land cover information. In the red rectangles, our method recognizes the paddy field correctly, while the other two products classify it as
cropland and water, respectively, due to the coarse classification system and the misleading spectral information of the paddy field.

shows the results of an urban area located in the east of
China, and that in the bottom row gives the results of a rural
area located in the center of China. The land cover prod-
ucts of ESA and Google contain 11 and 9 classes, while our
classification system includes 24 classes. From the black
rectangles, the two comparison products mainly distinguish
built areas, water, trees, and crops. Owing to the fine-
grained classification system and the proposed class-aware
SSL methods, our results can recognize more land cover
categories, including industrial area, urban residential, ru-
ral residential, road, overpass, railway station, arbor for-
est, artificial meadow, irrigated field, bare land, lake, river,
pond, and fish pond. Our land cover maps with fine-grained
classes can provide more land cover information. Besides,
from the red rectangles, our method recognizes the paddy
field correctly, while the other two products classify it as
cropland and water, respectively, due to the coarse classi-
fication system and the misleading spectral information of
the paddy field. From the above qualitative comparison, our
method provides land cover maps with fine-grained classes,
significantly improving the land cover information.

6. Conclusion

In this work, we propose a unified Class-Aware Semi-
Supervised Semantic Segmentation approach for large-

scale land cover mapping with fine-grained classes. To ad-
dress the class-imbalance issue, we propose a class-aware
unlabeled data selection method to build an SSL dataset
more balanced towards minority classes. Then, we propose
a Class-Balanced Cross Entropy loss, considering the anno-
tation and class biases on the built SSL dataset. Moreover,
we propose the Class Center Contrast method to jointly use
the labeled and unlabeled data for training. Experimental
results validate the effectiveness of our method in large-
scale land cover mapping with fine-grained classes.
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