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Figure 1: Given a single image of a person as input, our method can generate realistic novel view rendering. For invisible

regions such as the back of the subject, we can also obtain plausible results. Instead of limited 3D scans or multi-view images,

we only need monocular Internet videos for supervision, which enables it generalizable to in-the-wild images. The code and

dataset are available at https://zju3dv.github.io/ivsnet/.

Abstract

Recent advances in implicit neural representations make
it possible to generate free-viewpoint videos of the human
from sparse view images. To avoid the expensive training
for each person, previous methods adopt the generalizable
human model and demonstrate impressive results. How-
ever, these methods usually rely on limited multi-view im-
ages typically collected in the studio or commercial high-
quality 3D scans for training, which heavily prohibits their
generalization capability for in-the-wild images. To solve
this problem, we propose a new approach to learn a gen-
eralizable human model from a new source of data, i.e.,
Internet videos. These videos capture various human ap-
pearances and poses and record the performers from abun-
dant viewpoints. To exploit the Internet data, we present a
video self-supervised pipeline to enforce the local appear-
ance consistency of each body part over different frames
of the same video. Once learned, the human model enables
realistic novel view synthesis from a single input image. Ex-
periments show that our method can generate high-quality
view synthesis on in-the-wild images while only training on
monocular videos.

†Corresponding author: Sida Peng.

1. Introduction

Generating free-viewpoint videos of a human performer

is a core technology in various applications such as AR/VR,

telepresence, and gaming. While traditional methods have

demonstrated impressive results in free-viewpoint render-

ing, they typically rely on hundreds of calibrated and syn-

chronized cameras [6, 12] or multiple RGBD sensors [8],

which makes them impractical to create free-viewpoint

videos for general users.

To make free-viewpoint video creation more accessible,

many approaches propose to reconstruct the human model

from sparse view or even single view RGB inputs. Given

sparse view videos as input (e.g. four views), recent works

[37, 36] have achieved photo-realistic novel view synthe-

sis based on the neural radiance field (NeRF) [32] in a

per-scene optimization setting. To avoid the expensive per-

scene optimization, some works [25, 53, 5] propose gener-

alizable radiance fields conditioned on extracted image fea-

tures and volumetric features. However, the training of all

these methods requires multi-view images usually collected

in the studio, which makes them have difficulty in general-

izing to in-the-wild images. Instead of using multi-view im-

ages, some works [39, 54] achieve remarkable single-image

human geometry and appearance reconstruction by super-
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vising the model with commercial high-quality 3D scans.

Nonetheless, the limited amount of 3D scans and the do-

main gap between synthetic and real images make these

methods struggle when applied to real-world images. Thus,

the key challenge here lies in the generalization ability of

the human model.

In this paper, to address this challenge, we follow the

single-image reconstruction setting and propose a novel ap-

proach to learn a generalizable human model from monocu-

lar Internet videos, which supports realistic novel view syn-

thesis. The key observations are as follows: 1) there are

lots of human videos on the Internet which contain diverse

appearances and actions and abundant viewpoints; 2) due

to the articulated structure of the human body, the local

appearance of each body part of the same person approx-

imately remains constant. These observations make it pos-

sible to learn the human model from Internet videos based

on the appearance consistency over different frames of the

same video.

To address this new problem, we propose a self-

supervised pipeline to learn a generalizable human radiance

field from monocular videos. Specifically, we randomly se-

lect two frames from the same video called the source frame

and paired frame separately. Based on the source frame, we

first extract the image feature and utilize the inpainted neu-

ral feature map of the parametric human mesh [38] to con-

struct the volumetric feature. Then, these features of sam-

ple points are taken as the input of the corresponding human

radiance field, which enables rendering novel view images.

To supervise the radiance field, we simultaneously leverage

the source frame and paired frame for training. The sam-

ple points of the paired frame can be transformed into the

source frame by linear blend skinning and their density and

color can be decoded from the radiance field of the source

frame. In addition to reconstruction losses, we further intro-

duce the adversarial loss to encourage the rendering more

realistic. Finally, a new dataset consisting of hundreds of

Internet videos is created for training.

In summary, this work has the following contributions:

• We introduce a novel approach of novel view synthe-

sis from a single human image, which only utilizes

monocular videos for training rather than multi-view

images or high-quality 3D scans. A self-supervised

pipeline is proposed to learn the human model from

monocular inputs.

• We provide a new dataset that consists of more than

600 monocular videos from the Internet totaling more

than 120K images, which contain various human and

camera viewpoints. For each image, the human mask

and SMPL+H parameters are provided.

• We demonstrate that, while only training on monoc-

ular videos, our method generates high-quality view

synthesis on real-world images.

2. Related work

Novel view synthesis of Human. Synthesizing novel

views of a performer has caused widespread concern. Tradi-

tional methods rely on a dense set of cameras [6, 12, 10, 55]

or depth sensors placed in the studio [33, 8, 51, 52]. While

they have achieved impressive results, it is not applicable

in ordinary scenes. A recent series of methods simplify the

setting to sparse view RGB cameras. Following the NeRF

[31] that represents the scene as a neural radiance field,

some works propose to overfit a multi-view human video

via per-scene optimization [37, 36, 28, 34]. Conditioning

the radiance field on the structured latent codes, Neural

Body [37] achieves remarkable results only using four cam-

eras. To improve the generalization ability to novel human

poses, [36, 28, 34, 7] propose to define the human model in

the canonical space and build the correspondence between

canonical space and observation space. To avoid the ex-

pensive training for each performer, recent approaches ex-

tend the original human model to the generalizable one.

[25, 53, 5] combine human prior and image features to

reconstruct the generalizable human model. Specifically,

they leverage the parametric human model [25, 5] or hu-

man skeleton [53] to extract 3D features and then combine

them with the pixel-aligned image features as the input of

the generalizable human radiance field. However, all these

methods require multi-view images as supervision, which

makes them struggle when applied to in-the-wild images.

Single-view human reconstruction. Reconstructing the

3D human body from a single view is a challenging task.

With the help of parametric human models [29, 38, 15], lots

of works estimate the model parameters via optimization [4]

or neural networks [20, 23, 22]. While they have achieved

remarkable progress in 3D human pose estimation, the es-

timated human shape is quite coarse. To obtain more de-

tailed geometry, some works [47, 13, 46, 14] leverage a pre-

scanned personalized template mesh and deform the mesh

by dense non-rigid tracking. Recently, implicit function

based methods become popular due to their impressive per-

formance. PiFu based methods [39, 40, 54, 18, 17, 45] rep-

resent the human as pixel-aligned implicit functions and can

reconstruct detailed human from a single image. For train-

ing, they need high-quality 3D scans [3, 2] for 3D super-

vision. However, both the limited amount of 3D scans and

the domain gap between synthesized images and real im-

ages limit their generalization ability. Note that the recon-

structed appearance of these methods heavily relies on the

recovered geometry and the rendering quality will degrade

dramatically when the geometry reconstruction is poor.
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Self-supervision in human reconstruction. Since the

3D ground truth of human model is difficult to collect, self-

supervised methods have emerged that directly learn the

human model from RGB images without 3D supervision.

Here, we focus on the self-supervised methods which only

leverage single-view images. For face reconstruction from

a single image, [41, 44] leverage the face shape consistency

and appearance consistency of the same person across dif-

ferent images to achieve self-supervised training. For the

human body reconstruction, [24, 35] also leverages the tex-

ture map consistency to learn the network from different

frames of the same person. These methods all rely on the

parametric human model, which limits the detailed recon-

struction. In addition, [42, 19] propose to represent the hu-

man model as the depth map and leverage photo consistency

or geometry consistency across different frames to super-

vise the training. While these methods achieve impressive

results, they can only reconstruct visible surfaces. Instead,

our method reconstructs the complete human model.

3. Method
Given a single image, we aim to reconstruct the 3D hu-

man model which enables rendering realistic novel view im-

ages. To address the problem of poor generalization, our

method proposes to learn human view synthesis from abun-

dant Internet videos rather than limited multi-view images

or 3D human scans. Figure 2 presents the overview of our

approach. We construct the image feature and volumetric

feature from the input image (Section 3.1). These two fea-

tures of sample points are combined as the input of the hu-

man radiance field model to predict their density and color,

which are further used to synthesize images by volume ren-

dering (Section 3.2). In addition to the supervision from the

input image, we also introduce the video self-supervision

from another frame of the same video (Section 3.3). Then,

we describe the loss functions for training (Section 3.4) and

implementation details (Sections 3.5).

For each image, we first adopt the EasyMoCap [1] to

estimate SMPL+H [38] parameters and then utilize [26] to

generate the human mask. In the following, we describe the

details of each component.

3.1. Feature construction

Given an input image I, we utilize the 2D CNN to ex-

tract the image feature Fimg . For a 3D sample point x,

to construct the pixel-aligned image feature Fimg(π(x); I),
we project the point to obtain the image coordinate π(x)
and bilinearly interpolate the pixelwise features.

In addition to the image feature, we also construct the

volumetric feature for each point. Specifically, we unproject

the image feature to vertices of the estimated human mesh,

resulting in a feature mesh. In practice, the human mesh

is rasterized onto the image plane, which produces the pro-

jected 2D location and visibility of each vertex. For each

visible vertex, we sample the corresponding pixel-aligned

image feature at the projected location as the vertex feature.

Due to occlusion, the vertex features of invisible vertices are

missing, which may damage the rendering quality. To ad-

dress this, we propose to inpaint the vertex features of those

invisible vertices. In particular, we first unwrap the initial

incomplete feature mesh to generate the partial UV feature

map. Then, this map is processed with a U-Net to produce

the complete UV feature map, from which we can obtain

the inpainted vertex feature of each vertex. The resulting

inpainted feature mesh is further processed with a 3D CNN

to obtain the 3D feature volume Fvol. Based on the fea-

ture volume, for each sample point x, we can retrieve the

corresponding volumetric feature Fvol(x; I,P) by trilinealy

interpolating, where P is the human pose.

To obtain the final feature representation f(x; I,P) of

each sample point, we combine the image feature and the

volumetric feature as follows:

f(x; I,P) = Fimg(π(x); I) + Fvol(x; I,P) (1)

3.2. Human model

Based on the constructed feature of the sample points,

we aim to reconstruct the 3D human model, which is rep-

resented as the neural radiance field similar to [37, 36].

Specifically, the human geometry and appearance are rep-

resented as density fields Fσ and color fields Fc given by

MLP networks. For a query point x, the human model can

be written as follows:

σ(x), z(x) = Fσ(f(x; I,P)), (2)

c(x) = Fc(z(x)), (3)

where σ(x) and c(x) denote the density and color to be de-

coded. z(x) denotes the geometry feature. We empirically

remove the view direction from the input of the color field.

To learn the human model from images, we leverage vol-

ume rendering to synthesize images based on the predicted

density and color as follows:

C̃(r) =

N∑
i=1

Ti(1− exp(−σ(xi)δi))c(xi), (4)

and Ti = exp(−
i−1∑
j=1

σ(xj)δj), (5)

where C̃(r) denotes the rendered color of ray r and δi =
||xi+1 − xi||2 denotes the distance between adjacent sam-

pled points. N is set to 64 in all experiments. Based on the

rendered images, we can train the human model by compar-

ing them with the observed images.
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Figure 2: Overview of the proposed approach. (a) Given a single image I and the corresponding human pose P, the

proposed iVS-Net aims to reconstruct the 3D human model, represented as the neural radiance field. For a sample point x, its

feature representation consists of the pixel-aligned image feature and SMPL+H based volumetric feature. UV feature map

inpainting is adopted to improve the volmetric feature. Based on the feature of sample points, the human model predicts the

density and color and then synthesizes images by volume rendering. (b) Video self-supervision is proposed to train the iVS-

Net with monocular videos. We randomly select two frames from the same video called the source frame Is and paired frame

Ip, respectively. For the source frame, the iVS-Net reconstructs its human model and synthesizes the corresponding image

Ĩs. For the paired frame, the sample point xp is first transformed into the observation space of the source frame and then

processed with the human model of the source frame to synthesize image Ĩp. Finally, the reconstruction loss and adversarial

loss are introduced for training.

3.3. Video self-supervision

With only monocular input images for supervision, it

is ill-posed to learn the neural representation and the re-

sulting human model fails to generalize to novel views as

shown in Section 4.3. To address this, we propose to in-

troduce the video self-supervision. Thanks to the articu-

lated structure of the human body, the appearance of each

body part approximately remains constant across the video,

which makes it possible to apply the appearance consistency

constraint over different frames for self-supervision.

Specifically, in addition to the input frame, also known

as the source frame Is, we randomly select another frame

from the same video called the paired frame Ip, which is

utilized to supervise the reconstructed human radiance field

of the source frame. Given a sample point xp from the ob-

servation space of the paired frame, we first transform it to

the canonical space by the inverse linear blend skinning al-

gorithm, which can be written as follows:

xc =

(
M∑

m=1

wm(x̄p)B(Pp)
m

)−1

x̄p, (6)

where x̄p is the homogeneous coordinate of xp, Pp is the

human pose of the paired frame, and B(Pp)
m ∈ SE(3)

is the transformation matrix of bone m. The blend weight

wm(x̄p) of bone m can be obtained by retrieving the blend

weight of the closest vertex on the template human mesh.

M denotes the number of bones. Then this point xc can be

transformed into the observation space of the source image

using the linear blend skinning algorithm as follows:
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x′
p =

(
M∑

m=1

wm(x̄c)B(Ps)
m

)
x̄c, (7)

where Ps is the human pose of the source image. Next, for

the sample point x′
p, we can extract the corresponding fea-

ture f(x′
p; Is,Ps) as shown in section 3.1 and predict the

density and color. Finally, we can synthesize the image us-

ing volume rendering and compare it with the paired frame

Ip. Thus, the reconstructed human model of the source im-

age is supervised by the source frame and paired frame si-

multaneously.

3.4. Loss functions

Given the synthesized images of the source frame and

paired frame C̃ = (C̃source, C̃pair) and the corresponding

ground truth images C = (Csource,Cpair), we adopt the

following reconstruction loss functions for training:

Lrecon =
∑
i

(λl1L
i
1 + λl2L

i
2 + λlpipsL

i
lpips). (8)

For i ∈ (source, pair), we calculate the L1 loss Li
1, L2

loss Li
2, and perceptual loss Li

lpips between the synthe-

sized image C̃i and ground truth image Ci, separately.

(λl1 , λl2 , λlpips) are the corresponding weight of each loss

function.

While the reconstruction loss of self-supervision pro-

vides more constraints, the training is still quite under-

constrained due to the highly sparse-view supervision.

Therefore, we additionally introduce the adversarial loss,

which encourages the network to generate realistic images.

Specifically, we can regard the human reconstruction model

as a genenrator G, which generates synthesized images of

the specified viewpoints based on the source image. The

synthesized images are fed to the discriminator D to deter-

mine whether they are real images or not. The discrimina-

tor D is parameterized as a CNN with leaky ReLU activa-

tion. The non-saturating GAN objective [9] and R1 gradient

penalty [30] are adopted for the adversarial training. The

adversarial loss function for the generator can be written as

follows:

min Ladv = EC̃∼pC̃
[−log(σ(D(C̃)))], (9)

where σ(·) denotes the sigmoid function, and pC̃ denotes

the data distribution of synthesized images. The objective

for the discriminator can be written as follows:

min L(D) = EC̃∼pC̃
[−log(1− σ(D(C̃)))]

+ EC∼pC
[−log(σ(D(C))) + λR‖∇D(C)‖2],

(10)

where λR = 10 and pC denotes the data distribution of real

images. For training, we jointly optimize the generator and

discriminator.

Finally, the whole loss functions for the human model

can be written as follows:

L = Lrecon + λadvLadv, (11)

where λadv denotes the weight of the adversarial loss.

3.5. Implementation details

Network architecture and hyper-parameters. The net-

work architectures of density fields Fs and color fields Fc

are almost the same as the original NeRF [31], except that

we replace the input of the density field from the posi-

tional encoding of the location to the constructed feature

f(x; I,P) ∈ R256. We use the ResNet34 [16] to extract

the image feature and use the SparseConvNet [11] to ex-

tract the volumetric feature. The weights are set as follows:

λl1 = 1, λl2 = 1, λlpips = 0.1, λadv = 0.025.

Training details. Instead of training on random ray sam-

ples, we sample a W ×W patch on each image, where W
is a random value selected from the range (72, 90). The

Discriminator D is trained with 64 × 64 patch images and

the batch size is 16. For the training of the human recon-

struction model, we adopt the Adam optimizer [21] and the

learning rate begins from 5e−4 and decays exponentially to

5e−5 during the optimization. For the training of the dis-

criminator D, we adopt the RMSprop optimizer [43] and

the learning rate is set as 1e−4. The training of our method

takes 24 hours on a single Nvidia V100 GPU.

4. Experiments
4.1. Datasets and metrics

Datasets. Our method leverages monocular human videos

for self-supervised learning and the most related dataset is

TikTok Dataset [19]. However, the videos of this dataset

usually capture little view changing and most videos suf-

fer from severe human truncation, which makes it unsuit-

able for learning the human view synthesis. Therefore,

as shown in Figure 3, we create a new dataset for train-

ing and evaluation. Specifically, we manually collect more

than 600 videos from the Internet. Each video contains

a complete person performing various actions and records

the performer from various viewpoints. For each video,

we extract about 200 frames, resulting in more than 120K

images. For each image, we utilize EasyMoCap[1] to ob-

tain the SMPL+H parameters and [26] to obtain the human

mask. We use 90% of the data for training and the rest for

qualitative evaluation.

For quantitative evaluation, we utilize ZJU-MoCap

dataset [37] that captures complex human actions of 9 sub-

jects using multi-view cameras. We randomly select one

camera as input images and surrounding six cameras for the

evaluation of novel view synthesis.
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Figure 3: The proposed dataset. We provide a new dataset that consists of more than 600 videos from the Internet. Each

video captures a complete human performer doing various actions and records the performer from various viewpoints. This

dataset provides more than 120K images along with the corresponding human mask and SMPL+H paramters.

Metrics. For evaluating the image synthesis, we adopt the

following metrics: peak signal-to-noise ratio (PSNR), struc-

tural similarity index (SSIM), and learned perceptual image

patch similarity (LPIPS).

4.2. Comparison with the baselines

Baselines. We compare with the state-of-the-art general-

izable reconstruction methods [50, 25, 39, 40, 54, 45]. We

first train the pixelNeRF [50] and NHP [25] on the collected

monocular datasets. We also train another NHP [25] model

with the multi-view images. Finally, we compare with the

3D scans based model PIFu, PIFuHD, PAMIR, and ICON,

whose pre-trained models are publicly available.

Image synthesis. We evaluate the image synthesis quality

on ZJU-MoCap dataset. Given an input image, we compare

the novel view rendering results. The quantitative results

are given in Table 1, which shows that our approach out-

performs the baseline methods by a large margin. Figure 6

presents the qualitative results on ZJU-MoCap dataset and

in-the-wild images. As we can see, the novel view images

rendered by our method significantly outperform the coun-

terparts of the previous methods. The pixelNeRF [50] and

NHP [25] cannot generate reasonable novel view synthesis

when trained on the monocular videos. The reason may be

that the supervision from the source images is not sufficient

to train the 3D human model. In contrast, our method can

generate high-quality novel view images even when the in-

put images are quite different from the training data. For ex-

ample, the images of ZJU-MoCap are recorded in the studio

and the lighting is much darker than the daily videos. The

high-quality novel view synthesis on these images demon-

strates the generalizable ability of our method. Further-

more, we present the novel view synthesis under large view-

point changes in Figure 4. The results show that only our

method can obtain plausible outcomes for the totally invisi-

ble regions such as the back of the subjects.

Input

Figure 4: Qualitative comparison of back and side view ren-

derings on the in-the-wild images.

Input pixelNeRF NHP Ours

Figure 5: Qualitative results of 3D geometry on in-the-wild

images.

3D reconstruction. We also compare 3D surface recon-

structions of our method and other baselines. We present

the qualitative results in Figure 5, which shows that our
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Input Ground truth pixelNeRF NHP Ours

Input pixelNeRF NHP Ours

Figure 6: Qualitative results of novel view synthesis on the ZJU-MoCap dataset and in-the-wild images.

Input No self-supervision Full modelOurs Input

Figure 7: Ablation studies for self-supervision (left) and loss functions (right).
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Method PSNR ↑ SSIM ↑ LPIPS ↓
pixelNeRF [50] 18.63 0.706 0.331

NHP [25] 17.51 0.687 0.323

Ours 24.67 0.886 0.196

Table 1: Results of image synthesis on ZJU-MoCap dataset.

Method PSNR ↑ SSIM ↑ LPIPS ↓
baseline 18.71 0.710 0.349

Ours 24.08 0.892 0.192

Table 2: Comparison with the baseline trained with multi-

view images on ZJU-MoCap dataset.

Input Baseline Ours

Figure 8: Qualitative comparison with the multi-view im-

ages based method on the in-the-wild image.

method significantly outperforms the baselines. The pix-

elNeRF [50] and NHP [25] cannot reconstruct reasonable

human geometry, which may explain their poor novel view

rendering. On the contrary, our method can recover more

detailed human geometry.

Comparison with the method supervised by multi-view
images. We conduct the following comparison to demon-

strate that the proposed method owns better generalization

ability than the ones trained with limited multi-view images.

Specifically, given a single image as input, we train another

NHP [25] model with multi-view images. We randomly

select six subjects from the ZJU-MoCap dataset for train-

ing and the remaining three subjects are used for evalua-

tion. The quantitative results are shown in Table 2. Figure 8

shows the qualitative comparison on the in-the-wild image.

Note that our method is trained solely on Internet videos.

As we can see, our method shows much better quantitative

and qualitative results.

Comparison with the methods supervised by 3D scans.
Additionally, in Figure 9, we qualitatively compare with

the PIFu[39] and PIFuHD[40], whose pre-trained models

are publicly available. Our method generates more realistic

rendering than the PIFu whose rendering heavily relies on

the reconstructed geometry. Both the limited amount of 3D

scans and the domain gap between synthesized images and

real images limit their generalization ability to in-the-wild

PIFu PIFuHD

OursInput
PAMIR ICON

Figure 9: Qualitative comparison with 3D scan based meth-

ods on the in-the-wild image. Note that PIFuHD and ICON

can only recover human geometry.

Method PSNR ↑ SSIM ↑ LPIPS ↓
No self-supervision 17.86 0.693 0.332

Ll2 + Ll1 24.62 0.881 0.251

Ll2 + Ll1 + Llpips 24.72 0.885 0.230

Ours (Ll2+Ll1+Llpips+Ladv) 24.67 0.886 0.196

Table 3: Ablation studies of image synthesis on ZJU-

MoCap dataset.

images, such as the marked red circles.

4.3. Ablation studies

Video self-supervision. Our method utilizes video self-

supervision to provide additional supervision for training

the generalizable human model from monocular videos as

described in Section 3.3. Here, we compare it to the base-

line without video self-supervision, i.e., only using the

source images for training. The quantitative results of im-

age synthesis are presented in Table 3. The results show that

the proposed video self-supervision significantly improves

the quality of synthesized images. We also show the qual-

itative results in Figure 7(left). As we can see, without the

video self-supervision, the baseline method cannot synthe-

size the complete human under novel views.

Impact of each loss function. As described in Section 3.4,

we use several loss functions for training: L2 loss, L1 loss,

perceptual loss, and adversarial loss. Here, we analyze the

effect of each loss function. The quantitative and qualitative

results of image synthesis are presented in Table 3 and Fig-

ure 8, respectively. The results show that on the basis of L2

loss and L1 loss, adding the perceptual loss and adversar-

ial loss can further improve the image quality of novel view

synthesis. As we can see, the adversarial loss is crucial for

sharper and more realistic rendering.

22949



4.4. Limitations

The proposed method still has the following limitations.

First, the reconstructed human geometry still loses much

details, such as the face, which degrades the rendering qual-

ity. In the future, we will try to replace the density field with

the signed distance field like [48] to improve the geome-

try and rendering. Second, at inference time, the rendering

speed of our method is still relatively slow. Recent works

[27, 49] leverage the voxel octree to improve the rendering

speed and achieve real-time rendering. Combining with this

technology is left as future work.

5. Summary
In this paper, we propose a new approach to reconstruct

the 3D human model from a single image. Different from

previous works that require multi-view images or high-

quality 3D scans, we only leverage Internet videos for train-

ing. We propose a self-supervised pipeline to introduce the

local appearance consistency constraint of each body part

over different frames of the same video. A new dataset con-

sisting of hundreds of Internet videos is created for training.

Extensive experimental results demonstrate the generaliza-

tion capability of our method for in-the-wild images.
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Rhodin, Dushyant Mehta, Hans-Peter Seidel, and Christian

Theobalt. Monoperfcap: Human performance capture from

monocular video. ACM Trans. Gr., 2018. 2

[48] Lior Yariv, Jiatao Gu, Yoni Kasten, and Yaron Lipman. Vol-

ume rendering of neural implicit surfaces. 2021. 9

[49] Alex Yu, Ruilong Li, Matthew Tancik, Hao Li, Ren Ng, and

Angjoo Kanazawa. Plenoctrees for real-time rendering of

neural radiance fields. In ICCV, pages 5752–5761, 2021. 9

[50] Alex Yu, Vickie Ye, Matthew Tancik, and Angjoo Kanazawa.

pixelnerf: Neural radiance fields from one or few images.

pages 4578–4587, 2021. 6, 8

[51] Tao Yu, Zerong Zheng, Kaiwen Guo, Pengpeng Liu, Qiong-

hai Dai, and Yebin Liu. Function4d: Real-time human vol-

umetric capture from very sparse consumer rgbd sensors. In

CVPR, 2021. 2

[52] Tao Yu, Zerong Zheng, Kaiwen Guo, Jianhui Zhao, Qionghai

Dai, Hao Li, Gerard Pons-Moll, and Yebin Liu. Doublefu-

sion: Real-time capture of human performances with inner

body shapes from a single depth sensor. In CVPR, 2018. 2

[53] Fuqiang Zhao, Wei Yang, Jiakai Zhang, Pei Lin, Yingliang

Zhang, Jingyi Yu, and Lan Xu. Humannerf: Efficiently gen-

erated human radiance field from sparse inputs. pages 7743–

7753, 2022. 1, 2

[54] Zerong Zheng, Tao Yu, Yebin Liu, and Qionghai Dai. Pamir:

Parametric model-conditioned implicit representation for

image-based human reconstruction. IEEE transactions on
pattern analysis and machine intelligence, 44(6):3170–3184,

2021. 1, 2, 6

[55] C Lawrence Zitnick, Sing Bing Kang, Matthew Uyttendaele,

Simon Winder, and Richard Szeliski. High-quality video

view interpolation using a layered representation. ACM
Trans. Gr., 2004. 2

22951


