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Abstract

This paper aims to learn a domain-generalizable (DG)
person re-identification (ReID) representation from large-
scale videos without any annotation. Prior DG ReID
methods employ limited labeled data for training due to
the high cost of annotation, which restricts further ad-
vances. To overcome the barriers of data and annota-
tion, we propose to utilize large-scale unsupervised data
for training. The key issue lies in how to mine identity
information. To this end, we propose an Identity-seeking
Self-supervised Representation learning (ISR) method. ISR
constructs positive pairs from inter-frame images by mod-
eling the instance association as a maximum-weight bi-
partite matching problem. A reliability-guided contrastive
loss is further presented to suppress the adverse impact
of noisy positive pairs, ensuring that reliable positive
pairs dominate the learning process. The training cost
of ISR scales approximately linearly with the data size,
making it feasible to utilize large-scale data for training.
The learned representation exhibits superior generalization
ability. Without human annotation and fine-tuning, ISR
achieves 87.0% Rank-1 on Market-1501 and 56.4% Rank-
1 on MSMT17, outperforming the best supervised domain-
generalizable method by 5.0% and 19.5%, respectively. In
the pre-training→fine-tuning scenario, ISR achieves state-
of-the-art performance, with 88.4% Rank-1 on MSMT17.
The code is at https://github.com/dcp15/ISR_
ICCV2023_Oral.

1. Introduction
Person re-identification (ReID) aims to retrieve a person

across non-overlapping camera views [60, 6, 86, 39, 14].
Although current full-supervised ReID methods [28, 31,
34, 42, 65, 22] have shown encouraging results on public
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Figure 1. The core idea. (a) MoCo [25] learns instance discrimina-
tion, which aims to learn a unique representation for each image.
(b) ISR learns identity discrimination, which aims to learn similar
representations for inter-frame images with the same identity.

benchmarks, their performance significantly declines when
applied to unseen domains. To enhance the generalization
ability, unsupervised domain adaptation (UDA) [15, 84, 19,
1, 53] and domain generalizable (DG) ReID [57, 33, 12]
techniques are extensively studied. However, both meth-
ods have limitations that prevent their scaling in real-world
applications. UDA ReID necessitates well-organized data
from the target domain for adaptation. DG ReID, on the
other hand, typically employs small-scale labeled training
data due to the high cost of annotation, which hinders fur-
ther progress. To this end, we propose to break through the
constraints of human annotation and target domain adapta-
tion on the generalization of person ReID.

This paper aims to learn domain-generalizable represen-
tations without any annotation. The representation can be
applied directly in arbitrary domains without fine-tuning.
Unlike prior DG ReID methods [57, 33, 12] that require
labeled training data, we employ vast amounts of unlabeled
internet videos for training. Specifically, our training set
comprises 47.8 million unlabeled person images extracted
from 74,000 video clips. The feasibility comes from two
key factors: the low cost of acquiring videos from the inter-
net and the diverse domains present in large-scale videos.
We learn a domain-generalizable ReID representation from
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the large-scale unsupervised training data. The representa-
tion is robust to unseen domains, exhibiting high application
potential and value for open-world scenarios.

The core issue is learning identity discrimination. In-
spired by the great success of contrastive learning [25, 21,
8, 10] in large-scale unsupervised data, we propose to learn
identity discrimination through contrastive information be-
tween samples. It is not feasible to directly apply conven-
tional unsupervised contrastive learning methods to ReID,
because the objective of their pretext task (i.e., instance dis-
crimination) conflicts with ReID required identity discrim-
ination. For example, as in Figure 1(a), MoCo [25] regards
two augmented views of an image as a positive pair, which
prompts the model to learn a unique representation for each
image. However, ReID aims to discriminate between iden-
tities instead of instances, which expects multiple images
from the same identity to have similar representations.

To achieve the objective of identity discrimination, we
propose an Identity-seeking Self-supervised Representation
learning (ISR) method. ISR aims to learn similar represen-
tations for inter-frame images belonging to the same iden-
tity, as illustrated in Figure 1(b). We first formulate the
instance association between two frames as a maximum-
weight bipartite matching problem, where positive pairs are
mined by solving the optimal matching strategy. However,
these positive pairs inevitably contain noise due to the unsu-
pervised construction, which considerably undermines rep-
resentation learning. Next, we introduce a reliability-guided
contrastive loss to mitigate the adverse impact of noisy pos-
itive pairs, ensuring that reliable positive pairs dominate the
learning process. Moreover, the training cost of ISR scales
approximately linearly with the size of the data, making it
feasible to train on large-scale data.

Extensive experiments demonstrate the effectiveness of
ISR. Under the domain-generalizable settings, ISR with
ResNet50 [26] backbone achieves 45.7% Rank-1 and
21.2% mAP on the most challenging dataset MSMT17 [74],
outperforming the best-supervised domain-generalizable
method trained with multiple labeled datasets by +8.8%
and +6.5%, respectively. When using a more data-hungry
backbone, i.e., Swin-Transformer [44], the performance is
even further improved, achieving 56.4% Rank-1 and 30.3%
mAP on MSMT17. We also evaluate ISR under other prac-
tical settings, such as pre-training for supervised fine-tuning
or few-shot learning. ISR shows consistent improvements
upon existing methods. For example, when serving as a
pre-trained model for supervised fine-tuning, ISR achieves
88.4% Rank-1 on MSMT17, setting a new state-of-the-art.

The main contributions of this paper are:

• We propose an Identity-seeking Self-supervised Rep-
resentation learning (ISR) method that can learn a
domain-generalizable ReID representation from large-
scale video data without any annotation.

• We propose a novel reliability-guided contrastive loss
that effectively mitigates the adverse impact of noisy
positive pairs, making reliable positive pairs dominate
the representation learning process.

• Extensive experiments verify the effectiveness of ISR.
Notably, ISR achieves 87.0% Rank-1 on Market-1501
and 56.4% Rank-1 on MSMT17 without human anno-
tation and fine-tuning, outperforming the best super-
vised DG method by 5.0% and 19.5%, respectively.

2. Related Work
Person Re-identification. Person re-identification

(ReID) [60, 86, 14] aims to retrieve a person in a large
database from disjoint cameras. Deep learning [28, 31, 34,
65] has dominated the ReID community due to its powerful
representation capabilities. The deep learning methods can
be roughly divided into but not limited to, deep metric meth-
ods [9, 29, 59], part-based methods [60, 63, 14, 23], and
attention-based methods [2, 4, 67]. Although these meth-
ods have achieved promising results on public benchmarks,
they show poor generalization ability on unseen domains.
As a result, unsupervised domain adaption (UDA) ReID
[53, 1, 84] is proposed. UDA ReID aims at fine-tuning the
source-trained model to the target domain using unlabeled
target domain data. However, it is still not powerful enough
for practical applications because it is sometimes difficult to
collect well-organized target domain data for fine-tuning.

Domain Generalizable (DG) ReID. Domain generaliz-
able ReID [57, 36, 11, 81, 12, 49, 35, 79, 77] aims to learn
a robust model on the source domain and test it directly on
unseen target domains without fine-tuning. It has attracted
extensive attention due to its great potential in practical ap-
plications. DIMN [57] designs a Domain-Invariant Map-
ping Network to learn domain-invariant representation un-
der a meta-learning pipeline. MetaBIN [11] and SNR [36]
study the normalization layer or module to improve the
model generalization. RaMoE [12] leverages the relevance
between the target domain and multiple source domains
to improve the model’s generalization. MDA [49] aligns
source and target feature distributions to a prior distribution.
These methods are trained with small-scale domain-starved
labeled data. Unlike them, we aim to learn a DG ReID
model from large-scale domain-diverse unlabeled data.

Synthetic Data for ReID. The performance of ReID
models is limited by the high cost of collecting annotated
data from the real world. To address this challenge, sev-
eral methods have turned to using synthetic data. Notably,
PersonX [58] contains 1,266 identities with 273,456 images
captured from various viewpoints, enabling exploration of
viewpoint impacts on ReID systems. RandPerson [70] of-
fers 8,000 identities with 228,655 images from 19 cam-
eras, while UnrealPerson [78] provides 3,000 identities with
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120,000 images from 34 cameras, and ClonedPerson [69]
includes 5,621 identities with 887,766 images from 24 cam-
eras. These synthetic datasets have proven valuable for su-
pervised learning, as they enhance the generalization ability
of ReID models. DomainMix [66] further establishes that
combining labeled synthetic data with unlabeled real-world
data during training is a promising direction for DG ReID.
However, there remains a significant domain gap between
synthetic and real-world data, impeding the seamless appli-
cation of models trained on synthetic data to authentic real-
world scenarios. To bridge this disparity, we propose to use
vast amounts of unlabeled real-world data for training.

Unsupervised Representation Learning. In recent
years, unsupervised representation learning methods [25, 8,
21, 24, 10] have shown promising results in learning pre-
training representations from large-scale unlabeled data.
MoCo [25] introduces a memory queue to generate nega-
tive samples. SimCLR [8] leverages a projection head and
rich data augmentations to achieve robust pre-training rep-
resentation. BYOL [21] learns the representation without
using negative pairs. However, if these methods are applied
directly to ReID, only a pre-training model can be learned,
which shows extremely low accuracy when tested directly.
The core reason is that they regard two views of an image
as a positive pair or reconstruct masked pixels in an image,
resulting in instance discrimination. This contradicts the
ReID objective of identity discrimination. Unlike them, we
regard inter-frame images with the same identity as positive
pairs to align with the identity discrimination objective. A
closely related work is CycAs [72] and its improved ver-
sion [71]. CycAs enforces cycle consistency of instance
association between video frame pairs to learn ReID rep-
resentation. However, CycAs exhibits weaknesses in sce-
narios where certain instances lack corresponding matches
or where association errors occur. Our method significantly
differs from CycAs as we mine positive pairs and effectively
suppress noise within them, offering a robust solution to
learning a generalizable ReID representation.

3. Identity-Seeking Represenatation Learning

We present an Identity-seeking Self-supervised Rep-
resentation (ISR) learning method to learn a domain-
generalizable ReID representation from extensive videos
without any annotation. ISR constructs positive pairs from
inter-frame images to align with the ReID objective of iden-
tity discrimination (Sec. 3.1). To mitigate the adverse ef-
fects of noisy positive pairs, we incorporate a reliability-
guided contrastive loss (Sec. 3.2). The training cost of
ISR scales approximately linear with the amount of train-
ing data, making it feasible to train with large-scale data.

Frame 𝑡𝑡

Frame 𝑡𝑡 + 𝛿𝛿

Detection

Detection

𝜙𝜙

Model

Instance Association

𝑿𝑿
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Figure 2. The overview of ISR. We first crop two image sets X
and Y from a video frame pair. They are fed into the model ϕ to
obtain the features X and Y . We mine the positive pairs by mod-
eling the association between X and Y as a maximum-weight
bipartite matching problem. We propose a reliability-guided con-
trastive loss LRC to suppress the effect of noisy pseudo labels.

3.1. Overview

The core of our method is to consider inter-frame im-
ages with the same identity as positive pairs for contrastive
learning. As shown in Figure 2, we crop the person im-
ages from two frames of a video with the help of an off-
the-shelf pedestrian detection model [73] to form two im-
age sets X and Y . The time interval δ between two frames
requires a trade-off. If δ is too large, X and Y might not
have identity overlap. Conversely, if δ is too small, X and
Y are too similar to provide sufficient contrastive informa-
tion. In practice, we define a maximum time interval δmax.
We randomly select two frames as long as their interval
does not exceed δmax. X and Y are fed into a model ϕ
to extract the features X = [x1,x2, . . . ,xm] ∈ Rd×m and
Y = [y1,y2, . . . ,yn] ∈ Rd×n, where d is the feature di-
mension, m and n are the number of images in X and Y ,
respectively. We assume m ≤ n; otherwise, we can swap
X and Y to ensure this. All features are l2-normalized.

The positive pairs are mined by formulating the instance
association between X and Y as a maximum-weight bipar-
tite matching problem. Let π ∈ Rm×n be a boolean associ-
ation matrix, where πij = 1 if xi and yj are matched; oth-
erwise, πij = 0. The cost of matching xi and yj is defined
as the cosine distance between them, i.e., cij = 1−xi · yj .
One of our insights is that if the association matrix is opti-
mal, the total matching cost should be minimum, which is
formulated as:

min
π

∑
ij
cijπij

s.t.
∑

j
πij = 1, i ∈ {1, 2, . . . ,m}∑

i
πij = 0 or 1, j ∈ {1, 2, . . . , n}

(1)

The optimal association matrix π∗ can be solved in polyno-
mial time by the Hungarian algorithm [37] (please see sup-
plementary materials for details). In general, there are finite
pedestrians in a frame, so solving the optimal π∗ brings
limited computational overhead. This allows positive pairs
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to be mined synchronously during training, benefiting from
each other with the learning of ReID model.

After solving the optimal association matrix π∗, we de-
fine two matched samples as a positive pair. An intuitive
way is to apply the loss function of MoCo [25] to enforce
the positive pairs to be similar and negative pairs to be dis-
similar. However, such a way yields unsatisfactory results
in our experiments (Table 5). We find such failure is caused
by the inevitable noisy positive pairs. To address this issue,
we propose a reliability-guided contrastive loss (Sec. 3.2) to
suppress the impact of noisy positive pairs during training.

Identity discrimination vs. instance discrimination . We
analyze the feasibility of directly applying conventional un-
supervised contrastive learning methods [25, 8, 21, 10] to
ReID. Without loss of generality, we take the widely used
MoCo [25] as an example. MoCo considers two augmented
views of an image to be a positive pair, which enforces the
model to learn a unique representation for each image, lead-
ing to instance discrimination. However, ReID necessitates
identity discrimination. Our method regards inter-frame im-
ages with the same identity as positive pairs and requires
them to have similar representations, which aligns with the
objective of ReID. As shown in Table 1, under domain-
generalizable settings, our method outperforms MoCo by a
large margin, exhibiting great superiority in the ReID task.

3.2. Noisy Positive Pair Suppression

There is inevitable noise in the mined positive pairs.
Noisy positive pairs mainly come from two aspects: (1) the
feature extractor ϕ is imperfect, which makes the matching
cost inaccurate, especially in the early stages of training; (2)
some pedestrians appearing in X do not appear in Y , which
is fatal because bipartite matching strategy constrains that
for every sample in X , there must be a sample in Y asso-
ciated to it. Noisy positive pairs will seriously disrupt the
learning of embedding space. To remedy this, we propose to
measure the reliability of positive pairs and further suppress
the adverse impact of noisy positive pairs during training.

Our intuition is that if two images belong to the same
identity, their similarity should be large and vice versa. The
similarity of two samples in the positive pair can reflect the
reliability. If the similarity between two samples within a
mined positive pair is very low, the positive pair is likely
to be noisy. Besides, since the positive pairs are mined
by solving the bipartite matching problem, the reliability
should also consider the similarities between the target sam-
ple and other samples. Combing these two factors, for xi,
the reliability score of the corresponding positive pair is,

p(xi) =

∑
j π

∗
ij exp(xi · yj/τ)∑

j exp(xi · yj/τ)
(2)

where π∗ is the optimal association matrix and τ is the tem-
perature hyper-parameter. The reliability is the softmax-
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Figure 3. (a) The contrastive loss versus the reliability of the posi-
tive pair, i.e., LRC(xi) vs. p(xi). Setting γ > 0 suppresses the ad-
verse impacts of positive pairs with low reliability scores. (b) The
absolute value of ∂LRC(xi)/∂p(xi) when stopping the gradient
of pγ(xi). (c) The absolute value of ∂LRC(xi)/∂p(xi) when
keeping the gradient of pγ(xi). For a better observation, we scale
up the curves under different γ so that their maxima are equal.

based probability that tries to align xi with its positive one
in the set Y . The calculation of reliability is extremely low
overhead, making it suitable for large-scale training.

We propose the reliability score p(xi) to be a modulation
factor to down-weight the noisy positive pairs and thus fo-
cus training on reliable positive pairs. At the same time, the
modulation factor should not disrupt the gradient of the loss,
so we break its gradient in back-propagation to ensure the
stability of the training process. Formally, the reliability-
guided contrastive loss is defined as,

LRC(xi) = −pγ↚(xi) log(p(xi)) (3)

where pγ↚(xi) indicates that the gradient of pγ(xi) is cut-
off in the back-propagation. γ ≥ 0 is the hyper-parameter
controlling the strictness for reliability. The larger the γ, the
more the loss function focuses on reliable positive pairs. In
practice, the loss function LRC(xi) will decrease as γ in-
creases. To maintain the size of the loss during training, we
scale up the average LRC in the mini-batch,

LRC =
α

m

∑m

i=0
LRC(xi) (4)

where α =
(∑

j LRC,γ=0(xj)
)
↚

/
(∑

j LRC(xj)
)
↚

.
This dynamically calibrates the size of the loss, weakening
the influence of the learning rate in the optimal γ analysis.
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Properties of LRC(xi) . We visualize LRC(xi) and the ab-
solute gradient |∂LRC(xi)/∂p(xi)| for γ ∈ [0, 10] in Fig-
ure 3. We note several key properties of LRC(xi):

Firstly, as in Figure 3a, when γ = 0, LRC degenerates
to a version without the reliability guidance. Noisy pos-
itive pairs comprise the majority of the loss, which seri-
ously degrades representation learning. When γ > 0, as
shown in Figure 3b, reliable positive pairs dominate the gra-
dient back-propagation process, effectively mitigating the
adverse impact of noisy positive pairs during learning.

Secondly, it is necessary to stop the gradient of pγ(xi).
If the gradient of pγ(xi) is maintained, a slump point will
occur for curves with γ > 0, as in Figure 3c. Consequently,
positive pairs whose reliability lies in the trap lose the abil-
ity to optimize the model. Some noisy positive pairs exhibit
large back-propagation gradients, severely compromising
the representation learning. In our experiments, maintain-
ing the gradient of pγ(xi) will result in NAN issues.

Lastly, LRC(xi) significantly differs from the prior focal
loss [43]. Focal loss is designed for training data with high-
quality labels by assigning large training weights to hard
samples. LRC(xi) is designed for training data with noisy
pseudo-labels, i.e., positive pairs with noise, by assigning
large training weights to reliable positive pairs. The modu-
lating factor of focal loss is (1− p)γ , while the modulating
factor of LRC(xi) is pγ↚. The gradient cutoff of pγ is spe-
cific and crucial for LRC(xi). Besides, results in Table 6
validate that LRC is superior to focal loss in our settings.

3.3. Training and inference

Training . Inspired by [68, 25], we adopt a memory queue
to provide hard negative samples for contrastive learning.
The queue uses a first-in, first-out update strategy. We re-
gard two samples as a negative pair if they come from differ-
ent videos. For xi, we select the most dissimilar k negative
samples from the queue, denoted as {f1,f2, . . . ,fk}, to
strengthen contrastive information,

LQ(xi) =
1

k

∑k

j=1
log(1 + exp (xi · f j)) (5)

Here, we introduce a “super” frame sampling strategy to
improve the efficiency of training. For video b, two cropped
image sets are denoted as Xb and Yb. The “super” frame
pair is formed by merging several sets from different videos,
i.e., X =

⋃
b Xb and Y =

⋃
b Yb. Note that the positive

pairs are mined between two frames of the same video. The
“super” frame sampling strategy guarantees the domain di-
versity at each iteration. Finally, the total loss function is:

L = LRC + λLQ (6)

where λ is a hyper-parameter to balance LRC and LQ.
Training cost analysis: The number of pedestrians in a

frame is limited, so the computational complexity of solv-

ing the bipartite-graph matching problem can be approx-
imately regarded as O(1). Assuming that there are N
frames in our training data, the training complexity of our
method is O(N), which is roughly linear with the data size.
This makes it possible to drive large-scale data for training.
Please refer to the supplementary for related experiments.

Inference . If not specified, the learned representation is
directly tested on target domains without fine-tuning.

4. Experiments
4.1. Implementation

Training dataset. Following LUP [16], LUPnl [17], and
CycAs [71], we crawl the videos from youtube as our train-
ing data. The videos are searched by queries like “city-
name+streeview”. The “cityname” includes 100 big cities
around the world, ensuring the diversity of the domains.
Following [71], to build a high-quality training dataset, the
processing includes: (1) use the PySceneDetect1 toolkit to
cut the raw video into multiple slices, eliminating the ef-
fects of shot changes within a video; (2) use the off-of-shelf
pedestrian detection model JDE [73] to crop the person im-
ages every seven frames to reduce the temporal redundancy;
(3) calculate the average number of pedestrians detected in
five uniformly sampled frames in a video, removing videos
with less than five pedestrians. Statistically, the training set
contains 47.8M person images from 74K video clips.

Test datasets and protocols. We conduct extensive ex-
periments on public ReID datasets. For domain gener-
alizable (DG) ReID, following [12], we select two com-
mon protocols. Protocol-1 is the leave-one-out setting for
Market-1501[82], DukeMTMC [54], CUHK03 [41], and
MSMT17 [74], which selects one domain for testing (only
the testing set) and all the other domains for training (in-
cluding the training and testing sets). Protocol-2 selects
all images in Market-1501, DukeMTMC, CUHK02 [40],
CUHK03, and CUHK-SYSU [75] (including the training
and testing sets) as the training images. Four small datasets,
i.e., PRID [30], GRID [47], VIPeR [20], and iLIDs [64] are
used for testing. Following [57], we report the average of 10
random splits of gallery and probe sets. Since DukeMTMC
has been withdrawn, we do not report the evaluation re-
sults on DukeMTMC, which is introduced just to illustrate
the training settings of other methods.

Training details. If not specified, we use ResNet50 [26]
as our backbone. Swin-Transformer [44] is also adopted for
fair comparisons. Similar to [48], the stride of ResNet50’s
last layer is set to 1. Inspired by [50], we add one IN [61]
layer to the end of layer1 and layer2 of ResNet50, respec-
tively, to improve the model generalization. For ResNet50
(Swin-Transformer), input images are resized to 256× 128

1http://scenedetect.com/
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Methods Sup.
Protocol-1 Protocol-2

Market-1501 MSMT17 CUHK03 PRID GRID VIPeR iLIDs
R1 mAP R1 mAP R1 mAP R1 mAP R1 mAP R1 mAP R1 mAP

CrossGrad* [55] ✔ – – – – – – 18.8 28.2 9.0 16.0 20.9 30.4 49.7 61.3
MLDG* [38] ✔ – – – – – – 24.0 35.4 15.8 23.6 23.5 33.5 53.8 65.2
PPA* [52] ✔ – – – – – – 31.9 45.3 26.9 38.0 45.1 54.5 64.5 72.7
DIMN* [57] ✔ – – – – – – 39.2 52.0 29.3 41.1 51.2 60.1 70.2 78.4
SNR [36] ✔ – – – – – – 52.1 66.5 40.2 47.7 52.9 61.3 84.1 89.9
ACL [77] ✔ – – – – – – 63.0 73.4 55.2 65.7 66.4 75.1 81.8 86.5
MetaBIN [11] ✔ – – – – – – 74.2 81.0 48.4 57.9 59.9 68.6 81.3 87.0
MDA [49] ✔ – – – – – – – – 61.2 62.9 63.5 71.7 80.4 84.4
DDAN [5] ✔ – – – – – – 62.9 67.5 46.2 50.9 56.5 60.8 78.0 81.2
DTIN [35] ✔ – – – – – – 71.0 79.7 51.8 60.6 62.9 70.7 81.8 87.2
META [76] ✔ – – – – – – 61.9 71.7 51.0 56.6 53.9 60.4 79.3 83.9
M3L [81] ✔ 75.9 50.2 36.9 14.7 33.1 32.1 – – – – – – – –
DML [12] ✔ 75.4 49.9 24.5 9.9 32.9 32.6 47.3 60.4 39.4 49.0 49.2 58.0 77.3 84.0
RaMoE [12] ✔ 82.0 56.5 34.1 13.5 36.6 35.5 57.7 67.3 46.8 54.2 56.6 64.6 85.0 90.2
TrackContrast [32] ✘ 72.7 36.2 – – – – – – – – – – – –
LUP† [16] ✘ 3.3 1.0 0.3 0.1 0.1 0.5 1.5 3.7 1.2 4.0 1.4 5.0 36.7 43.0
MoCo (R50) [25] ✘ 10.5 2.6 0.5 0.2 0.3 0.7 6.5 10.9 2.8 6.9 4.0 7.5 38.8 46.4
LUPnl† [17] ✘ 13.8 3.8 0.6 0.2 0.4 0.8 8.1 12.2 3.1 7.4 4.6 9.2 43.3 49.8
CycAs (R50) [71] ✘ 80.3 57.5 43.9 20.2 25.8 26.5 58.8 67.7 52.5 62.3 57.3 66.0 85.2 90.4
Ours (R50) ✘ 85.1 65.1 45.7 21.2 26.1 27.4 59.7 70.8 55.8 65.2 58.0 66.6 87.6 91.7
CycAs (Swin) [71] ✘ 82.2 60.4 49.0 24.1 36.3 37.1 71.5 79.2 55.8 66.4 60.2 68.8 87.4 91.3
Ours (Swin) ✘ 87.0 70.5 56.4 30.3 36.6 37.8 74.5 83.0 62.7 72.0 68.4 75.5 87.5 91.5

Table 1. Comparison with state-of-the-art under DG settings. The performances of the methods marked by “*” are from [57]. “Sup.”
indicates the method is supervised or unsupervised. † indicates the results are tested with the pre-trained models published on their Github.

Method Sup. Training set
PersonX456 UnrealPerson ClonedPerson RandPerson
R1 mAP R1 mAP R1 mAP R1 mAP

BOT [48] ✔ M+D+C3+MT 87.7 72.7 56.1 43.5 41.0 7.9 35.8 16.8
MGN [63] ✔ M+D+C3+MT 91.2 77.8 58.1 45.7 49.1 11.9 50.1 27.1

MoCo (R50) [25] ✘ Unsup-videos 16.0 1.4 0.7 0.2 0.5 0.2 0.2 0.1
Ours (R50) ✘ Unsup-videos 92.5 81.6 64.6 52.8 49.8 12.1 54.2 28.1
Ours (Swin) ✘ Unsup-videos 95.0 88.5 67.3 58.1 57.6 16.6 68.3 40.1

Table 2. Comparison on the synthetic datasets: PersonX456 [58], UnrealPerson [78], ClonedPerson [69] and RandPerson [70]. We use
UnrealPerson-v1.3 and the subset of RandPerson for testing, each partitioned into query and gallery sets with a ratio of 1:4. “unsup-
videos” indicates our large-scale unlabeled video dataset. M: Market [82], D: Duke [54], C3: CUHK03 [41], MT: MSMT17 [74].

(224 × 224). During training, images are augmented by
random horizontal flipping and color jitter. We find suitable
data augmentation is beneficial for unsupervised contrastive
learning. Please refer to supplementary materials for related
ablation studies. To guarantee the stability of training, the
number of images in a ”super” frame is 80 (more than 80
will be truncated) and we sample three frames from each
video and team each other up to form three frame pairs.
We adopt distributed training on 4×NVIDIA 3090GPU, so
the batch size is 960 = 80 × 3 × 4 (for Swin-Transformer,
it is 336 = 28 × 3 × 4). In an epoch, we sample every
video 16 times. The model is trained for 50 epochs with
the AdamW [46]. We use the Cosine Annealing learning
rate [45] initialized with 1e−4. We set the hyper-parameter
γ = 6 and λ = 5 in Eq. 3 and Eq. 6, respectively.

Evaluation metrics: Cumulative matching characteris-

tic (CMC) curve and mean average precision (mAP).

4.2. Domain Generalization (DG) Setting.

There are few unsupervised methods for domain gen-
eralizable (DG) ReID. Therefore we mainly compare our
method with supervised DG ReID methods. We also com-
pare five unsupervised methods that utilize large-scale video
data similar to ours. Notably, our method uses the crawled
unsupervised videos for training, and tests directly on
these datasets. We report the results in Table 1. Results
on DukeMTMC are not reported as it is retracted.

Compared to supervised methods: (1) When adopting
ResNet50 as the backbone, the state-of-the-art supervised
method to be compared is RaMoE [12]. Compared with
RaMoE, our method with ResNet50 backbone outperforms
it on most datasets (six out of seven). Especially in the
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Datasets Pre-train Small-scale Few-shot
10% 30% 50% 70% 90% 10% 30% 50% 70% 90%

Market

IN sup. 76.9 / 53.1 90.8 / 75.2 93.5 / 81.5 94.5 / 84.8 95.2 / 86.9 41.8 / 21.1 87.6 / 68.1 92.8 / 80.2 94.0 / 84.2 94.6 / 86.7
IN unsup. 81.7 / 58.4 91.9 / 76.6 94.1 / 82.0 94.5 / 85.4 95.5 / 87.4 36.1 / 18.6 87.8 / 69.3 90.9 / 78.3 94.1 / 84.4 95.2 / 87.1

MoCo [25] 81.8 / 58.8 92.3 / 77.7 94.3 / 84.0 95.4 / 87.3 95.9 / 89.2 41.5 / 22.0 87.7 / 69.8 93.9 / 83.1 94.8 / 86.8 96.0 / 89.3
LUP [16] 85.5 / 64.6 93.7 / 81.9 94.9 / 85.8 95.9 / 88.8 96.4 / 90.5 47.5 / 26.4 92.1 / 78.3 93.9 / 84.2 95.5 / 88.4 96.3 / 90.4

LUPnl [17] 88.8 / 72.4 94.2 / 85.2 95.5 / 88.3 96.2 / 90.1 96.4 / 91.3 61.6 / 42.0 94.0 / 83.7 95.2 / 88.1 96.3 / 90.5 96.4 / 91.6
Ours 90.5 / 75.3 94.8 / 86.2 96.2 / 89.3 96.6 / 90.9 96.7 / 91.8 75.9 / 54.3 94.1 / 84.9 96.0 / 89.4 96.4 / 91.3 96.8 / 92.1

MSMT17

IN sup. 50.2 / 23.2 70.8 / 41.9 76.9 / 50.3 81.2 / 56.9 84.2 / 61.9 34.1 / 14.7 71.1 / 44.5 79.5 / 56.2 82.8 / 60.9 84.5 / 63.4
IN unsup. 48.8 / 22.6 68.7 / 40.4 75.0 / 49.0 79.9 / 55.7 83.0 / 60.9 29.2 / 13.2 67.1 / 41.4 77.6 / 53.3 81.5 / 59.1 83.8 / 62.4

MoCo [25] 46.8 / 21.5 69.4 / 41.7 76.7 / 50.8 81.3 / 58.3 84.7 / 63.9 23.4 / 9.9 65.9 / 40.7 77.4 / 54.2 82.7 / 61.5 85.0 / 65.3
LUP [16] 51.1 / 25.5 71.4 / 44.6 77.7 / 53.0 81.8 / 59.5 85.0 / 63.7 36.0 / 17.0 73.6 / 49.0 80.5 / 57.4 83.5 / 62.9 85.1 / 65.0

LUPnl [17] 51.1 / 28.2 71.2 / 47.7 77.2 / 55.5 81.8 / 61.6 84.8 / 66.1 42.7 / 24.5 74.4 / 53.2 81.0 / 62.2 83.8 / 65.8 85.3 / 67.4
Ours 64.2 / 36.2 78.1 / 52.9 82.5 / 60.0 85.4 / 65.7 87.5 / 69.6 59.4 / 33.4 80.9 / 59.3 85.6 / 66.3 87.6 / 69.7 88.1 / 70.9

Table 3. Comparisons under the small-scale settings and few-shot settings. Results are shown as Rank-1 / mAP.

most challenging and largest dataset MSMT17, our method
outperforms it by 11.6% Rank-1 and 7.7% mAP. (2) When
adopting a more advanced network, i.e., Swin-Transformer,
as the backbone, the performance of our method is fur-
ther improved and outperforms all considered supervised
DG methods on all listed datasets without any human an-
notation, refreshing state-of-the-art. This demonstrates that
data-hungry networks can make better use of large-scale
training data, which is more suitable for our method. (3)
These results show the paradigm of combining unsuper-
vised contrastive learning and domain-diverse large-scale
unlabeled training data is indeed one of the feasible direc-
tions for DG ReID, which can learn a DG ReID model even
better than supervised methods with limited training data.

Compared to unsupervised methods: we also compare
our method with five unsupervised methods, i.e., Track-
Contrast [32], LUP [16], LUPnl [17], MoCo [25] and Cy-
cAs [71]. Our method outperforms TrackContrast by a
large margin. For example, our method with ResNet50
backbone outperforms it by 28.9% mAP on Market-1501.
Models trained by LUP and LUPnl can only serve as pre-
training models and perform poorly when used for direct
testing. The results of LUP2 and LUPnl3 are tested by us
using their public models. CycAs uses the same data scale
as ours. With the ResNet50 backbone, our method out-
performs CycAs by 7.6% mAP in Market-1501. With the
Swin-transformer backbone, our method suppresses CycAs
by 10.1% mAP in Market-1501. The comparisons between
our method and MoCo are fair because the MoCo is trained
with our crawled video data. Our method outperforms
MoCo significantly on all listed datasets. This demonstrates
that the instance discrimination learned by MoCo and the
identity discrimination required by ReID are misaligned.
Our method focuses on learning identity-discriminative rep-
resentations, which is consistent with the objective of ReID.

2https://github.com/DengpanFu/LUPerson
3https://github.com/DengpanFu/LUPerson-NL

Methods
CUHK03 Market-1501 MSMT17

R1 mAP R1 mAP R1 mAP
PCB [60] 63.7 57.5 93.8 81.6 – –
MGN† [63] 71.2 70.5 95.1 87.5 85.1 63.7
BOT [48] – – 94.5 85.9 – –
DSA [80] 78.9 75.2 95.7 87.6 – –
ABDNet [7] – – 95.6 88.3 82.3 60.8
OSNet [85] 72.3 67.8 94.8 84.9 78.7 52.9
MHN [3] 77.2 72.4 95.1 85.0 – –
BDB [13] 79.4 76.7 95.3 86.7 – –
GCP [51] 77.9 75.6 95.2 88.9 – –
ISP [86] 76.5 74.1 95.3 88.6 – –
GASM [27] – – 95.3 84.7 79.5 52.5
ESNET [56] – – 95.7 88.6 80.5 57.3
*IN sup.+MGN† 71.2 70.5 95.1 87.5 85.1 63.7
*IN unsup.+MGN† 67.0 67.1 95.3 88.2 84.3 62.7
MoCo [25]+MGN† 73.2 71.8 96.2 90.3 85.2 65.5
LUP [16]+MGN† 75.4 74.7 96.4 91.0 85.5 65.7
CycAs [71]+MGN† 76.9 76.3 96.5 91.2 86.1 65.8
LUPnl [17]+MGN† 80.9 80.4 96.6 91.9 86.0 68.0
Ours+MGN† 82.7 81.7 96.9 92.3 88.4 71.5

Table 4. Comparisons under the pre-training → fine-tuning set-
tings. Results of methods marked by “*” are from [17]. “IN
sup.”/“IN unsup.” indicates model that is pretrained on ImageNet
in a supervised/unsupervised manner. MGN† refers to the re-
implementation of MGN in fast-reid.

4.3. DG Setting on Synthetic Dataset

We further conduct experiments on the synthetic
datasets, including PersonX456 [58], UnrealPerson [78],
ClonedPerson [69] and RandPerson [70]. Since there is al-
most no method to conduct DG experiments on these syn-
thetic datasets, we compare our method with two strong
supervised baselines BOT [48] and MGN [63], and one
unsupervised method MoCo [25]. Both BOT and MGN
use the combination of Market-1501, Duke, CUHK03, and
MSMT17 for supervised training. Our method and MoCo
are trained with the crawled large-scale unlabeled video
data and directly tested on these synthetic datasets without
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fine-tuning. Results are reported in Table 2. Our method
outperforms BOT, MGN and MoCo by a large margin, es-
pecially in terms of mAP. This shows that our method gen-
eralizes well, even if the target and source domains are es-
sentially different. Our method learns the core concepts of
pedestrian representation in an unsupervised manner.

4.4. Small-scale and Few-shot Settings.

Following LUP [16] and LUPnl [17], we also conduct
experiments under two small data settings: the small-scale
setting and the few-shot setting. The small-scale setting
controls the percentage of usable IDs, and the few-shot set-
ting controls the percentage of images for each ID. These
two settings can reflect the adaptability of the model in new
scenarios. We vary the usable percentages from 10% to
90% and use the MGN implemented in fast-reid as the base-
line. Results are reported in Table 3. Our method compre-
hensively outperforms all other pre-trained models. This
shows our model can adapt to new environments more ef-
ficiently and has a more substantial potential for real-world
applications. Note that under the few-shot setting with 10%
images per identity for fine-tuning, on Market-1501, the
performance is lower than direct evaluation, i.e., 75.9/54.3
vs. 85.1/65.1 (in Table 1). This is because when the usable
images for each identity are few, it is insufficient to train
the classifier with multiple classes well, which in turn com-
promises the feature extractor. Therefore, when the data for
fine-tuning is noisy or poorly organized, we recommend us-
ing our model for direct testing without fine-tuning, which
further demonstrates the superiority of our method.

4.5. Pre-training→Fine-tuning Setting.

Following [16] and [17], we evaluate the effective-
ness of the model learned by our method as a pre-trained
model. We conduct experiments on the strong baseline
MGN [63] implemented by fast-reid with six different pre-
training models, i.e., “IN sup.”, “IN unsup.”, LUP [16],
LUPnl [17], MoCo [25] and CycAs [71]. “IN sup.”/“IN
unsup.” indicates the model is pre-trained on ImageNet in
a supervised/unsupervised manner. MoCo is pre-trained on
our collected data. The results are shown in Table 4. Note
that post-processing such as IIA [18] and RR [83] are not
applied. We can see that our method outperforms all the
other methods by clear margins. This demonstrates that our
model has promising transferability.

4.6. Ablation Study

The effectiveness of each component . Table 5 reports the
ablation study of each component. There are three main
components in our method, i.e., CP: cross-frame positive
pairs; LRC: reliability-guided contrastive loss in Eq. 3;
LQ: memory-based contrastive loss in Eq. 5. We regard
MoCo [25] as a comparable baseline. We can make sev-

Method CP LRC LQ
Market-1501 MSMT17 CUHK03
R1 mAP R1 mAP R1 mAP

MoCo [25] ✗ ✗ ✗ 10.5 2.6 0.5 0.2 0.3 0.7

Ours

✓ ✗ ✗ 54.5 31.9 17.8 3.7 9.5 9.8
✓ ✓ ✗ 81.5 58.7 41.4 18.2 24.9 26.0
✓ ✗ ✓ 55.7 32.2 19.2 6.9 11.1 11.7
✓ ✓ ✓ 85.1 65.1 45.7 21.2 26.1 27.4

Table 5. Ablation study of the components under the DG set-
tings. CP: Cross-frame positive Pairs; LRC: reliability-guided
contrastive loss; LQ: memory-based contrastive loss.

Loss function
Market-1501 MSMT17 CUHK03
R1 mAP R1 mAP R1 mAP

Focal loss [43] 26.7 10.1 4.6 1.6 0.7 1.2
LRC 85.1 65.1 45.7 21.2 26.1 27.4

Table 6. Comparisons with focal loss [43] under the DG settings.
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Figure 4. Performance vs. data scale. The performance keeps im-
proving as the training data increases and does not saturate.

eral observations. Firstly, even without using LRC (set
γ=0 in Eq. 3) and LQ, our framework outperforms MoCo
by a large margin (e.g., +44.0% Rank-1 in Market-1501).
This confirms the effectiveness of our framework in learn-
ing identity discrimination by constructing positive pairs
from inter-frame images instead of considering two aug-
mented two augmented views of an image as a positive pair.
Secondly, when LRC is applied, the performance is sig-
nificantly improved, e.g., from 54.5% to 81.5% (+27.0%)
Rank-1 in Market-1501. This demonstrates that our LRC

can effectively suppress the adverse impact of noisy positive
pairs, resulting in more identity-discriminative representa-
tions. Thirdly, LQ helps to improve the discrimination of
learned representations. For example, when adding LQ to
LRC, the Rank-1 on Market-1501 is improved from 81.5%
to 85.1%. In conclusion, constructing positive pairs from
adjacent frames is the basis of our method. LRC is much
more important than LQ. Combining all proposed compo-
nents achieves the best performance.
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δmax 0.5s 1.0s 2.0s 4.0s 8.0s
Market 73.7/48.4 81.4/58.4 83.8/63.2 85.1/65.1 84.5/64.4

MSMT17 34.6/13.8 41.2/17.9 43.5/19.0 45.7/21.2 44.8/20.1

Table 7. Impact of the maximum time interval δmax. Rank-1/mAP

Comparison with focal loss [43] . We conduct comparative
experiments with focal loss to verify the effectiveness of our
LRC. Specifically, we only replace LRC with focal loss, and
keep other settings unchanged. As shown in Table 6, LRC

outperforms focal loss by a considerable margin. This sup-
ports the notion that it is error-prone to assign large training
weight to hard samples in the presence of noisy labels since
the label of the hard sample is likely to be incorrect. Instead,
it is more appropriate to guide the model to learn from reli-
able samples.

Performance vs. Data size . Here, we study the effect of
the training data size for our method. Under the DG ReID
settings, we vary the training data size from 32 × 104 to
2048×104 to see how the performance changes. The back-
bone is ResNet50. We report the results in Figure 4. As we
can see, with the increase of the data scale, the performance
on Market-1501 and MSMT17 consistently keeps improv-
ing. Even at the large scale of 4096 × 104 unlabeled im-
ages, the performance does not saturate. There is still a
clear upward trend in Rank-1 of MSMT17. This shows that
our method has excellent scalability to large-scale unlabeled
data, which has the potential to achieve better results as the
training data continues to grow.

Time interval between two frame . In this part, we in-
vestigate the impact of the maximum time interval δmax.
As in Table 7, the choice of the maximum time interval
involves trade-offs. When δmax is small, the performance
increases as δmax increases because richer contrastive in-
formation is provided. When δmax is too large, the perfor-
mance degrades because the mined positive pairs are error-
prone, misleading the representation learning. Finally, we
set δmax = 4.0s in our experiments.

Feature distribution . Here, we investigate the feature dis-
tribution to validate the capability of our method in learning
identity discrimination. We collect samples of 15 identities
that are randomly selected from the gallery of the Market-
1501 [82], and visualize their features via t-SNE [62] in
Figure 5. MoCo [25] is employed as a comparison. It can
be seen that the features extracted by our model are closely
clustered for all images of a given identity, while the fea-
tures extracted by MoCo are dispersed. This observation
verifies that MoCo can only learn instance-discriminative
representations, which is determined by the way positive
pairs are constructed. More importantly, this observation
provides compelling evidence that our method effectively
learns identity-discriminative representations.

(a) ISR (Ours) (b) MoCo

Figure 5. The t-SNE [62] visualization of the representation. Our
method learns identity discrimination, while MoCo [25] does not.
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Figure 6. Analysis of hyper-parameters γ in Eq. 3 and λ in Eq. 6.

Impact of hyper-parameters . Here, we show how γ in
Eq. 3 and λ in Eq. 6 affect the performance. Experiments
are conducted on Market-1501 and MSMT17 under the DG
ReID settings. The backbone is ResNet-50. We report the
results in Figure 6. We can see that γ = 2, 4, 6, 8 improves
γ = 0 a lot and λ = 3, 5, 7, 9 outperforms λ = 0. This
again shows the effectiveness of the proposed reliability-
guided contrastive loss and memory-based contrastive loss.
Our method is robust to λ and γ. Finally, the optimal values
of γ and λ are 6 and 5, respectively.

5. Conclusions
This paper proposes an identity-seeking self-supervised

representation learning method for learning a generalizable
ReID representation from large-scale unlabeled videos. Un-
like conventional contrastive learning methods that learn in-
stance discrimination, our method learns identity discrim-
ination by enforcing inter-frame instances with the same
identity to have similar representations. The learned repre-
sentation generalizes well to unseen domains without fine-
tuning. In addition, the learned representation exhibits
promising adaptability. We hope our method will provide
new insights and attract more interest in large-scale unsu-
pervised learning for domain-generalizable ReID.
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