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Abstract

We present a simple and effective Multi-scale Residual
Low-Pass Filter Network (MRLPFNet) that jointly explores
the image details and main structures for image deblurring.
Our work is motivated by an observation that the differ-
ence between the blurry image and the clear one not only
contains high-frequency contents1 but also includes low-
frequency information due to the influence of blur, while us-
ing the standard residual learning is less effective for mod-
eling the main structure distorted by the blur. Considering
that the low-frequency contents usually correspond to main
global structures that are spatially variant, we first pro-
pose a learnable low-pass filter based on a self-attention
mechanism to adaptively explore the global contexts for
better modeling the low-frequency information. Then we
embed it into a Residual Low-Pass Filter (RLPF) module,
which involves an additional fully convolutional neural net-
work with the standard residual learning to model the high-
frequency information. We formulate the RLPF module into
an end-to-end trainable network based on an encoder and
decoder architecture and develop a wavelet-based feature
fusion to fuse the multi-scale features. Experimental results
show that our method performs favorably against state-of-
the-art ones on commonly-used benchmarks.

1. Introduction

The camera shake and object motion are usually in-
evitable when taking photos with hand-held devices, which
lead to significant motion blur effects. Restoring clear pho-
tos from blurry ones has attracted lots of attention from both
research and industry communities [40]. However, motion
deblurring is quite challenging as only the blurred images
are available while the blur and latent images are unknown.

Significant progress has been made in image restoration
due to the development of deep neural networks that di-
rectly learn the mapping from the degraded observation to

*Corresponding author
1Note that the high-frequency contents in an image correspond to the

image details, while the low-frequency ones denote the main structures of
an image.

the clear image. It is well known that the residual learning
strategy [7] has been widely used to ease the training of net-
works, where a latent clear image I can be restored by the
summation of the degraded input B and the output N (B)
of a residual learning network N . This strategy has been
proven to be effective in lots of image restoration tasks, e.g.,
image super-resolution, as the degraded image B shares the
same main structures as the clear one I , and the residual
between B and I mainly contains image details.

However, we note that the difference between a blurry in-
put and its corresponding clear one not only contains image
details but also involves some structures. Taking Figure 1 as
an example, the main structures in the clear image (e.g., the
pillars enclosed in the red boxes of Figure 1(f)) disappear
due to the influence of the motion blur effect. Thus, in ad-
dition to the details smoothed by the blur, some main struc-
tures also exist in the residual between the blurry image and
the clear one (see the part enclosed in the red box of Figure
1(b)). As demonstrated in [22], the standard residual learn-
ing method [7] is effective for modeling the high-frequency
information but less effective to restore the low-frequency
contents. Figure 1(c) also shows that using the standard
residual learning method may not estimate the main struc-
tures of the residual image well, which thus affects the final
image restoration (Figure 1(h)). Therefore, it is important
for image deblurring to effectively model the main struc-
tures distorted by the motion blur.

To alleviate the above-mentioned problem, the recent
methods [15, 34] introduce a frequency branch based on
the Fast Fourier Transform (FFT) in the residual network,
which achieves good performance. However, as such a fre-
quency branch is achieved by applying Conv1 + ReLU +
Conv12 to the concatenation of the real and imaginary parts
of the residual image, it may not effectively model the
spatially-variant property of the global main structures in
the residual image (Figure 1(d)), resulting in fake structures
caused by the blur in the final deblurred image (Figure 1(i)).

In this paper, we propose a Multi-scale Residual Low-
Pass Filter Network (MRLPFNet) for high-quality image
deblurring. Our goal is to effectively model both the low-

2Conv1 + ReLU + Conv1 denotes two 1 × 1 convolutional layers
with the usual ReLU activation in between.
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(a) Blurry input (b) Difference of (a) & (f) (c) Residual by [37] (d) Residual by [15] (e) Residual by MRLPFNet

(f) Ground truth (g) Restormer [36] (h) MPRNet [37] (i) DeepRFT [15] (j) MRLPFNet (Ours)

Figure 1. Visual comparison with state-of-the-art image deblurring methods on a challenging example. Our work is motivated by an
observation that the difference between the blurry image and its corresponding clear one not only contains high-frequency contents but also
includes low-frequency information due to the influence of the blur as shown in (b). We thus develop a simple yet effective MRLPFNet to
learn both image details and spatially-variant structures (see (e)), which thus leads to better-deblurred results as shown in (j).

frequency and high-frequency parts of the residual image
between the blurry input and its corresponding clear output
within the residual learning framework. To better explore
the low-frequency information, we propose to intuitively
apply a low-pass filter on the residual image to concentrate
on the low-frequency part. In addition, as the low-frequency
contents in an image correspond to the global main struc-
tures, one of whose properties is that they are usually spa-
tially variant, we exploit a learnable low-pass filter module
based on a self-attention mechanism (as a basic module)
to adaptively explore the global contexts so that the main
structures can be better restored for image deblurring. Then
we incorporate it in the proposed Residual Low-Pass Filter
(RLPF) module with an additional residual learning branch
based on a fully convolutional neural network (CNN) for
modeling the high-frequency information.

Furthermore, the multi-scale strategy is widely used in
image deblurring. As features from various scales have
different spatial resolutions, resizing operations are usually
used to fuse these features. However, simply using resiz-
ing operations based on downsampling or upsampling will
lead to information loss. To this end, we develop a sim-
ple yet effective feature fusion module based on the wavelet
transform to fuse the features with different spatial resolu-
tions. Finally, we embed the proposed RLPF module and
the wavelet-based feature fusion (WFF) module into an end-
to-end trainable network within a coarse-to-fine framework.
The proposed approach achieves favorable performance on
widely-used benchmarks.

The main contributions are summarized as follows.
• We propose an effective RLPF module to model both

the high-frequency and low-frequency information of
the difference between the network input and output
for image deblurring. Specifically, a learnable low-

pass filter is developed based on a self-attention mech-
anism to adaptively explore the spatially-variant prop-
erty of the global contexts to effectively reconstruct
the low-frequency structures and a fully CNN with
the residual learning is adopted to model the high-
frequency information.

• We develop a simple yet effective feature fusion mod-
ule based on the wavelet transform to fuse the features
of different scales for better image deblurring.

• By training the proposed MRLPFNet in an end-to-end
manner, we show that it performs favorably against
state-of-the-art methods.

2. Related Work

Hand-crafted prior-based methods. As image deblurring
is ill-posed, conventional methods usually develop kinds of
effective priors to constrain the solution space, e.g., spar-
sity priors on the image gradient [11, 35] or intensity [19],
internal patch recurrence [16], sparsity of dark channel
prior [21], etc. These hand-crafted priors can help the blur
removal. However, they do not fully exploit the characteris-
tics of the clear image data and usually lead to complicated
optimization problems.

Deep learning-based methods. Instead of manually de-
signing image priors, lots of methods develop kinds of deep
CNNs to solve image deblurring. Early approaches employ
deep CNN models to estimate blur kernels and then use ex-
isting prior-based restoration methods to estimate the clear
images [27, 6, 1, 24]. While inaccurate blur kernels will
lead to deblurred results with severe artifacts as the blur ker-
nels and latent clear images are estimated independently.

Instead of estimating blur kernels, numerous meth-
ods [17, 39, 28, 5, 38, 26, 37, 3, 18, 12] directly estimate
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clear images from blurry ones. In [17], Nah et al. de-
velop a multi-scale deep CNN, where the restored images
from coarse scales are resized to help the estimation of finer
scales. To better explore the multi-scale information, Tao et
al. [28] develop an effective scale recurrent neural network.
In [5], Gao et al. propose a parameter selective sharing and
nested skip connection method to improve [17]. Although
the methods based on a multi-scale strategy achieve decent
performance, simply increasing the model depth with more
scales cannot further improve the quality of deblurring. To
overcome this problem, methods based on multi-patches
have been developed. Zhang et al. [38] develop an effec-
tive deep hierarchical multi-patch network, where the fea-
tures from the previous stage are concatenated to facilitate
the estimation of the following stages. Zamir et al. [37]
propose a multi-stage progressive method to better explore
the features from multi-stages by a cross-scale feature fu-
sion module. In addition, an effective supervised attention
module is developed to better guide the estimations of the
following stages. As both the multi-scale and multi-patch
methods need to perform the network at each scale or stage
recurrently, which leads to high computational costs, Cho et
al. [3] develop a multi-input and multi-output U-net based
on a multi-scale strategy to solve image deblurring.

These above-mentioned methods achieve significant per-
formance, most of which adopt the residual learning in the
network design. As demonstrated in [20], the residual learn-
ing is able to model the image details (i.e, high-frequency
information), but is less effective for exploring the main
structures (i.e, low-frequency information). To overcome
this problem, Mao et al. [15] improve the residual learning
network by introducing an additional branch performed in
the frequency domain. However, as the main structures in-
volve the spatially-variant global contexts, simply using the
local operations (e.g., 1 × 1 convolution in [15]) may not
model the main structures well.

Transformer-based methods. As Transformer is effec-
tive for global context exploration and shows great poten-
tial in many vision tasks, several methods apply it to image
deblurring. Zamir et al. [36] propose an efficient Trans-
former model by estimating self-attention along the chan-
nel dimension. This method is further simplified by [2].
Tsai et al. [29] develop a Transformer-based model by con-
structing intra- and inter-strip tokens to reweight image fea-
tures in the horizontal and vertical directions. In [30], Tu
et al. develop an effective multi-axis MLP-based architec-
ture. Wang et al. [31] develop a general U-shaped Trans-
former to solve image deblurring. These Transformer-based
approaches achieve decent results. However, as our analy-
sis in Section 3 shows, self-attention has the same effect as
the low-pass filter. Simply using Transformers may lead to
over-smoothed results.

3. Low-Pass Filter and Self-Attention
To better motivate our work, we first describe the rela-

tions between the low-pass filter and self-attention.
Given an image I and a low-pass filter F , we can obtain

a filtered image f by:

f(x) = F(I(x)) =
∑
y

WxyI(y), (1)

where x and y denote image pixels; Wxy denotes the fil-
ter weight for F , satisfying Wxy ≥ 0 and

∑
y Wxy = 1.

The role of a low-pass filter is to do a weighted average
in an area with the same size as the filter, thus filtering
out the high-frequency information and retaining the low-
frequency one. One common type of filter is the linear
translation-invariant filter, e.g., the Gaussian filter, which
adopts the spatially-invariant filter weight and cannot effec-
tively describe the variant properties of image structures in
different spatial areas. Another type of filter is the non-
linear filter, e.g., the bilateral filter, whose weights depend
on both the spatial closeness and the intensity difference.
Such weights can adaptively model the spatially-variant
contexts (e.g., global edges), thus preserving more useful
low-frequency information in the filtered image.

Recently, the attention-based approaches, e.g., self-
attention, compute the weighted value as

Z = S⊛V = softmax

(
Q(F )K(F )⊤√

dk

)
V(F ), (2)

where F denotes the deep feature extracted from the input
image I; ⊛ indicates the matrix multiplication; Q(·), K(·),
and V(·) denote the operations that extract the matrices for
the query, key, and value; dk is the dimension of the keys. A
softmax normalized operation is applied to each row of S to
ensure Sij ≥ 0 and

∑
j Sij = 1, where i and j denote the

index of the row and column in S. Thus, each row of S can
be regarded as a low-pass filter. Compared to the bilateral
filter whose weight measures the spatial and color similarity
based on the exponential Euclidean distance, the attention
value measures the similarity of query and key based on the
correlation metric. Therefore, it is spatially variant and can
model the main structures more adaptively.

Considering the self-attention (2) is learnable and more
flexible, we propose to straightforwardly embed it into the
network to better model the low-frequency information for
image deblurring.

4. MRLPFNet
Our goal is to develop an effective MRLPFNet for high-

quality image deblurring, which can better restore both the
image details and main structures. Specifically, we first pro-
pose a learnable low-pass filter based on the self-attention
method to model the low-frequency information. We then
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Figure 2. Multi-scale residual low-pass filter network. To restore high-quality images with clearer structures, we propose an effective RLPF
module that involves a learnable low-pass filter (based on the self-attention) to explore the low-frequency information (through Eqs. (3),
(4), and (5)). A wavelet-based feature fusion (WFF) module is developed to fuse the features of various scales for better image deblurring.

incorporate it in our proposed RLPF module with an ad-
ditional residual learning branch for high-frequency infor-
mation exploration. Furthermore, we formulate it into
an end-to-end trainable network based on a coarse-to-fine
framework and propose a feature fusion module based on
the wavelet transform to better utilize the multi-scale fea-
tures. In the following, we present the details of the pro-
posed method.

4.1. Residual Low-Pass Filter

As the standard residual learning is adept at exploring the
high-frequency information [9, 20] while less effective for
the low-frequency information modeling, the method [15]
improves the standard residual block by introducing an ad-
ditional branch that applies Conv1 + ReLU + Conv1 to
the features (generated by the FFT) in the frequency do-
main. Although decent performance has been achieved, the
1×1 convolution is spatially invariant, which does not effec-
tively model the spatially-variant structures. To overcome
this problem, we propose to further improve it by apply-
ing a learnable low-pass filter to concentrate on the global
main structures, which is able to model the spatially-variant
property of the low-frequency information.

Specifically, we first generate the feature Y from a blurry
input I by a shallow feature extraction network (the de-
tails are included in the supplemental material). Then the
proposed RLPF module explores the properties of residual
learning in both the spatial and frequency domains accord-
ing to [15]:

F = Y +R(Y) + F(Y), (3)

where R(·) denotes a plain network that applies Conv3 +
ReLU + Conv33 in the spatial domain and F(·) denotes a
network [15] with Conv1 + ReLU + Conv1 employed in
the frequency domain.

3Conv3 + ReLU + Conv3 denotes two 3 × 3 convolutional layers
with the usual ReLU activation in between.

As Eq. (3) is based on the locally spatially-invariant
convolution operations, it does not effectively model the
spatially-variant main structures (see Figure 1(d)). To this
end, we develop a learnable low-pass filter, which is pro-
posed based on Eq. (1) and achieved by:

hi =
∑
j

Sijfj , (4)

where fj is the j-th feature map of F. Based on the discus-
sions in Section 3, the self-attention can be regarded as a
spatially-variant low-pass filter, which can better model the
global low-frequency contents. Then we use the standard
scaled dot-production attention in the Transformer accord-
ing to [36] to estimate the filter weight matrix S. Finally,
we obtain the filtered feature E by:

E = F+D(H), (5)

where H = {hi} is the low-frequency feature by Eq. (4)
and D denotes a 3× 3 depth-wise convolution layer.

We refer to the module achieved by Eqs. (3), (4), and (5)
as the proposed RLPF module, which is then embedded into
an encoder-decoder architecture as shown in Figure 2(a).

4.2. Wavelet-based Feature Fusion

To efficiently ease and improve the deblurring process,
the recent methods [3, 15] utilize the multi-scale features
generated by different encoder blocks to prompt the learn-
ing of various decoder blocks. As the spatial resolutions of
the features from different scales are not the same, they are
usually resized by downsampling or upsampling operations
to the same spatial resolution for feature fusion. However,
these resizing operations may lose some important struc-
tural details, thus affecting the final image restoration. As
the wavelet transform [8] can model the image scale infor-
mation and is insertable, we develop a wavelet-based fea-
ture fusion method to better fuse the features of various
scales for image deblurring.
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Specifically, considering two features Es and Es+1 gen-
erated by Eq. (5) for the finer image scale s and coarser
image scale s + 1, we first apply the Haar transform
H [32, 14, 33] to Es and obtain

{ELL
s ;ELR

s ;ERL
s ;ERR

s } = H(Es), (6)

where ELL
s denotes the low-frequency part and ELR

s , ERL
s ,

and ERR
s correspond to three high-frequency parts. Thus,

the resolutions of {ELL
s ;ELR

s ;ERL
s ;ERR

s } are the same as
that of Es+1. To make use of both Es and Es+1 for the
decoder block in the finer image scale s, the wavelet-based
feature fusion generates the fused feature Ês by:

Ês = H−1
(
NL

s (C(ELL
s ,Es+1)),NH

s (C(ELR
s ,ERL

s ,ERR
s ))

)
,

(7)
where H−1 is the inverse Haar transform; C(·) indicates the
concatenation along the channel dimension; NL

s is a net-
work consisting of two 3 × 3 convolutional layers with the
PReLU activation in between and NH

s contains one 1 × 1
convolutional layer followed by the PReLU activation and
one 3×3 convolutional layer. When fusing Es and Es+1 to
facilitate the decoder block in the coarser image scale s+1,
we obtain the fused feature Ês+1 by

Ês+1 = NL
s+1

(
C(Es+1,E

LL
s ,NH

s+1(C(ELR
s ,ERL

s ,ERR
s )))

)
,

(8)
where NL

s+1 and NH
s+1 have the same network architecture

as NL
s and NH

s , respectively (Note that the network param-
eters are not shared across scales). We take the fused fea-
tures Ês and Ês+1 instead of Es and Es+1 as the input for
the following decoder blocks. Figure 2(b) shows the details
of the proposed wavelet-based feature fusion module.

When fusing features from more scales, we can recur-
rently use Eqs. (7) and (8). As the wavelet transform is
invertible, all the information can be better preserved dur-
ing the transformation. We show the effectiveness of the
wavelet-based feature fusion in Section 6.2.

5. Experimental Results
We first describe the implementation details of the pro-

posed MRLPFNet. Then we evaluate our approach on the
commonly used benchmarks and compare it against the
state-of-the-art methods. Due to the page limit, we include
more results in the supplemental material. The PyTorch
code and trained models are available at our Project page.

5.1. Implementation details

We embed the proposed RLPF module into an encoder-
decoder network [3], which contains three encoder blocks
and three decoder blocks. For each encoder/decoder block,
we adopt a stack of 8 RLPF modules (i.e., N = 8 in Figure
2(a)). We then use the wavelet-based feature fusion mod-
ule to fuse the features generated by the encoder blocks of

Table 1. Quantitative evaluations of the proposed approach against
state-of-the-art methods on the GoPro dataset [17]. “MRLPFNet-
L” denotes the proposed method using 20 RLPF modules in each
encoder and decoder block (i.e., N = 20 in Figure 2(a)).

Method PSNR (dB) SSIM

SRN [28] 30.26 0.9342
SSN [5] 30.92 0.9421
DMPHN [38] 31.20 0.9453
SAPHNet [26] 31.85 0.9480
MPRNet [37] 32.66 0.9589
MPRNet-Local [4] 33.31 0.9637
MIMO-UNet [3] 31.73 0.9510
DeepRFT [15] 32.82 0.9600
Uformer [31] 33.06 0.9670
Restormer [36] 32.92 0.9611
Restormer-Local [4] 33.57 0.9656
MAXIM [30] 32.86 0.9616
NAFNet [2] 33.71 0.9668
Stripformer [29] 33.08 0.9624
MRLPFNet 33.50 0.9650
MRLPFNet-L 34.01 0.9682

3 different image scales. We implement our method based
on the PyTorch framework and train it from scratch using a
machine with two NVIDIA GeForce RTX 3090 GPUs. The
proposed network is trained using the Adam optimizer [10]
with default parameters. The batch size is set to be 8. The
size of each image patch is 256 × 256 pixels. The learning
rate is initialized to be 2 × 10−4 and is updated by the Co-
sine Annealing scheme. The loss function [37] is adopted
to constrain the network training.

5.2. Comparisons with the state of the art

Evaluations on the GoPro dataset. We first quantitatively
evaluate the proposed method on the GoPro dataset [17],
which contains 2,103 images for training and 1,111 images
for the test. We compare the proposed method against sev-
eral state-of-the-art methods including CNN-based methods
(SRN [28], SSN [5], DMPHN [38], SAPHNet [26], MPR-
Net [37], MIMO-UNet [3], DeepRFT [15], NAFNet [2]),
Transformer-based methods (Restormer [36], Uformer [31],
Stripformer [29]), and MLP-based methods (MAXIM [30]).
For fair comparisons, we fine-tune or retrain the deep
learning-based methods that are not trained on the GoPro
dataset. We use the PSNR and SSIM as metrics to evaluate
the quality of restored images.

Table 1 shows the quantitative results. The proposed
method generates higher-quality images with higher PSNR
and SSIM values than the competing approaches.

Figure 3 shows a visual comparison. Most of the CNN-
based methods, e.g, [37, 3, 2], employ the commonly used
residual learning in the network designs, which is less ef-
fective for the estimation of the main structures, as demon-
strated in Section 1. Thus, these methods [37, 3, 2] do not
effectively remove the blur as shown in Figure 3(c), (d), and
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(a) Blurry input (b) Ground truth (c) MPRNet [37] (d) MIMO-UNet [3] (e) DeepRFT [15]

(f) NAFNet [2] (g) Restormer [36] (h) Restormer-Local [4] (i) Stripformer [29] (j) MRLPFNet

Figure 3. Example from the GoPro dataset [17]. Compared to the evaluated methods in (c)-(i), the proposed approach generates a better-
deblurred image with clearer characters in (j).

(f). The method [15] improves the residual learning by in-
troducing an additional branch operating in the frequency
domain. However, as the main structures are usually spa-
tially variant, simply using localized convolution operations
does not effectively model such global properties. The de-
blurred result in Figure 3(e) still contains the blur effect.

The recent methods [36, 29] develop Transformers to
solve image deblurring. As analyzed in Section 3, Trans-
formers can be regarded as low-pass filters. These methods
are able to explore the low-frequency contents but less ef-
fective for modeling the high-frequency information, thus
leading to over-smoothed deblurred results as shown in Fig-
ure 3(g) and (i). In contrast to the above-mentioned meth-
ods, the proposed MRLPFNet is able to explore both high-
and low-frequency information, generating a better image
with clearer details and structures than the competed meth-
ods (e.g., the restored numbers in Figure 3(j) are clearer).

Evaluations on the RealBlur dataset. The RealBlur
dataset [23] contains 3,758 image pairs for training and 980
image pairs for the test. Based on the protocols of [23], our
approach is compared with the state-of-the-art methods for
fair comparisons. Table 2 shows that the proposed method
generates the deblurred results with higher PSNR and SSIM
values, where the PSNR values of our method are at least
1.08dB and 0.71dB higher than the evaluated methods on
the “RealBlur-R” and “RealBlur-J” datasets, respectively.

Figure 4 shows some visual comparisons of the evaluated
methods. The methods [28, 13, 3] based on the standard
residual learning do not effectively remove the blur effects
as shown in Figure 4(c)-(e). The method [15] improves the
standard residual learning, but the restored images are over-
smoothed, e.g., the strokes in Figure 4(f). The Transformer-

Table 2. Quantitative evaluations of the proposed approach against
state-of-the-art methods on the RealBlur dataset [23]. All the com-
parison results are generated using the publicly available codes and
the models trained on the same training datasets.

RealBlur-R RealBlur-J

PSNR (dB) SSIM PSNR (dB) SSIM

SRN [28] 38.65 0.9652 31.38 0.9091
DeblurGAN [12] 36.44 0.9347 29.69 0.8703
MIMO-UNet+ [3] - - 31.92 0.9190
DeepRFT+ [15] 39.84 0.9721 32.19 0.9305
Stripformer [29] 39.84 0.9737 32.48 0.9290
MRLPFNet 40.92 0.9753 33.19 0.9361

Table 3. Quantitative evaluations of the proposed approach against
state-of-the-art methods on the HIDE dataset [25]. All the com-
parison results are generated by the same models trained on the
GoPro dataset [17] as in Table 1.

Method PSNR (dB) SSIM

SRN [28] 28.36 0.9040
SAPHNet [26] 29.98 0.9300
MPRNet [37] 30.96 0.9394
MPRNet-Local [4] 31.19 0.9418
MIMO-UNet [3] 29.28 0.9206
MIMO-UNet+ [3] 29.99 0.9304
DeepRFT [15] 30.99 0.9407
DeepRFT+ [15] 31.42 0.9442
Restormer [36] 31.22 0.9423
Restormer-Local [4] 31.49 0.9447
Stripformer [29] 31.03 0.9395
MRLPFNet 31.63 0.9465

based method [29] tends to generate over-smoothed results
and does not effectively remove the blur as shown in Fig-
ure 4(g). In contrast, our method generates clearer images
than the evaluated methods (Figure 4(h)).
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(a) Blurry input (b) Ground truth (c) SRN [28] (d) DeblurGAN-V2 [13]

(e) MIMO-UNet [3] (f) DeepRFT+ [15] (g) Stripformer [29] (h) MRLPFNet

Figure 4. Example from the RealBlur dataset [23]. Compared with the deblurred results in (c)-(g), the proposed method recovers a high-
quality image with clearer structural details.

Table 4. Effectiveness of the proposed low-pass filter and wavelet-based feature fusion for image deblurring. All baseline methods are
trained using the same settings as the proposed method for fair comparisons.

Low-pass filter (LPF) Feature fusion (FF) GoPro

Bilinear-based (BFF) Wavelet-based (WFF) PSNR (dB)/SSIM

MRLPFNetw/o LPF&FF % % % 32.8/0.9606
MRLPFNetw/o LPF&w/ BFF % " % 32.9/0.9611
MRLPFNetw/o LPF&w/ WFF % % " 33.0/0.9616
MRLPFNetw/ LPF&w/o FF " % % 33.4/0.9641
MRLPFNet " % " 33.5/0.9650

Evaluations on the HIDE dataset. We further evaluate our
method on the HIDE dataset [25] by using the model trained
on the GoPro dataset. Table 3 shows that the proposed
approach generates the deblurred results with the highest
PSNR and SSIM values.

6. Analysis and Discussions

6.1. Effect of the learnable low-pass filter

The learnable low-pass filter is proposed to explore
the spatially-variant low-frequency information so that the
global structural contents can be better restored for image
deblurring. To demonstrate the effectiveness of the pro-
posed learnable low-pass filter, we first compare our method
with a baseline that removes the learnable low-pass fil-

ter (MRLPFNetw/o LPF&w/ WFF for short) and train this base-
line using the same settings as ours. We use the GoPro
dataset [17] as described in Section 5.2 for evaluation. Ta-
ble 4 shows the quantitative results, where the PSNR of
the proposed MRLPFNet is 0.5dB higher than the base-
line without the learnable low-pass filter. To focus on the
effect of the low-pass filter, we further disable the fea-
ture fusion module and compare the baselines with and
without the learnable low-pass filter (MRLPFNetw/o LPF&FF
and MRLPFNetw/ LPF&w/o FF for short). The comparisons
in Table 4 illustrate the significance of using the learnable
low-pass filter, which is able to concentrate on the low-
frequency information modeling and effectively recover the
spatially-variant image structures for image deblurring.

Figure 5 shows a visual comparison. The main structures
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(a) Blurry input (b) MRLPFNetw/o LPF&w/ WFF (c) MRLPFNet

(d) (e) (f)

Figure 5. Effect of the proposed learnable low-pass filter. (d) is the
residual image between the blurry image and Ground truth. (e) and
(f) are the residual images estimated by MRLPFNetw/o LPF&w/ WFF

and MRLPFNet, respectively.

in the residual image estimated by MRLPFNetw/o LPF&w/ WFF
are not well recovered, e.g., the license plate numbers in
Figure 5(e), resulting in the deblurred image with a blur ef-
fect (Figure 5(b)). In contrast, the residual image estimated
by the proposed MRLPFNet is better restored, as using
the learnable low-pass filter is able to model the spatially-
variant image structures. Thus, our approach is more effec-
tive at yielding a clear image with distinct structures (e.g.,
the license plate numbers in Figure 5(f)).

6.2. Effect of the wavelet-based feature fusion

To demonstrate the effectiveness of the wavelet-based
feature fusion on fusing the features with different spa-
tial resolutions, we first disable the learnable low-pass
filter in our implementation (MRLPFNetw/o LPF&w/ WFF for
short). Then we compare with the baseline that replaces the
wavelet-based feature fusion with the bilinear interpolation
(MRLPFNetw/o LPF&w/ BFF for short). The results in Table 4
show that using the bilinear interpolation as the feature fu-
sion does not perform well as our method with the wavelet-
based one, since the wavelet transform is invertible and can
preserve more accurate information during the transform
process. The qualitative comparisons in Figure 6 further
show that using the wavelet-based feature fusion is able to
improve the quality of the restored image (Figure 6(c)). We
also compare our complete network with the baseline that
removes the feature fusion module (MRLPFNetw/ LPF&w/o FF
for short). The comparisons in Figure 6 show the same ten-
dency that using the wavelet-based feature fusion improves
the final deblurring performance.

6.3. Model complexity

We examine the model complexity of the proposed ap-
proach and the state-of-the-art methods in terms of model

(a) Blurry input (b) (c) (d) Ground truth

Figure 6. Effect of the proposed wavelet-based feature fusion. (b)
and (c) are the results obtained by the baselines using the Bilinear-
based (MRLPFNetw/o LPF&w/ BFF in Table 4) and the wavelet-based
(MRLPFNetw/o LPF&w/ WFF in Table 4) feature fusion, respectively.

Table 5. Model complexity of the top-performance methods on
the above-mentioned datasets. The FLOPs are evaluated on image
patches with the size of 256×256 pixels based on the protocols of
existing methods. The running time is evaluated on images with
the size of 1280 × 720 pixels. All the results are obtained on a
machine with an NVIDIA GeForce RTX 3090 GPU.
Methods Model parameters (M) FLOPs (G) Running time (/s)

MPRNet [37] 20.1 760 0.9806
MIMO-UNet+ [3] 16.1 151 0.2827
DeepRFT+ [15] 23.0 183 0.5518
Restormer [36] 26.1 155 0.9798
Stripformer [29] 19.7 170 0.6580
MRLPFNetw/o LPF 11.4 82 0.2613
MRLPFNet 20.6 129 0.8633

parameters, running time, and FLOPs. Table 5 shows that
our method has the lowest FLOPs value and also achieves
competitive performance against the competed ones in
terms of running time.

Limitations. As the proposed learnable low-pass filter is
based on the self-attention to estimate the filter weights,
it moderately increases the running time as shown in Ta-
ble 5 (see the comparisons of “MRLPFNetw/o LPF” and
“MRLPFNet”). Future work will develop efficient and
learnable low-pass filters for better image deblurring.

7. Conclusion
We present an effective MRLPFNet to reconstruct both

the low-frequency and high-frequency information for im-
age deblurring. To better explore the spatially-variant struc-
tures, we develop a learnable low-pass filter based on
the self-attention mechanism. Furthermore, we propose a
wavelet-based feature fusion method to effectively fuse the
features with different spatial resolutions. By formulating
the proposed method into an end-to-end trainable network,
we show that it performs favorably against state-of-the-art
methods on benchmarks.
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