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Abstract

With recent advances in computing hardware and surges
of deep-learning architectures, learning-based deep image
registration methods have surpassed their traditional coun-
terparts, in terms of metric performance and inference time.
However, these methods focus on improving performance
measurements such as Dice, resulting in less attention given
to model behaviors that are equally desirable for registra-
tions, especially for medical imaging. This paper investi-
gates these behaviors for popular learning-based deep reg-
istrations under a sanity-checking microscope. We find that
most existing registrations suffer from low inverse consis-
tency and nondiscrimination of identical pairs due to overly
optimized image similarities. To rectify these behaviors,
we propose a novel regularization-based sanity-enforcer
method that imposes two sanity checks on the deep model
to reduce its inverse consistency errors and increase its dis-
criminative power simultaneously. Moreover, we derive a
set of theoretical guarantees for our sanity-checked image
registration method, with experimental results supporting
our theoretical findings and their effectiveness in increasing
the sanity of models without sacrificing any performance.

1. Introduction
Learning maps between images or spaces, i.e. registra-

tion, is an important task, and has been widely studied in

various fields, such as computer vision [15, 33], medical

imaging [20, 52], and brain mapping [35, 47]. With re-

cent advances in modern computing hardware and deep-

learning techniques, learning-based deep image registra-

tion methods have surpassed their traditional counterparts,

both in terms of metric performance and inference time.

Different from the traditional style of optimizing on sin-

gle image pair [12, 32, 7, 11, 2, 28, 19] using diffeomor-

phic formulations, such as elastic [4, 38], fluid mechan-

ics [7, 18, 43] or B-spline [36], existing deep registra-

tions [42, 6, 13, 29, 23, 10, 41, 25, 9] focus on maximizing
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Figure 1. FV-SDice-Dice comparisons of deep registrations on

IXI Brain dataset. The vertical axis is FV (% of folded voxels),

the horizontal axis is SDice (Self-Dice), and the circle size is Dice.

Both sanity-checked models (VM-ESC and TMBS-ESC) achieve

better diffeomorphism, competitive registration performance, and

significantly improved self-sanity, compared to other models, in-

cluding models with inverse consistency (ICNet [50], ICON [16]).

image similarities between transformed moving images and

fixed images. Despite the effectiveness of this approach, it

inevitably leads to over-optimization of image similarities

and thus introduces non-smooth mappings [6, 50, 16, 9],

where smooth transformation maps are typically desirable,

especially in the medical imaging domain.

To tackle the over-optimized issue, popular remedies [4,

36, 44, 37, 49, 45, 39, 40] utilize add-ons such as Large De-

formations Diffeomorphic Metric Mapping (LDDMM) [7],

vector Stationary Velocity Field (vSVF) [39], B-spline [36],

Elastic [4] or Demons [43] to enforce diffeomorphism, re-

quiring costly and iterative numerical optimizations [8, 49,

39]. Other methods [13, 17] seek probabilistic formulation

for the registration but can lead to inferior performance [9].

Nonetheless, these methods operate only on one mapping

in the direction from moving to fixed images, yet disregard-

ing the relationship between different mappings from both

directions, as shown in Appendix1 Fig. A1.

1Appendix goes https://arxiv.org/pdf/2307.09696.pdf
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Recent studies [50, 16, 31] have made great progress

in modeling the relationship, i.e. inverse consistency, for

different mappings. [50, 16] explicitly enforce the re-

lationship in a strict form for ideal inverse consistency.

However, for applications such as brain tumor registra-

tion [3], where there are regions with no valid correspon-

dences, it is impractical to apply in such a strict man-

ner. To select valid correspondences, [31] utilize mean er-

rors of similar anatomical locations as thresholds. How-

ever, it is always tricky to determine similar anatomical lo-

cations, especially for unsupervised registrations in med-

ical imaging [6, 13, 41]. Different from previous meth-

ods [50, 16, 31], we introduce two straightforward yet ef-

fective constraints, namely, self-sanity check to reduce er-

ror while registering identical pairs and cross-sanity check

to ensure inverse consistency. Using our sanity checks, we

test a wide range of registration models and find that de-

spite better performance such as Dice, most models are suf-

fering from over-optimization of image similarities, lead-

ing to folded transformations and low sanity awareness, as

shown in Fig. 1. Moreover, our sanity checks can be ap-

plied to different registration models, where the extensive

experiments certify that our method improves their sanity

awareness, without sacrificing any performance.

Our findings are five-fold: (1) We find that despite bet-

ter performance such as Dice, most models produce non-

smooth transformations and are less aware of sanity errors

due to over-optimization on image similarities; (2) We pro-

pose two novel sanity checks for the registration model

training and derive corresponding theoretical foundations;

(3) Our sanity checks not only help reduce the sanity er-

rors of existing models but also assist them to produce more

regular maps without diffeomorphic add-ons; (4) Our pro-

posed sanity-checks are model-agnostic. It can be deployed

to various models and is only needed during training so that

it does genereate no side effects for inference; (5) Experi-

ments on IXI [1], OASIS [26], and BraTSReg [3] datasets

verify our findings and show on par or better performance.

2. Background and Related Work
Background. Consider a set of images defined on the

domain Ω ⊆ R
n (n-D spatial domain) of some Hilbert

space H . Let f be the fixed, and m be the moving ∈ Ω. Let

u : Ω → R
n be a displacement vector field that maps from

H×H → H� (dual space of H) such that ϕ = u+p, where

p is the image grid of coordinates. ϕ denotes the transfor-

mation from m → f . The goal of registration is to com-

pute such transformation ϕ, whose quality can be measured

by some similarity functions in the form of Sim(f,m ◦ ϕ).
m◦ϕ denotes that m is warped by ϕ. Without loss of gener-

ality, Sim(·) can be replaced by any differentiable similarity

function, such as Normalized Cross Correlation (NCC) and

Mutual Information (MI). Alternatively, we can use other

Method Relaxation/Approximation Error Bound

ICNet [50] ||gm→f + g̃f→m||2F -

ICON [16]
||ϕm→f ◦ ϕf→m − id||22+ -
ε2||dϕm→f

√
Jac(ϕm→f)||22

DIRAC [31]
|gm→f + g̃f→m|2 <

-1
N
ΣN |gm→f + g̃f→m|2 + β

Ours
|gm→f + g̃f→m|2 <

λc(1− α)βN
α(|gm→f |2 + |g̃f→m|2) + β

Table 1. Comparison between different inverse consistent registra-

tion methods. Due to the space limit, the formulations are shown

only for m → f , where f → m should follow the same way.

distance functions such as sum squared error (SSD) by re-

placing − Sim(·) with Dist(·). Hereafter, we will stick to

the similarity notation for later derivations.

Let g be the mapping function, parameterized using the

model, where u = gm→f := g(m, f) stands for the dis-

placement map from m → f . In terms of such g learned

by the model, we assume that the similarity operator is con-

cave, making − Sim convex when it is not a distance opera-

tor for a (m, f) pair. Therefore, the optimization in standard

learning-based registrations can be formulated as

min− Sim(f,m◦ (gm→f +p))+λr||Reg(gm→f )||22, (1)

trying to find such g for a (m, f) pair in the mapping search

space. Here, Reg(·) term is added to smooth the transfor-

mation, penalizing sudden changes in the map. Most com-

monly, Reg(·) can be in the form of ∇(u) (first-order spa-

tial derivative) or ∇2(u) (second-order spatial derivative),

where L2 norm of the image gradient is generally adopted

in medical registration, resulting in a H1 regularization.

Definition 1 (Ideal/Strict inverse consistency). Given two

different mappings: gm→f and gf→m, if ϕm→f ◦ϕf→m =
id, where id denotes the identity transformation, we called

these two mappings are strictly inverse consistent. The strict

inverse consistency is equivalently formulated as gm→f +
g̃f→m = 0, where g̃f→m is back-projected from gf→m.

Relation to other inverse consistent methods. We

show the relationship between methods in Tab. 1. The for-

mulation of ICNet [50] follows strict inverse consistency

in Def. 1 with Frobenius norm. Besides strict inverse con-

sistency, ICON [16] adds regularization using the deter-

minant of the Jacobian matrix of the transformation. In-

stead of explicitly enforcing strict consistency as in [50, 16],

DIRAC [31] and our approach both modulate the inverse

problem with more relaxation. This inequality formulation

allows us to tell whether a voxel has a valid correspondence,

which is practically useful in registering image pairs with

topological changes, e.g., brain tumor registration [31, 30].

Different from [31], where means of inverse errors are uti-

lized, we closely associate our formulation with the data, al-

lowing us to show that the errors are upper bounded without

resorting to extra information to determine similar anatom-
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Figure 2. Self-sanity error maps comparison. Left: with no self-

sanity check, Right: with self-sanity check. We unify the error

maps’ scale bars for a fair comparison.

ical structures, which has not been studied in other related

works. Experimentally, our relaxation shows better perfor-

mance over various metrics. Besides, to the best of our

knowledge, our work is the first to consider the self-sanity

error directly on displacements rather than for image simi-

larities as in [23] for medical image registration studies.

3. Methodology
3.1. Self-sanity and Cross-sanity Checks

To increase the discriminative power of identical pairs

feeding into the model, we propose our self-sanity check as

ga→a = 0, ∀a ∈ {m, f}. (2)

where the mapping function g learned using any models is

restricted to output zero displacements for identical pairs.

Such identical pairs can be filtered out using similarity mea-

surements. However, users are unlikely to perform these

filters, especially when they do not know that trained mod-

els would produce terrible predictions for identical pairs.

Hence, our self-sanity check is a natural remedy.

Next, we enforce the inverse consistency on different

mappings for g by the model. We will search for corre-

spondence in the fixed image for every point in the moving

image such that the transformations between the two im-

ages are inconsistent. For example, suppose that a point in

the space of image a is registered to the space of image b.
If we register this point from image b back to image a, the

point will arrive at the same location in image a (Def. 1).

We first define the backward displacement map as in opti-

cal flow studies [22, 27, 24], back-projected from gb→a

g̃b→a(p) = gb→a(p+ ga→b(p)), (3)

making it convenient for calculation. We then introduce our

cross-sanity check in the form of

|ga→b + g̃b→a|2 < α(|ga→b|2 + |g̃b→a|2) + β, (4)

∀(a, b) ∈ {(m, f), (f,m)}. Here, we allow the estima-

tion errors to increase linearly with the displacement mag-

nitude with slope α and intercept β. Instead of imposing

zero-tolerance between forward and back-projected back-

ward displacements [16, 31], we relax the inverse consis-

tency with error tolerance, defined by α and β, to allow

Figure 3. Comparisons between strict inverse consistency trained

results (Top) and cross-sanity checked results (Bottom). Our re-

laxed sanity-checked result maintains a similar level of inverse

consistency as ϕm→f ◦ ϕf→m is close to id transformation (sec-

ond column). We can also observe that ours produces a more reg-

ular map, compared to the folded map from the model trained with

strict inverse consistency. Best view zoomed.

occlusions which is more practical. I.e., This sanity check

states that every point p in the moving image a should be

able to map back from the fixed image b to its original place

in image a with certain error tolerance. We then prove that

this error tolerance is upper bounded.

Theorem 1 (Relaxed registration via cross-sanity check).
An ideal symmetric registration meets ϕa→b ◦ ϕb→a = id,
defined in Def. 1. Then, a cross-sanity checked registration
is a relaxed solution to this ideal registration, satisfying

||ga→b + g̃b→a||22 <
β(2− α)N

1− α
. (5)

Here, 0 < α < 1 and β > 0. N is a constant, rep-

resenting the total pixel/voxel numbers. Theoretically, our

proposed cross-sanity checks can be viewed as a relaxed

version of the strict symmetric constraint, which is com-

monly used. We also derive the lower/upper bound for satis-

fying our forward/backward consistency check as shown in

Eq. (5). The derivations’ details are shown in the Appx. A.2.

To sum up, our cross-sanity check allows a series of solu-

tions to the forward/backward consistency in an enclosed

set with a radius of

√
β(2−α)N

1−α .

3.2. Unique Minimizer for Single Image Pair

Next, we show that there exists a unique solution for

our sanity-checked optimization, in terms of a single im-

age pair. We start with writing the standard optimization

with our proposed sanity checks in the norm form as

min− Sim(f,m ◦ (gm→f + p)) + λr||Reg(gm→f )||22,
s.t. ||ga→b + g̃b→a||22 < α(||ga→b||22 + ||g̃b→a||22) + βN,

||ga→a||22 = 0, ∀(a, b) ∈ {(m, f), (f,m)}.
(6)
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Theorem 2 (Existence of the unique minimizer for our re-

laxed optimization). Let m and f be two images defined
on the same spatial domain Ω, which is connected, closed,
and bounded in R

n with a Lipschitz boundary ∂Ω. Let
g : H × H → H� be a displacement mapping from the
Hilbert space H to its dual space H�. Then, there exists a
unique minimizer g� to the relaxed minimization problem.

The detailed proof for Thm. 2 is shown in Appx. A.3.

In summary, for a moving-fixed pair, since the relaxation

by sanity checks and data term (e.g. SSD) are convex, to-

gether with the convex search space for g, our problem has a

unique minimizer. Thus, the optimization problem is well-

conditioned by properties of our regularity constraints such

that g will not change dramatically.

3.3. Loyal Sanity-Checked Minimizer

In the next section, we further prove that the distance be-

tween the minimizer of the sanity-checked constrained op-

timization and the optimal minimizer for a single moving-

fixed image pair can be represented and controlled by our

proposed sanity checks. We first rewrite Eq. (6) as

min− Sim(b, a ◦ (ga→b + p)) + λr||Reg(ga→b)||22,
s.t. ||ga→b + g̃b→a||22 < α(||ga→b||22 + ||g̃b→a||22) + βN,

||ga→a||22 = 0, ∀(a, b) ∈ {(m, f), (f,m)}.
(7)

Remark 2.1. We denote this formulation as the bidirec-

tional optimization since it operates in both directions. It is

straightforward to show that this bidirectional optimization

still satisfies Thm. 2 so that there exists a unique minimizer.

Then, with a slight abuse of notations, we define that

g = [gm→f , gf→m︸ ︷︷ ︸
gc

, gm→m, gf→f︸ ︷︷ ︸
gs

]�. (8)

We can rewrite the minimization problem as

min− Sim(g) + λr||Reg(g)||22,
s.t. ||gs||22 = 0,

||gc + g̃c||22 < α(||gc||22 + ||g̃c||22) + 2βN. (9)

Here, Sim(g) := Sim(m, f ◦ (gf→m + p)) + Sim(f,m ◦
(gm→f + p)), ||Reg(g)||22 := ||Reg(gm→f )||22 +
||Reg(gf→m)||22, ||gs||22 := ||gm→m||22 + ||gf→f ||22,

||gc + g̃c||22 := ||gm→f + g̃f→m||22 + ||gf→m + g̃m→f ||22,

and ||gc||22 + ||g̃c||22 := ||gm→f ||22 + ||g̃m→f ||22 +
||gf→m||22 + ||g̃f→m||22. Then, the optimal minimizer g∗
can be written in the matrix equation as

g∗ = argmin
g∈H

− Sim(g), s.t. Ag∗ = y.

A =

⎡
⎣Reg(·) 0 0

CS(·) 0 0
0 0 SS(·)

⎤
⎦ , y =

⎡
⎣ 0
0†

0

⎤
⎦ . (10)

Here, Reg(·) := ||Reg(g)||22, CS(·) := ||gc + g̃c||22 −
α(||gc||22+ ||g̃c||22)− 2βN , and SS(·) := ||gs||22, as defined

previously. † here means that we can have < 0 solutions for

the CS check as in Eq. (9), which we show will not inter-

fere with the theoretical foundations by masking in the next

section. In this way, we obtain our unique minimizer as

gsanity = argmin
g∈H

− Sim(g) +
λ

2
||Ag − y||22, (11)

where λ := [2λr, 2λc, 2λs] is the vector of parameters.

Theorem 3 (Loyalty of the sanity-checked minimizer). Let
g∗ be the optimal minimizer to the bidirectional registra-
tion problem, defined in Eq. (10), and gsanity as our sanity-
checked minimizer, defined in Eq. (11). The distance be-
tween these two minimizers can be upper bounded as

Sim(gsanity)− Sim(g∗) ≤ λ

2
||A(gsanity − g∗)||22. (12)

The proof is presented in Appx. A.4. We then expand the

right-hand side of Eq. (12) as

Sim(gsanity)− Sim(g∗) ≤ λr||Reg(gsanity)||22
+ λs||SS(gsanity)||22) + λc||CS(gsanity)||22,

where Reg(g∗) = 0, SS(g∗) = 0, CS(g∗) = 0.
(13)

Empirically, the first two terms contribute relatively less

(10× smaller) than the cross-sanity error (See Experi-

ments). Thus, we focus on the CS term here. Following

Thm. 1, ||CS(gsanity)||22 is upper bounded in the form of

||CS(gsanity)||22 < 2(1− α)βN. (14)

Here, 0 < α < 1 and β > 0 ensure the inequality’s di-

rection, where the multiplication of two accounts for cross-

sanity errors from two directions, i.e., from moving im-

age to fixed image and also fixed image to moving image.

Thus, t. We put the full derivation of CS error bound in

the Appx. A.5. In a nutshell, we prove that by satisfying

the cross-sanity check, we have an upper bound for the CS

error, constraining the relationship between two displace-

ments from different directions via parameters α and β.

Lemma 4 (Upper-bound of distance between optimal min-

imizer and sanity-checked minimizer). Let g∗ and gsanity

respectively be the optimal minimizer and the constrained
minimizer with cross-sanity check, then we have an upper
bound for the distance between such two minimizers as

Sim(gsanity)− Sim(g∗) < 2λc(1− α)βN. (15)

The Lemma 4 follows Thm. 3 and Eq. (14) (upper bound

of CS error). That said, the loyalty w.r.t the distance of the

constrained minimizer is controlled by the combination of

α, β, and the weight parameter λc.
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Figure 4. Training a sanity-checked model. W© denotes spatial

warping, e.g., warped m is that we warp moving image m using

the transformation map calculated from gm→f .

Interpretation of derived upper bound. By Lemma 4,

we prove that if we average on the total number of voxels

and also two directions, the similarity distance between the

optimal minimizer and our sanity-checked minimizer per

pixel/voxel is upper bounded by λc(1 − α)β. That being

said, to satisfy our sanity checks, and thus maintain the loy-

alty to the optimal minimizer, λc(1− α)β should be small.

Numerically speaking, for example, if α = 0.1 and β = 10,

we have (1−α)β = 9. This distance of 9 is extremely large

for this delicate image registration task, causing the con-

strained minimizer to be untrustworthy. Therefore, we need

to adopt a relatively small loss weight λc, e.g. λc = 0.001,

to bound the distance between two minimizers tightly. This

observation from our proven theoretical upper bound also

coincides with our sanity loss weight ablation study.

3.4. Sanity-checked Registration Training

We show our sanity-checked training pipeline in Fig. 4.

We introduce each loss in the subsection. The self-sanity

check can be formulated into a loss function form as

Lself =
1

2
(||gm→m||22 + ||gf→f ||22). (16)

So that the self-sanity loss penalizes the squared differences

between predicted displacement maps and the ideal ones.

Next, we use m → f direction as an example (f → m
direction follows the same principle) to formulate the pro-

posed cross-sanity check loss. We calculate for every voxel

and define a binary mask Mm→f in the form of

Mm→f =

{
0 if satisfies the cross-sanity check,

1 otherwise.
(17)

An interpretation of this binary mask Mm→f is that it

records violations of the cross-sanity check (Eq. (4)) for

Figure 5. Mask evolution during training. Overall, as training

proceeds, violators of the cross-sanity check are decreasing.

each individual point. In this way, < 0 solution in Eq. (10)

will not challenge the theoretical formulations since these

points are masked out. Thus, we can formulate the pro-

posed cross-sanity check in the form of a loss function of

Lm→f
cross = ||Mm→f 	 (gm→f + g̃f→m)||22 − β||Mm→f ||22

− α(||Mm→f 	 gm→f ||22 + ||Mm→f 	 g̃f→m||22).
(18)

The final Lcross = 1
2 (Lm→f

cross + Lf→m
cross ). Here, 	 denotes

element-wise multiplication so that we only retain points

violating the cross-sanity check. In this case, the loss value

is only calculated for those violators, visualized as occlu-

sion masks, shown in Fig. 5. Finally, the total loss is

Ltotal = Lsim + λrLreg + λsLself + λcLcross. (19)

Here, Lsim as NCC loss, Lreg as ||∇(u)||22, and λr = 1,

following standard deep registrations [6, 9]. If not specified

otherwise, λs = 0.1 and λc = 0.001. While training, the

model optimizes the total loss Ltotal on different moving-

fixed image pairs (m, f) in the training set D as

min
(m,f)∈D

min
g∈H

Ltotal. (20)

In this way, we fulfill our novel regularization-based sanity-

enforcer formulation for training a registration model.

4. Experiments
Evaluation metrics. We study model behaviors in a

wide range of metrics. For the main metric, we use dice

to measure how fit is the transformed segmentation to its

ground truth, following previous studies. To study the

model taking an identical pair as inputs, we also report

self dice (SDice), i.e., the dice when registering the mov-

ing image to itself. For pre-operative and post-recurrence

registration, we measure the mean target registration error

(TRE) of the paired landmarks with Euclidean distance in

millimeters and also self mean registration error (STRE) to

study the self-sanity of the models. Besides, we report 95%

Hausdorff Distance (HD95) as in [9], which measures the
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Figure 6. Comparisons between different models on IXI dataset.

95th percentile of the distances between boundary points

of the transformed subject and the actual subject. We fol-

low [3, 31] to report robustness (ROB) for a pair of scans as

the relative number of successfully registered landmarks.

For diffeomorphism measurements, we report the per-

centage of folded voxels (FV) whose Jacobian determinant

< 0, the Absolute Value of Negative Jacobian (AJ) where

we sum up all negative Jacobian determinants, and the Stan-

dard Deviation of the logarithm of the Jacobian determinant

(SDlogJ). All these three Jacobian determinant-related met-

rics reflect how regular are the transformation maps.

For quantifying sanity errors, we present the mean of

self-sanity error (SSE) and the mean of cross-sanity error

(CSE), defined in Eq. (16) and Eq. (18), respectively. These

two metrics are designed to study model behaviors per the

level of each single image pair and are essential for our san-

ity analysis of different learning-based deep models.

Implemented models. We denote the bidirectional

optimization as Enclosed (E) Image registration, operat-

ing to maximize the similarity score and minimize the

spatial gradient regularization. We also have Self-sanity

checked (S) and Cross-sanity checked (C) image regis-

trations. Moreover, as proof of concept that our sanity
checks can be applied to different learning-based models,

we implement our proposed techniques on models such

as VoxelMorph [6] (VM), TransMorph-Large [9] (TM),

TransMorph-B-spline [9] (TMBS), and DIRAC [31].

4.1. Results

Atlas-to-subject registration. We split in total 576

T1–weighted brain MRI images from the Information eX-

traction from Images (IXI) [1] database into 403, 58, and

115 volumes for training, validation, and test sets. The

moving image is an atlas brain MRI obtained from [23].

FreeSurfer [14] was used to pre-process the MRI volumes.

The pre-processed image volumes are all cropped to the

size of 160×192×224. Label maps, including 30 anatom-

ical structures, are obtained using FreeSurfer for evaluat-

ing registration. Besides CNN-based models [6, 23, 10],

we also include other transformer-based deep methods [10,

51, 48, 46] as baselines following [9]. The comparison re-

sults are presented in Tab. 2, and qualitative comparisons

Figure 7. Qualitative comparisons on IXI, where we mark maxi-

mum values of error maps on each top left. Best view zoomed.

Figure 8. Comparisons on OASIS validation set. Our method

produces more regular maps for all input image pairs.

in Fig. 6. For cross-sanity check, we set α = 0.1 and

β = 12. Overall, we can observe models with sanity checks

achieve better diffeomorphisms without impairing any Dice

performance and even improve the performance for the VM

model. We show qualitative comparisons in Fig. 7. Com-

pared to the naive counterparts, our sanity-checked model

produces more regular maps from both directions and re-

duces huge sanity errors, comparably using error heatmaps

for both self-sanity and cross-sanity errors.

Subject-to-subject registration. OASIS dataset [26,

21] contains a total of 451 brain T1 weighted MRI images,

with 394/19/38 images used for training/validation/testing

purposes, respectively. The pre-processed image volumes

are all cropped to the size of 160×192×224. Label maps for

35 anatomical structures are provided using FreeSurfer [14]

for evaluation. For the cross-sanity check, we set α = 0.1
and β = 10. The results are shown in Tab. 3. In terms

of main metrics, we achieve on-par performance with all

the state-of-the-art methods, further certifying our sanity

checks will not contaminate the performance of models.

We also show our qualitative comparison in Fig. 8, indi-
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Method Dice↑ FV↓

Affine 0.386±0.195 -

SyN [2] 0.645±0.152 <0.01

NiftyReg [28] 0.645±0.167 0.020±0.046

LDDMM [7] 0.680±0.135 <0.01

deedsBCV [19] 0.733±0.126 0.147±0.050

MIDIR [34] 0.742±0.128 <0.01

PVT [46] 0.727±0.128 1.858±0.314

CoTr [48] 0.735±0.135 1.298±0.342

VM [6] 0.732±0.123 1.522±0.336

VM-diff [13] 0.580±0.165 <0.01

ICNet [50] 0.742±0.223 0.854±0.316

CM [23] 0.737±0.123 1.719±0.382

ViT-V-Net [10] 0.734±0.124 1.609±0.319

nnFormer [51] 0.747±0.135 1.595±0.358

ICON [16] 0.752±0.155 0.695±0.248

TM [9] 0.754±0.124 1.579±0.328

TM-diff [9] 0.594±0.163 <0.01

TMBS [9] 0.761±0.122 <0.01

VM-ESC 0.743±0.025 0.478±0.101

TMBS-ESC 0.762±0.023 <0.01

Table 2. IXI dataset results.

Method Dice↑ HD95↓ SDlogJ↓

VTN [25] 0.827±0.013 1.722±0.318 0.121±0.015

ConAdam [41] 0.846±0.016 1.500±0.304 0.067±0.005

VM [6] 0.847±0.014 1.546±0.306 0.133±0.021

ClapIRN [29] 0.861±0.015 1.514±0.337 0.072±0.007

TM [9] 0.862±0.014 1.431±0.282 0.128±0.021

TM-SC 0.862±0.014 1.449±0.310 0.084±0.005

(a) OASIS validation set results.

Method Dice↑ HD95↓ SDlogJ↓

Initial 0.56 3.86 1.50

VTN [25] 0.80 1.77 0.08

ConAdam [41] 0.81 1.63 0.07

ClapIRN [29] 0.82 1.67 0.07

TM [9] 0.82 1.66 0.12

TM-SC 0.820 1.666 0.085

(b) OASIS test set results.

Table 3. OASIS dataset results, obtained from the LEARN2REG challenge organizers [20].

Since the listed top-ranking methods are already enclosed, we mainly study the impact of

adding sanity checks, where the impact is proved to be negligible on these main metrics.

Method TRE↓ STRE↓ ROB↑ FV↓ AJ×102↓

Initial 6.864±0.996 - - - -

∗DIRAC [31] 2.760±0.247 0.274±0.027 0.776±0.055 0.025±0.009 4.242±2.954
†DIRAC-SC 2.719±0.259 0.218±0.046 0.795±0.034 0.022±0.005 3.001±1.314

Table 4. BraTSReg dataset results, reported as means±deviations out of five-fold validations.

∗: We use their code and train models until convergence. †: We implement the cross-sanity

check to replace the inverse consistent error part of DIRAC, and add our self-sanity check.

Figure 9. Example axial T1-weighted MR slices comparisons on

BraTSReg dataset. The error maps are normalized to incorporate

displacements in unit space predicted by DIRAC.

cating that our sanity-enforced image registration results in

less self-sanity error from the self-sanity error map compar-

ison and more regular maps in the deformed grid. All these

comparisons prove the efficacy of our regularization-based

sanity-enforcer to prevent both sanity errors.

Pre-operative and post-recurrence scans registration.
BraTSReg [3] dataset contains 160 pairs of pre-operative

and follow-up brain MR scans of glioma patients taken from

different time points. Each time point contains native T1,

contrast-enhanced T1-weighted, T2-weighted, and FLAIR

MRI. Within the dataset, 140 pairs of scans are associated

with 6 to 50 manual landmarks in both scans. The other 20

pairs of scans only have landmarks in the follow-up scan.

Following [31], we create a five-fold schema where each

fold has 122/10/28 for training/validation/test, respectively.

We set α = 0.01 and β = 0.03 in the cross-sanity check

since DIRAC predicts normalized displacement (range 0 to

1). We take an average of five folds to report our results in

Tab. 4. All baselines and our models use the same training

setup. We specifically focus on the model training part and

directly train all models on data downloaded from the offi-

cial website [5] without pre-affine and post-processing steps

mentioned in their paper [30]. The best model is selected on

the validation set, which has the lowest TREs. Despite the

high performance of the baseline, we can observe that the

substitution by cross-sanity check and the addition of self-

sanity check enable all metrics’ improvements to be claimed

as state-of-the-art. We also show qualitative comparisons

in Fig. 9, where the comparison between SSE error maps

demonstrates the effectiveness of our self-sanity check.

4.2. Sanity Analysis

We conduct a broad sanity analysis on a wide range

of models on the IXI dataset, including popular mod-

els (VM [6] and TM [9]), model with cycle consistency

(CM [23]), models with inverse consistency (ICNet [50]

and ICON [16]), probabilistically-formulated models (VM-

diff [13] and TM-diff [9]), and models with diffeomor-

phic add-ons (MIDIR [34] and TMBS [9]). The results

are shown in Tab. 5. We find that models with probabilis-

tic formulation or cycle consistency have higher self-sanity,

whereas the other models are insensitive to this scenario and

have an inferior SDice. However, these probabilistic for-

mulated models suffer from an relatively low Dice score,

refraining from practical usage. For CM, albeit low self-

sanity error, the correspondence error between image pairs

is not negligible. We also find it interesting that models

with diffeomorphic add-ons still suffer from large sanity er-

rors, despite their ability to produce a diffeomorphic/regular

map, caused by not modeling different mappings from both

directions. Overall, our behavior studies show that most

models suffer from inferior Dice/SDice performance, lower

diffeomorphism, or significant sanity errors. Our proposed

sanity checks improve performance from every aspect, pro-

ducing a more regular map and preventing sanity errors.
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Method

Main Metric↑ Diffeomorphism↓ Sanity Error↓

Dice SDice FV AJ×104 SSE×10-1 CSE

PVT [46] 0.727 0.695 1.858 3.64 52.95 19.43

CoTr [48] 0.735 0.846 1.298 2.10 6.28 21.37

MIDIR [34] 0.742 0.850 <0.1 <0.1 6.75 15.75

VM [6] 0.732 0.890 1.522 3.00 5.16 16.55

VM-diff [13] 0.580 1.000 <0.1 <0.1 0.13 <0.1

ICNet [50] 0.742 0.849 0.854 1.90 13.23 7.48

CM [23] 0.737 1.000 1.719 3.44 1.18 19.47

VIT-V-Net [10] 0.734 0.908 1.609 2.97 14.52 12.98

nnFormer [51] 0.747 0.799 1.595 2.90 13.31 20.68

ICON [16] 0.752 0.899 0.695 0.90 7.31 5.68

TM [9] 0.754 0.873 1.579 2.75 85.63 19.62

TM-diff [9] 0.594 1.000 <0.1 <0.1 0.16 <0.1

TMBS [9] 0.761 0.903 <0.1 0.02 23.84 14.08

VM-ESC 0.743 1.000 0.478 0.43 <0.1 2.55

TMBS-ESC 0.762 1.000 <0.1 <0.1 <0.1 2.99

Table 5. Sanity analysis of various models on IXI dataset.

[46] [48] [6] [23] [10] [51] [50] [16] [9] [6] TMBS
ESC

VM
ESC

19.24 10.02 5.63 7.58 11.27 10.44 3.46 2.78 22.61 7.31 1.96 0.92

Table 6. Cross-sanity Error using strict inverse consistency on

IXI dataset, i.e., g̃b→a + ga→b = 0. We choose VM for [6] and

TMBS for [9] as our baselines. We show our results in the last

two columns. Still, we achieve state-of-the-art performance even

under strict inverse consistency for calculating cross-sanity error.

4.3. Ablation Study

Cross-sanity error under strict inverse consistency.
We testify the performance under strict inverse consistency

as in Def. 1, the same as CICE in [11], shown in Tab. 6.

The reductions of strict inverse consistency error compared

using relaxed inverse consistency are caused by many small

errors taken into account for calculating the average, where

our sanity-checked methods still show better performance,

compared to all models, including the model trained using

explicitly strict inverse consistency, e.g. [16].

Sanity checks loss weight study. We derive an upper

bound for our saner registration in Lemma 4. We show in

the study that we can utilize this upper bound to guide us

to set appropriate loss weight λc for the cross-sanity check.

For fast verification, we randomly sample 50 subjects from

the training set of the IXI dataset and validate/test in the full

validation/test set. We also include the self-sanity check

loss weight λs here for comparing purposes. The experi-

mental results are shown in Tab. 7. Compared to λc, λs

is insensitive to weight change. As we discussed earlier,

if we set higher loss weight to cross-sanity check, for ex-

ample, 0.01/0.001, approximately having upper bounds as

0.1/0.01, respectively. This creates a huge difference when

we train our models. This high tolerance for error results in

significantly degenerated performance for Dice, where our

derived upper bound gives useful guidance for the setting of

loss weights. More discussions can be found in Appendix.

Model ablation study. We study our proposed sanity

checks on IXI and OASIS validation datasets and report the

λc λs Dice↑ SDice↑ FV↓ AJ×104↓ SSE×10-1↓ CSE↓

5e-4

1e-3 0.720 0.957 0.913 1.24 0.658 6.96

1e-2 0.720 0.983 0.920 1.27 0.299 6.77

1e-1 0.719 1.000 0.896 1.22 <0.1 6.73

1e-3

1e-3 0.721 0.967 0.422 0.38 0.572 3.43

1e-2 0.720 0.989 0.426 0.40 0.301 3.46

1e-1 0.721 1.000 0.443 0.40 <0.1 3.43

1e-2

1e-3 0.473 0.912 <0.1 <0.1 1.966 <0.1

1e-2 0.420 0.980 <0.1 <0.1 1.210 <0.1

1e-1 0.406 1.000 <0.1 <0.1 0.209 <0.1

Table 7. Sanity loss weight study of VM on sub-IXI dataset.

Method Dice↑ SDice↑ FV↓ AJ×104↓ SSE×10-1↓ CSE↓

VM 0.732 0.890 1.522 3.00 5.156 16.55

VM-E 0.742 0.919 1.574 3.04 2.647 26.97

VM-ES 0.740 1.000 1.442 2.72 0.050 25.32

VM-EC 0.743 0.950 0.447 0.39 1.178 2.61

VM-ESC 0.743 1.000 0.478 0.43 <0.1 2.55

TM 0.862 0.925 0.752 1.52 3.069 10.72

TM-S 0.861 1.000 0.777 1.66 0.018 11.43

TM-C 0.862 0.948 0.246 0.26 0.991 2.93

TM-SC 0.862 1.000 0.307 0.35 <0.1 3.17

Table 8. Model ablations on IXI dataset (top rows) and OASIS

validation dataset (bottom rows). Since TM is already enclosed

(E), we focus on studying the impacts of adding our sanity checks.

results in Tab. 8. We show that each sanity check reduces

the corresponding errors without compromising other met-

rics’ performance compared to their naive counterparts. We

also find that the bidirectional registration and cross-sanity

check can also mitigate self-sanity errors to a certain level,

but cannot eliminate such errors completely, proving that

our self-sanity check is necessary to regulate the models’

behavior for mapping identical image pairs. More experi-

ments such as parameters α and β numerical study, sanity

preservation study, statistical significance of results, abla-

tive qualitative results, etc, can be seen in the Appendix.

5. Conclusion
This paper focuses on correcting learning-based deep

models’ behaviors on single moving-fixed image pairs. In

our model sanity analysis, we find that most existing mod-

els suffer from significant sanity errors, with no exceptions

for models equipped with diffeomorphic add-ons. We show

that this sanity-checked model can prevent such sanity er-

rors without contaminating any registration performance.

While the experimental results certify the effectiveness of

our proposed sanity checks, our sanity checks are supported

by a set of theoretical guarantees derived in this paper. We

first show that there is an error upper bound for our sanity-

checked formulation to the optimal condition. Then, we

show that this upper bound can give significant guidance to

train a sanity-checked registration model, where we believe

it is beneficial for preventing overly optimization on image

similarities when training deep registration models.
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