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Abstract

Despite the remarkable progress of Fine-grained visual
classification (FGVC) with years of history, it is still limited
to recognizing 2D images. Recognizing objects in the phys-
ical world (i.e., 3D environment) poses a unique challenge
– discriminative information is not only present in visible
local regions but also in other unseen views. Therefore, in
addition to finding the distinguishable part from the cur-
rent view, efficient and accurate recognition requires infer-
ring the critical perspective with minimal glances. E.g., a
person might recognize a “Ford sedan” with a glance at
its side and then know that looking at the front can help
tell which model it is. In this paper, towards FGVC in
the real physical world, we put forward the problem of
multi-view active fine-grained visual recognition (MAFR)
and complete this study in three steps: (i) a multi-view, fine-
grained vehicle dataset is collected as the testbed, (ii) a
pilot experiment is designed to validate the need and re-
search value of MAFR, (iii) a policy-gradient-based frame-
work along with a dynamic exiting strategy is proposed
to achieve efficient recognition with active view selection.
Our comprehensive experiments demonstrate that the pro-
posed method outperforms previous multi-view recognition
works and can extend existing state-of-the-art FGVC meth-
ods and advanced neural networks to become “FGVC ex-
perts” in the 3D environment. Our code is available at
https://github.com/PRIS-CV/MAFR.

1. Introduction

In the past two decades, fine-grained visual classifica-
tion (FGVC) has made significant progress in recognizing
sub-categories of objects belonging to the same class. This
progress has been demonstrated in various domains, such
as recognizing cars [32, 57], aircraft [36], birds [50, 48],
and foods [39], with extensive outstanding works surpass-
ing human experts in many application scenarios [34, 56,

*indicates the corresponding author.

Figure 1. Conventional FGVC versus Multi-view Active FGVC.
Conventional FGVC takes a single static image for inference,
which may omit the discriminative information. In contrast, Multi-
view FGVC takes a step further by predicting the potential dis-
criminative view and fusing a sequence of visual information for
the final decision.

19, 53, 13, 4, 5, 16, 14]. However, the previous efforts
on FGVC have remained mainly limited to a single-view-
based paradigm, where only the visual content within a sin-
gle static image is considered. This paradigm may be suffi-
cient for coarse-grained classification where inter-class dif-
ferences are easily captured, such as distinguishing a coupe
from other vehicles by its streamlined body, seductive en-
gine, or headlamps. However, fine-grained classification
presents a different challenge where discriminative clues are
rare and often found in subtle structural differences that are
not easily captured by a single static view. For instance, to
distinguish between different Ford sedans, one can only rely
on subtle differences in the design of car headlights. Pre-
dictably, for single-view-based approaches, an image/view
without discriminative clues is completely indistinguishable
at the fine-grained level, fundamentally limiting the model’s
theoretical performance.

Factually, visual recognition is never limited to observ-
ing 2D environments and processing static images. Vi-
sion algorithms equipped by portal devices (e.g., smart-
phone, smart glasses, etc.) or embodied AI agents [18]
(e.g., intelligent robots) play the core roles during machine-
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environment interaction and have become one of the fo-
cuses of computer vision research. Therefore, to embrace
the new trend, a natural extension of ordinary FGVC fol-
lows – in addition to locating discriminative parts within an
image, we aim to infer the unseen distinguishable perspec-
tive within the physical world (i.e., 3D environment). Fig-
ure 1 shows an example where, with a single glance from
the front, the algorithm may be uncertain about the model
of the Ford sedan, but can infer that looking at its front will
help to resolve the ambiguity.

Specifically, we re-propose the concept of active vi-
sion [1] in the context of FGVC termed multi-view active
fine-grained visual recognition (MAFR). MAFR is based on
two essential hypotheses. Firstly, we hypothesize that dis-
criminative information for different fine-grained categories
is distributed across various object views, making discrim-
inative perspective inference a non-trivial and worth study-
ing. Secondly, we hypothesize that even views that appear
indistinguishable at first glance can contain visual clues that
can help infer the discriminative perspective, making the
problem solvable.

To start with, due to the absence of qualified datasets,
we first collect a fine-grained, multi-view vehicle dataset
named Multi-view Cars (MvCars) as the testbed. MvCars
comprises 233 car models from 35 brands, covering 5 dif-
ferent car types. Each car in the dataset has 8 aligned views,
and the dataset contains more than 26, 000 images. In Sec-
tion 3.2, we conducted a simple pilot experiment and ver-
ified our first hypothesis, which suggests that MvCars is
well-suited for the problem at hand.

Secondly, our next contribution is an efficient multi-
view fine-grained recognition framework building upon ac-
tive next-view selection and dynamic exiting. In particular,
following the general idea of view-based 3D object under-
standing [47], an extraction-aggregation architecture is de-
signed as the feature encoder, where a convolutional neu-
ral network (e.g., ResNet50 [25]) is first applied to extract
single-view features independently. Then a recurrent neural
network (e.g., GRU [11]) is adopted to aggregate multi-view
features and form global descriptions. Afterwards, we for-
mulate the next-view selection as a sequential decision pro-
cess, where the model is demanded to decide the next dis-
criminative view (action) according to previously observed
views (state). Therefore, we implement a proximal policy
optimization (PPO) [46] based multi-stage training strat-
egy. In addition, considering that the difficulty of recog-
nizing different samples varies and the resulting number of
perspectives required differs, we design a dynamic exit in-
ference strategy for better effort allocation – inspired by the
idea of budgeted batch classification, a series of exciting
confidence thresholds are estimated under a given effort ex-
pectation. Note that the proposed framework does not rely
on specific neural network architectures. It can extend any

visual recognition network to an FGVC experts in the 3D
environment.

Finally, several carefully designed baselines are re-
produced on MvCars as benchmark results, including pre-
vious multi-view recognition works, advanced neural net-
works, and popular FGVC methods. The experimental re-
sults demonstrate that the proposed method delivers a better
performance-efficient trade-off than all competitors. After
that, analysis of the upper bound and the selected trajecto-
ries reveals the inherent characteristics of MAFR. In addi-
tion, comprehensive ablation studies are carried out to ver-
ify the necessities of each model component.

2. Related Work
2.1. Fine-Grained Visual Classification

Due to the inherent subtle inter-class variance and the
relatively large intra-class variance, fine-grained visual clas-
sification is much more challenging than ordinary coarse-
grained classification. With vigorous efforts made by re-
searchers, great progress has been made in many directions.
Localization-based approaches [61, 31, 56, 19, 53, 6] that
explicitly locate discriminative parts for feature extraction
to alleviate the intra-class variance. High-order encoding
methods [34, 20, 19, 59, 62, 21] that adopt high-order fea-
ture interactions for better representation ability that can
capture the subtle differences. Chen et al. [9] and Du et
al. [13] train the model with jigsaw patches to implicitly
encourage knowledge mining from local regions. Recently,
Chang et al. [5] leverage the underlying hierarchical struc-
ture of fine-grained categories to achieve user-friendly out-
puts and better performance.

Except for good performances being brought, these
works above also reveal that FGVC is never just a more
challenging classification problem but a stand-alone field
that requires well-directed research. In this paper, to further
broaden the horizon of FGVC, we propose the multi-view
active fine-grained visual recognition (MAFR) task aiming
at effectively recognizing fine-grained categories in the 3D
environment along with a targeted dataset. It is worth noting
that the CompCars [57] dataset also provides a car dataset
with view annotations. However, its multi-view images are
taken from different samples, making it less suitable for the
raised problem.

2.2. Multi-View Recognition

Elsewhere for common object recognition problems,
particular progress has been made to recognizing 3D ob-
jects with three trends that can be summarized [7]: point-
based methods [42, 44, 2, 41], volume-based methods [37,
55, 43, 38], and view-based methods [10, 47, 29, 30, 60, 58].
Among them, point-based and volume-based approaches
demand to perceive the 3D structure of objects via lidar,
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Figure 2. Illustration of samples from MvCars and some data statistics: (a) The number of samples per category. (b) The number of samples
per type. (c) The number of samples per brand. (d) Results of our pilot experiment. The broken lines show model accuracy based on 8
individual views. Moreover, the bars represent the differences between each category’s maximum and minimum accuracy.

depth sensor or something else, which makes them less
practicable in daily applications, e.g., recognizing an un-
familiar car for detailed information simply with a mobile
phone. On the contrary, view-based methods that leverage
multiple surrounding 2D views as descriptors for 3D objects
tend to be an optimal choice.

Specifically, view-based methods share the core idea
of encoding single-view features through a vision neural
network and then aggregating multi-view features. Su et
al. [47] first approaches the multi-view recognition prob-
lem with CNN for feature extraction and sum-pooling for
aggregation. Then, Johns et al. [29] decomposes image
sequences into image pair sets and then aggregates the
pair-based classification in a weighted manner. After that,
feature concatenation [51], hierarchical attention [22], and
weighted fusion [17] are also adopted for better aggregat-
ing sequence features. In addition, sequences models (e.g.,
LSTM [26], GRU [11], Transformer blocks [49], etc) are
also widely considered [28, 23, 7] and demonstrate their ef-
fectiveness.

In this paper, specifically towards the multi-view active
fine-grained visual recognition (MAFR) task, traditional
multi-view recognition dataset (e.g., RGB-D [33], Model-
Net10, ModelNet40 [55]) is not sufficient any more. Thus,
we first collect a fine-grained, multi-view car dataset named
MvCars as a suitable testbed. Then, an active fine-grained
recognition framework is built upon the general extraction-
aggregation scheme. Note that, similar to ours, some ap-
proaches also take recognition efficiency into considera-
tion [28, 29] by actively controlling the agent motion within
a viewing sphere. However, a strict viewing sphere is not
readily available in daily applications, especially for recog-
nition with portable devices. We, therefore, consider the
view selection as a discrete decision problem.

3. Dataset

In this work, we first contribute a testbed for MAFR by
collecting a multi-view fine-grained car recognition dataset
named Multi-view Cars (MvCars). Considering that car
recognition is challenging and close to daily life [57], a ve-
hicle dataset can demonstrate well how the MAFR model
performs in real applications.

3.1. Data Statistic

MvCars consists of 233 models of cars from 35 brands
(e.g., Ford, Volvo, Escort, etc.) that cover 5 types (e.g.,
sedan, SUV, MPV, sports car, and pickup). For each car, we
collect and annotate 8 aligned perspectives – front, front-
left, front-right, left, right, rear, rear-left, rear-right (as
shown in Figure 2), and samples with missing perspectives
are discarded. In total, there are 26, 552 images collected
from 3319 cars and are then split into 15, 960/3, 000/7, 592
(at a ratio of 60%/10%/30%) for train/val/test set, respec-
tively.

In addition to multi-view and fine-grained, MvCars is
also a hierarchical and long-tail dataset. We can easily
build the brand-type-model label hierarchies for categories
in MvCars, e.g., “Ford car”-“Ford sedan”-“Ford Mondeo”,
which may benefit directions like hierarchical structure-
based FGVC [15] and human-friendly FGVC [5]. The num-
bers of samples per category are shown in Figure 2 (a),
where a significant long-tail distribution can be observed.
Such a long-tail dataset is also closer to realistic application
and provides a new scenario to related topic [3]. The sam-
ple sizes per type and brand are shown in Figure 2 (b) and
(c), respectively, and similar data distributions exist.
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Figure 3. Illustration of the proposed MAFR framework where three training stages are included: Stage I for training a multi-view
recognition model with smooth predictions, Stage II for optimizing the next-view selection component based on the behavior of the
classifier, and Stage III for fine-tuning the recognition model along with the trajectory decided by the actor. Here we use three training
steps for brief illustration.

3.2. Pilot Experiment

With the collected MvCars, here we first experimentally
validate our first hypothesis mentioned in Section 1 – the
discriminative information hides in various object views for
different fine-grained categories. Factually, it is two-fold:
(i) different perspectives contribute differently to FGVC;
otherwise, actively selecting object view is meaningless,
and (ii) different categories own different discriminative
perspectives; otherwise, there is a trivial solution existing
– consistently seeking the fixed distinguishable view.

In particular, for each perspective, we train a
ResNet50 [25] for classification and obtain its accuracy in
each category. Therefore, we can tell which perspective is
more distinguishable for any specific category by compar-
ing the performances of 8 models based on different views.
We show the results of 30 classes in Figure 2 (d). Bars
in the graph indicate the differences between the maximum
and minimum accuracy of each category, and the average
difference of all 233 classes is about 36.40%. It powerfully
proves that different perspectives contribute differently in
the context of FGVC. On the other hand, broken lines in
the graph represent the single-view accuracy changes along
with different categories. The interaction of lines indi-
cates that the ranking of view discrimination is inconsis-
tent, demonstrating that different categories have different
discriminative perspectives.

In a word, in MvCars, different perspectives provide sig-
nificantly various meanings for FGVC, which is also hard
to pre-defined via prior knowledge. Thus, an active fine-
grained recognition method is called for, and the collected
MvCars dataset can serve as an eligible testbed.

4. Methodology

4.1. Overview

Here we first give an overview of the data flow of
MAFR during inference and introduce the model compo-
nents needed.

Data structure. For MAFR, a dataset D consists of
N samples can be expressed as D = {Xi, yi}Ni=1, where
Xi = {x1

i , . . . , x
v
i , . . . , x

V
i } is a sequence of images depict

a specific sample from V perspectives and yi is their com-
mon ground-truth label. Note that, the annotations of views
{1, . . . , V } are aligned, i.e., for arbitrary two samples Xi

and Xj , xv
i and xv

j are taken from the same perspective.
Inference process. For sample Xi, the model will take

an image xv1
i from arbitrary view v1 as the initial visual

input, which simulates the situation that the model may
start recognition while facing any views of the target ob-
ject. After that, the recognition process will carry on step-
by-step. In particular, at step t with input xvt

i from view vt,
the model will utilize all currently perceived information
{xv1

i , . . . , x
vt−1

i , xvt
i } to deliver the category prediction ŷti

and the next-view proposal vt+1. Then, an inference cycle
is closed, and the process can continue with x

vt+1

i as the
next input. Generally, t ∈ [1, T ], and T can be set to a
maximum V .

Framework component. An extraction-aggregation
structure tends to be an intuitive choice to process a se-
quence of correlated visual inputs. Similar structures
are also developed by previous multi-recognition arts [8].
Specifically, for any image xvt

i input the system, a CNN-
based feature extractor F(·) is first applied to extract single-
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view feature as fvt
i = F(xvt

i ). It is worth noting that the
feature extractors for different views share their weights,
and this design will not lead to additional parameters. After
that, an ideal model should consider all previously acquired
information. Thus, a recurrent neural network is introduced
as the aggregator R(·) that aggregates features from all seen
perspectives. In particular, we adopt two aggregators with
the same structure but individual weights. Re(·) and Rs(·)
that, Re(·) form global embeddings eti = Re(f

v1
i , . . . , fvt

i )
for category prediction, while Rs(·) depicts the current
states sti = Rs(f

v1
i , . . . , fvt

i ) for next-view selection. Fi-
nally, a classifier P(·) and an actor A(·) are equipped in
parallel with outputs ŷti = P(eti) and vt+1 = A(sti), re-
spectively.

4.2. Model Training

According to the aforementioned inference process, we
can tell that the recognition component and the next-view
selection component work separately but not independently.
The mission of the recognition component is quite straight-
forward – conducting category prediction based on acquired
information as well as possible. While the optimization goal
of the next-view selection component largely depends on
the behaviour of recognition – basically, the actor should
try to select the next-view that can maximize the prediction
probability of the target category. Therefore, a three stages
training framework is intuitively designed: Stage I aims to
train a good recognition model (including F(·), Re(·), and
P(·)) that can handle sequence input, Stage II aims to opti-
mize the next-view selection module (where Rs(·) and A(·)
participate) according to the behaviour of the trained recog-
nition model, and Stages III aims to refine the recognition
model under the trajectories decided by the actor.

Note that the inductive bias behind training the recogni-
tion component in the first place is that its behaviour can re-
veal view discrimination – a more discriminative view will
greatly reduce the entropy of category prediction. How-
ever, a well-convergent classification model often deliv-
ers high-confidence predictions, especially for the small-
scale datasets in the FGVC scenario, which will cause lit-
tle changes in prediction probabilities and limit the infor-
mation being revealed. For this, we take a very intuitive
yet effective solution that splitting the training set DT into
two non-overlapping sub-sets for the first two stages respec-
tively – specifically, a rehearsal set DR is used for train-
ing the recognition components in Stage I, and a evaluation
set DE is used for providing authentic rewards while train-
ing the next-view selection module in Stage II. We have
DR ∪ DE = DT and DR ∩ DE = ∅. In Stage III, the
model will be trained with the whole training set DT .

The whole framework is illustrated in Figure 3, and in-
troductions about the three stages are as follows.
Stage I. To train a recognition model that can handle a se-

quence of inputs with dynamic length, each training iter-
ation is divided into T steps with input sequence lengths
from 1 to T . As the next-view planning module is not able
for now, when t ≥ 2, a new image xvt

i is randomly selected
from unseen views and appended to the input sequence at
the (t − 1)-th step. Here we set T = V to ensure the max-
imum no-duplicated sequence can be sampled. With cross-
entropy for optimization, the loss function for a batch of B
samples can be formulated as:

LCE(ŷ
t
i , yi) =

−1

BTC

B∑
i=1

T∑
t=1

C∑
c=1

yi × log(ŷti,c), (1)

where C is the total category number, i.e., the channel num-
ber of the last layer.

Additionaly, we also introduce a entropy maximization
penalty as

LEM (ŷti) =
1

BTC

B∑
i=1

T∑
t=1

C∑
c=1

ŷti,c × log(ŷti,c), (2)

to encourage smooth predictions that can better reveal the
priority between views. The total loss can be expressed as
LStage1 = LCE(ŷ

t
i , yi) + α× LEM (ŷti), and the degree of

entropy maximization constrain can be control by the hyper-
parameter α.
Stage II. Here, the recognition components (F(·), Re(·),
and P(·)) are frozen, and we only optimize Rs(·) and A(·)
for next-view selection. As a non-differentiable sequential
decision problem, we adopt the policy gradient method for
optimization instead of directly optimizing with the classi-
fication loss. At the t-th (t ≥ 2) training step, the model
will receive the input xvt

i with the perspective vt decided
by the actor at the (t − 1)-th step. Then the view selec-
tion components can be updated according to the change
of the target category’s prediction probability, i.e., the re-
wards are set as rti = ŷtiyi

− ŷt−1
iyi

. And the t-th (t ≥ 2)
step’s loss function of Stage II can be simply expressed as:
LStage2 = LPG(vt, ŷ

t−1
i , ŷti). Detailed expansion of the

loss function can be found in Section 4.3
Notably, for popular policy gradient algorithms [45, 46],

the total reward for the current step’s optimization is a
(weighted) sum of all feature rewards from now on. This
is because these methods are designed for scenarios where
an agent should achieve an ultimate goal through a series of
actions. However, on the contrary, MAFR aims to use as
few steps as possible to achieve as high accuracy as possi-
ble, i.e., we care more about achieving the best performance
at the current step rather than in the future. Therefore, we
slightly modify the policy gradient algorithm by utilizing
only rti for the t-th step’s optimization.
Stage III. There is nothing new in this stage – all settings
are the same as Stage I except for (i) the selected view vt
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when t ≥ 2 is given by the actor, (ii) the whole training set
DT is used. The model is refined under standard classifica-
tion supervision (i.e., LStage3 = LCE(ŷ

t
i , yi)) to especially

adjust the trajectories decided by the actor and utilizing all
the training data.

4.3. Design Details

Feature extractor F(·). The feature extractor can be
any backbone network for vision tasks, including various
CNN architectures and Transformers (e.g., ResNet50 [25],
ViT [12], etc.). Besides, by replacing F(·) with other
FGVC models, the proposed method can also extend them
to work in 3D environments.
Feature aggregator Re(·) and Rs(·). The two feature ag-
gregators should be able to aggregate information from se-
quences with variable lengths. Here we adopt GRU [11] for
best performance. There are alternatives like LSTM [26],
self-attention block [49], etc..
Classifier P(·) and actor A(·). Both the classifier and the
actor are formed by one fully connected layer. For the cases
that equip the proposed framework with other FGVC ap-
proaches, the structure of the classifier can be modified ac-
cordingly.
Policy gradient algorithm. For training the actor A(·)
(the next-view selection module) at Stgae II, we adopt the
proximal policy optimization (PPO) algorithm [46] with a
slight modification. Specifically, given a series of inputs
xv1
i , . . . , xvt

i at the t-th step, the extractor F(·) and the ag-
gregator Rs(·) are first applied to form the current state:

sti = Rs(F(xv1
i ), . . . ,F(xvt

i )). (3)

And then, the actor take the state sti as input and decide the
next view proposal vt+1 as the action (i.e., vt+1 = A(sti)).
For the general PPO algorithm with the reward rti for t-th
step, the advantage estimator Ât

i can be expressed as:

Ât = −V (sti) + rti + γrt+1
i + · · ·+ γT−trTi , (4)

where V (sti) is the learned state-value function, γ ∈ (0, 1)
is a pre-defined discount factor, T is the maximum length
of the input sequence. The principle behind it is straightfor-
ward – the current action should not only benefit the next
step but also contribute to the overall goal. However, in this
work, aiming at achieving reliable prediction with the least
number of steps, we only focus on the profit at the very next
step, i.e., we set γ = 0. The advantage estimator we use can
be formulated by Ât

i = −V (sti) + rti .
After that, we denote the prediction probability of vt by

A(vt|sti). Then the clipped surrogate objective is:

LCLIP =
1

B

B∑
i=1

T∑
t=2

min{ A(vt|sti)
Aold(vt|sti)

Ât
i

clip(
A(vt|sti)

Aold(vt|sti)
, 1− ϵ, 1 + ϵ)Ât

i},

(5)

where Aold(·) stands for the actor before update, and ϵ ∈
(0, 1) is a hyper-parameter. Note that t starts from t = 2
since the first view is randomly selected. Finally, the overall
objective of Stage II can be expressed as:

LStage2 = LPG(vt, ŷ
t−1
i ) = LCLIP − c1LV F + c2LE ,

(6)
where LV F = 1

B

∑B
i=1

∑T
t=2(V (sti) − V target(sti))

2 is
the squared-error loss suggested by [45], and LE =
1
B

∑B
i=1

∑T
t=2 SA(s

t
i) is the entropy bonus following [54,

40]. c1 and c2 is hyper-parameters to balance the three loss
components.

4.4. Dynamic Exiting

For the proposed method, we can achieve the accuracy-
efficiency trade-off by setting the maximum number of
steps. However, simply assigning the same maximum step
number to all samples may be too arbitrary since difficult
samples may require information from more views than
simple samples do. For that, inspired by previous sequen-
tial prediction work [52], we introduce the concept of bud-
get batch classification [27] for dynamic exiting. Specif-
ically, defining the exit probability of a certain step to
be p, the probability of model exiting at the t-th step is
pt = α(1− p)t−1p, where α is a scaling factor that ensures∑Tmax

t=1 pt = 1. The value of p can be found by solving the
function C =

∑Tmax

t=1 t× pt, where C is the expectation of
average prediction steps. Then, we can estimate the exiting
threshold µt for each step on the validation set. Such a strat-
egy can further reveal the model potential under given step
expectations by enabling better resource allocation among
all test data.

5. Experiment

Implementation. The feature extractor F(·) is initialized
with ImageNet pre-trained weights, while other model com-
ponents are ramdomly initialized. During Stage I and Stage
III, we use SGD optimizor with a momentum of 0.9 and
the cosine learning rate schedule [35] for optimization. The
start learning rate is set to be 0.01 for the feature extrac-
tor and 0.1 for the rest. The input images are resize to
256 × 256 and then random-cropped to 224 × 224. The
hyper-parameter α is set to be 0.01. During Stage II, we
use the Adam optimizor with β1 = 0.9, β2 = 0.999, and
the cosine learning rate schedule [35] for optimization. The
start learning rate of the actor A(·) is set to be 0.005. The in-
put images are resize to 256× 256 and then center-cropped
to 224 × 224. The hyper-parameters ϵ, c1, and c2 are set
to be 0.2, 0.5, and 0.01, respectively. The model is trained
for 15 epochs for each stage. During inference, the input
images are resize to 256 × 256 and then center-cropped to
224× 224.
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Method mAcc. (%) w-mAcc. (%) Step2-Acc. (%)

R
es

N
et
5
0

RotationNet [30] 79.53± 0.4 79.32± 0.7 78.72± 0.8
VERAM [8] 79.42± 0.5 80.50± 1.3 80.19± 1.4

Baseline† 78.21± 0.3 78.04± 0.5 76.74± 0.3
Baseline‡ 79.60± 0.7 79.75± 1.2 78.28± 0.8

Ours 80.84± 0.4 82.20± 0.7 81.45± 0.9
Ours* 81.33± 0.5 83.25± 0.9 82.86± 1.1

V
iT

-B
1
6 Baseline† 80.05± 0.4 80.32± 1.3 78.82± 0.4

Baseline‡ 80.47± 0.7 80.79± 1.4 79.93± 1.3
Ours 81.35± 1.1 82.60± 0.6 81.53± 0.8
Ours* 82.13± 1.2 83.58± 1.3 82.50± 1.4

PM
G

Baseline† 80.26± 0.9 80.51± 1.4 79.92± 0.9
Baseline‡ 80.65± 0.9 80.98± 0.6 80.21± 0.4

Ours 82.69± 1.1 83.47± 1.4 82.77± 1.3
Ours* 82.99± 0.3 84.46± 0.5 83.79± 0.6

Tr
an

sF
G

Baseline† 81.26± 1.5 81.33± 0.9 80.76± 0.6
Baseline‡ 81.78± 1.2 82.15± 1.4 81.52± 0.6

Ours 83.76± 1.3 84.72± 0.5 84.35± 1.0
Ours* 84.89± 0.3 85.77± 1.3 85.57± 0.6

Table 1. Results of the proposed method with different backbones.
The best results of each section are marked in bold.

Baseline models. For extensive evaluation, three groups
of approaches were considered for comparison: I. previ-
ous multi-view recognition methods, including Rotation-
Net [30] and VERAM [8], II. state-of-the-art FGVC meth-
ods, including PMG [13] and TransFG [24], and III. ad-
vanced vision neural networks, including ResNet [25] and
ViT [12]. Specifically, for group I, we re-implemented them
with ResNet50 as the backbone model for a fair compar-
ison. And for group II and III, as they are designed for
single-view recognition, two baseline frameworks, which
may be intuitive choices for most people, are designed to
adapt them to the MAFR task: (i) Baseline†: a naive model
ensemble scheme, i.e., predictions are independently deliv-
ered according to each view, and at the t-th step, the average
of t inputs’ predictions is adopted as the current result, and
(ii) Baseline‡: due to their conciseness, these models can di-
rectly serve as the feature extractor of the proposed method,
therefore, a strong sequential prediction baseline can be im-
plemented by replacing our feature extractors with these ap-
proaches and training under the setting of Stage III.
Evaluation Metrics. For quantitative evaluation, results
based on 3 metrics are reported: (i) Mean Accuracy
(mAcc) that takes the mean value of all T steps’ accuracy,
which can be regarded as the area under the accuracy-step
line that represents the general performances of models, (ii)
Weighted Mean Accuracy (w-mAcc) that weights differ-
ent steps with exponentially decreased weights, since the
performance of the first few steps should be more important
in the consideration of efficiency1, and (iii) Step2 Accuracy

1Here we take [0, 0.5039, 0.2520, 0.1260, 0.0630, 0.0315, 0.0157,
0.0079] for w-mAcc when T = 8. The accuracy of the first step is
weighted by 0.0 because it is randomly selected and does not relate to
the performance of active selection.

Figure 4. Illustration of model performance per-step and the per-
formance upper bound from the perspective of trajectory decision.

(Step2-Acc) that takes the 2-nd step’s accuracy to highlight
the profit of the first view selection2.

5.1. Main Results

The results of the proposed method against all mentioned
baselines are reported in Table 5. The table is organized
into 4 sections according to different backbone networks.
For ResNet50 [25] as the base model, we can observe
that Baseline‡ already achieves impressive performance and
delivers quite competitive results to previous multi-view
recognition models. On the contrary, the proposed method
outperforms it by ∼1.2%, ∼2.5%, ∼3.2% for mAcc, w-
mAcc, and Step2-Acc, respectively. The larger margins on
w-mAcc and Step2-Acc also demonstrate its superiority in
efficiency that benefits from the active next-view selection
scheme. In addition, while applying the dynamic exiting
strategy, we also calculate these three metrics by obtain-
ing the accuracy when the step expectations equal 1-8, and
there is no doubt that it further boosts model performance
via a better efforts allocation. An interesting finding is that
for models with the next-view selection mechanism, we can
generally observe that mAcc < Step2-Acc, while mAcc >
Step2-Acc for other models, which indicates a significant
performance boosting caused by the active view selection at
step 2. In addition, for other baselines implemented with the
more advanced network (i.e., ViT [12]) and FGVC models
(i.e., PMG [13] and TransFG [24]), the proposed framework
can also boost their performance via active view selection
and dynamic exiting, which indicates most of the recogni-
tion models can be extended to be an FGVC experts in the
real physical world.

2Step2-Acc can be regarded as w-mAcc with weight set
[0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0].
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Method mAcc. (%) w-mAcc. (%) Step2-Acc. (%)

Random Selection 80.15± 0.5 79.86± 0.8 78.28± 0.6
Selecting the Farthest 80.50± 0.4 81.49± 0.6 80.68± 0.9

Selecting w/ Prior 80.43± 0.6 81.32± 0.9 80.55± 0.7
w/ Duplicate View 80.22± 0.9 81.38± 0.8 81.18± 1.1

w/o Data Split 80.19± 0.9 79.98± 1.1 78.53± 0.9
w/o LEM 80.24± 0.4 81.57± 0.7 80.96± 1.0

w/ Future Rewards 80.56± 0.6 81.44± 0.8 80.53± 0.8

Ours 80.84± 0.4 82.20± 0.7 81.45± 0.9
Ours* 81.33± 0.5 83.25± 0.9 82.86± 1.1

Table 2. Results of ablation studies. The best ones are marked in
bold.

5.2. Upper Bound Analysis

To better illustrate the change of model accuracy over in-
ference steps, we show the accuracy-step lines of all mod-
els with ResNet50 [25] as the backbone in Figure 4. At
this point, the audiences may question why these models’
performances do not consistently increase. With the same
question, we study the upper bound of our model. Due to
the finite total view numbers, we are able to visit all possi-
ble trajectories for each sample. Therefore, a performance
upper bound can be obtained from the perspective of trajec-
tory decision – an arbitrary sample will be considered cor-
rectly classified when any trajectory allows this sample to
be classified correctly. According to Figure 4, the degrada-
tion in the last few steps is also observed on the performance
upper bound. A similar phenomenon is also observed in
previous multi-view recognition works (e.g., [30]). In this
work, we also attribute this to the inherent feature of fine-
grained recognition in the 3D environment – the discrimi-
native clues only hide in a few views, and the noises caused
by intra-class variance will be more likely to be introduced
when full visual information (i.e., all views) is included.
This echoes the essential insight in the 2D fine-grained
recognition where subtle differences of local regions are
discriminative, and the global structures are more likely dis-
turbed.

5.3. Ablation Study

In this section, we evaluate several variants of the pro-
posed method based on ResNet50 to demonstrate the neces-
sities of our designs. First, to verify the effectiveness of the
active next-view selection mechanism, we study our model
with no-duplicate inputs of random order and the order de-
cided by the priority found in our pilot experiment. Fortu-
nately, the proposed method passes the test with significant
w-mAcc margins of ∼2.3% and ∼0.9%, respectively.

In addition, The farthest viewpoint sampling is also an
important baseline – specifically, we implement it by select-
ing the farthest and unselected view from the second step.
In cases where there are two equally distant views, we ran-

Figure 5. Predicted trajectories of “Haval H6” with “View-2” and
“View-5” as the initial views. The darker the colour, the more
times the trajectory has been selected. The most selected trajectory
is highlighted with blue circles.

domly choose one of them. However, the proposed method
consistently outperforms it with a significant margin. This
is because the most complementary view may not be the
farthest one, as we further illustrate on the right in the next
Section (see Figure 5).

Besides, an artificial restriction is added for all evalu-
ations to ensure that new views selected are no-duplicate.
It is intuitive since unseen views can offer complementary
information, and the information about which views have
been selected is easily acquired. Here we also evaluate by
allowing duplicate views, and the model performance de-
grades with no surprise.

After that, our designs for model training are also
demonstrated to be effective. Splitting the training data
into two non-overlapped subsets and encouraging entropy
maximization both significantly boost model performance.
It is worth noting that when we include the future rewards
for policy optimization, mAcc is not significantly affected (
with a slight degradation of 0.28%), but w-mAcc and Step2-
Acc decrease by ∼0.8% and ∼0.9%. This indicates that fu-
ture rewards may be meaningful for traditional sequential
decision problems but not for MAFR, where efficiency is
highly required.

5.4. Trajectory Analysis

For an in-depth analysis of the characteristics of
the MAFR task, we further analyze the view-selection
trajectory decided by our model. Specifically, with
ResNet50 [25] as the feature extractor, we visualize the pre-
dicted trajectories of “Haval H6” in Figure 5. The two sub-
plots show the results with “View-2” and “View-5” as the
initial views, respectively, and the darker the colour, the
more times the trajectory has been selected. The most se-
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lected trajectory is highlighted with blue circles. According
to the visualization, we can first conclude that there is some
certainty in the best trajectory of a particular category – a
significant broken line can be observed. However, the op-
timal trajectory is associated with the complementarity be-
tween different views – when we enter View-2, the next best
choice is View-4; and when we enter View-5, the next best
choice is View-3. Therefore, solving MAFR is not simply
a ranking of the discriminative power of perspective infor-
mation, echoing the results in Section 5.3 that view select-
ing with prior knowledge does not yield comparative per-
formance. Factually, the optimal trajectory may even vary
for different samples, as there is not just a single trajectory
in each subplot. However, this may also be caused by the
fact that our model still has room for improvement, so we
do not discuss it further here.

6. Conclusion
This paper extends the fine-grained visual classification

to 3D environments and proposes the multi-view active fine-
grained visual recognition (MAFR) problem. We first col-
lect a multi-view fine-grained car dataset (MvCars) as a
qualified benchmark. Then we re-implement several multi-
view recognition methods, FGVC approaches, and vision
neural networks as baseline methods. A policy-gradient-
based framework with a dynamic exiting strategy is pro-
posed for the problem raised and yields the best perfor-
mance. We also discuss the upper bound and predicted tra-
jectories of the proposed method.
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