This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.

SAFE: Machine Unlearning With Shard Graphs

Yonatan Dukler'*, Benjamin Bowman'2™, Alessandro Achille'*, Aditya Golatkar®:',
Ashwin Swaminathan', Stefano Soatto*

AWS Al Labs', UCLA?
{dukler,bowmaben,aachille,agolatka,swashwin,soattos}@amazon.com

Abstract

We present Synergy Aware Forgetting Ensemble (SAFE), a
method to adapt large models on a diverse collection of data
while minimizing the expected cost to remove the influence
of training samples from the trained model. This process,
also known as selective forgetting or unlearning, is often
conducted by partitioning a dataset into shards, training
fully independent models on each, then ensembling the re-
sulting models. Increasing the number of shards reduces
the expected cost to forget but at the same time it increases
inference cost and reduces the final accuracy of the model
since synergistic information between samples is lost dur-
ing the independent model training. Rather than treating
each shard as independent, SAFE introduces the notion of
a shard graph, which allows incorporating limited informa-
tion from other shards during training, trading off a mod-
est increase in expected forgetting cost with a significant
increase in accuracy, all while still attaining complete re-
moval of residual influence after forgetting. SAFE uses a
lightweight system of adapters which can be trained while
reusing most of the computations. This allows SAFE to be
trained on shards an order-of-magnitude smaller than cur-
rent state-of-the-art methods (thus reducing the forgetting
costs) while also maintaining high accuracy, as we demon-
strate empirically on fine-grained computer vision datasets.

1. Introduction

Large-scale neural networks are typically trained on large
monolithic datasets. However, real world data often comes
from many different sources which may require different
treatment depending on their terms of use. In some cases,
the terms can change, triggering the need to not just erase
a portion of the data, but also remove its influence on the
trained model. If the model is trained with the entire dataset
in an undifferentiated fashion, even a request to remove a

*“Equal contributions
TWork done during an internship at AWS AI Labs.

small fraction of the data may result in re-training the entire
model on the complement. Considering the scale of large
neural networks currently in use, re-training the model after
each data erasure is costly. Thus, it is beneficial to develop
methods to trace the influence of various segments of data
onto the trained model, and to remove their effect if needed,
especially as the scale of production models and the amount
of training data continues to grow.

One simple and robust approach to forgetting is compart-
mentalizing the information of different subsets of data into
distinct model parameters. In this scenario, the training
data is split into disjoint shards, and different parameters
or “adapters” are trained separately on each shard, and then
ensembled to obtain a final model. The advantage of this
approach is that, if the influence of a sample needs to be
removed, only the parameters corresponding to its shard
have to be retrained. Moreover if an entire source of data
needs to be dropped, one can simply drop all the adapters
corresponding to the shards containing its samples. There
are, however, two main disadvantages to this approach.
On the implementation side, there is an increase in stor-
age/inference scaling with the multitude of adapters to en-
semble. On a more fundamental level, since each adapter
is trained independently on a fraction of the available data,
it forfeits synergistic information that may be present in
data stored in different shards. As the number of shards
grows, adapters are trained on increasingly impoverished
samples, leading to degraded performance relative to mono-
lithic training (see Fig. 2).

Thus, practitioners have to choose a trade-off between in-
creasing the accuracy of the model and minimizing the ex-
pected cost of forgetting a sample. In this work, we show
that naive sharding, that is uniform partitioning of the train-
ing set, is suboptimal in many realistic use cases. Instead,
shards should be constructed to maximize synergistic infor-
mation available at training time. To that end, we introduce
SAFE (Synergy Aware Forgetting Ensemble), an algorithm
that leverages synergistic information between data shards
to maximize accuracy for a given forgetting cost. We show
that SAFE allows training on highly sharded data (with as

17108

many as 256 shards) with a 14% accuracy boost over uni-
form sharding for the same forgetting cost.

To realize this, we introduce the notion of a Shard Graph
(SG) (see Fig. 1). Each node of the graph is a small shard of
data in the original dataset. (Directed) edges between shards
indicate that the corresponding adapter is not trained in iso-
lation as usual, but also uses data from the shards it con-
nects to, thus increasing the accessible synergistic informa-
tion. On the downside, when a forget request is received, all
nodes pointing to the forgotten node must be retrained, in-
creasing the expected forgetting cost. Since different shards
have different likelihood of receiving forget requests and
contain different information, the problem becomes how to
draw connections that maximizes the synergistic gain while
minimizing the increase in expected forgetting cost. For ex-
ample, shards that are unlikely to contain samples that need
to be forgotten (e.g., a shard that contains synthetic data
or highly vetted data) can be simultaneously connected to
many other nodes significantly increasing accuracy without
increasing the expected forgetting cost.

A SG may, however, have hundreds of nodes, thus rais-
ing the problem of how to train and perform inference with
hundreds of adapters. SAFE addresses this problem using
InCA adapters [15]. These are small modules connected to
a frozen pre-trained backbone, which can be trained in par-
allel at less than the cost of fine-tuning a single monolithic
model. SAFE can thus handle orders of magnitude more
shards than other state-of-the-art algorithms. While the use
of lightweight adapters may reduce accuracy, we found the
loss in accuracy negligible when the chosen backbone is
well aligned with the user data, and it is offset by the large
reduction in forgetting cost.

We then present two extensions of SAFE. First, we consider
the case where information about individual samples from
connected shards is bounded using (e, §)-Differential Pri-
vacy, which can be interpreted as using a weighted graph
with edges of weight e. In situations where (¢, §)-DP is an
acceptable guarantee, this formulation can further reduce
the expected forgetting cost by avoiding the need to always
retrain all connected shards after a forget request. Second,
we show that SAFE can be used to serve a-la-carte models
[6], where each user can access a model trained only on a
user-specific subset data, as long as the connectivity of the
SG is compatible with the user access rights.

Empirically, we show that SAFE can reduce the cost of for-
getting samples by an order of magnitude compared to sim-
ilar forgetting algorithms, while maintaining a similar ac-
curacy. While evaluation of forgetting algorithms is usually
performed on simple datasets such as CIFAR, we show that
SAFE can be applied to more complex and nuanced fine-
grained computer vision benchmarks.

2. Related Work

The forgetting/machine-unlearning problem [8, 20] focuses
on removing information from a trained machine learning
model. One line of work [5, 51, 53, 31, 34, 6] involves split-
ting the dataset into multiple shards and training separate
models for each shard. In such settings forgetting a sample
will only affect the model trained on the subset containing
the data. In [4] the authors enable forgetting for logistic
regression by allowing the model to forget a class. The re-
cent work [51] achieves a 1-class linear classifier trained on
only a single class by making predictions based on class-
centroids. The authors of [53] propose the model LegoNet
which generalizes [5] by modifying the ensembling proce-
dure to a select-and-average approach with the top-k most
relevant sub-models in an instance-dependent manner. Such
methods provide instant forgetting by removal of the corre-
sponding model with low re-training time, however, they
suffer from increased inference costs directly correlating
with the number of shards.

Another line of work involves forgetting for a single deep
network. Forgetting is difficult for deep networks [22, 23]
due to the highly nonlinear nature of the parameterization
and nonconvexity of the learning problem. Such works of-
ten use approximations to the non-linear landscape of a deep
network to propose unlearning methods. In [28] the authors
perform a newton update for unlearning, while in [21, 2] the
authors train a linearization of a ResNet-50 starting from a
pre-trained model. The linearity of the parameterization,
enables convexity of the optimization so that one can for-
get specific samples and obtain upper bounds on the mutual
information after a certain number of forgetting steps. How-
ever, such unlearning methods are approximate, and as a re-
sult require complete re-training of the model after a fixed
number of iterations when the privacy budget is consumed.
The works of [50, 45] provide algorithms and seek under-
standing of unlearning by caching models, and unrolling the
iterative steps of the optimization problem.

The unlearning problem has also been explored in federated
setups [7, 35, 48, 36, 25] where a client withdraws its data
and its influence needs to be removed from the global model
and other clients. This approach is different from shard-
ing based methods where there is no notion of a centralized
model, and a set of weak models need to be ensembled.
Some recent works [38, 29, 11, 46, 43] provide stochastic
unlearning algorithms (similar to [1]) with rigorous theoret-
ical guarantees similar to the probabilistic guarantees in dif-
ferential privacy [106] or algorithmic stability. [29] showed
that the “perfect” unlearning algorithms like [5], provide
perfect forgetting only for uniform requests, and not adap-
tive requests. Unlearning guarantees of approximate algo-
rithms decay with the number of forget requests, which re-
quire full re-training of the model eventually. In one exten-

17109

A. Forgetting on the Shard Graph
(a) Isolated Shards
O]

Shard to forget o ® ®

® ©
(c) Safe Shard
®

Contaminated
nodes to retrain

©

B. Example Shard Graphs

C. InCA Architecture
(

No Sharding

Disjoint Cliques

r// ;\\
Encoder

InCa Adapter—E

|

|
&
o
&

N ®

Figure 1. (A) Forgetting on the Shard Graph. Upon a forget request, the node containing the sample to be forgotten and all sub-models
with outbound connections to the node are re-trained. (B) Example Shard Graphs. Prototypical examples of the Shard Graph include
(a) Isolated Shards: (instant forgetting of whole shards, low accuracy). (b) Disjoint Sharding: (fast forgetting, competitive accuracy). (c)
Safe Shard: one shard not likely to receive forget requests connected to all nodes (instant forgetting, competitive accuracy in appropriate
settings). (d) No Sharding: (forgetting is infeasible, ideal performance). (C) InCA Architecture. We use lightweight cross-attention
adapters acting upon the representations of a pretrained transformer encoder. Each node in the graph is associated to an InCA adapter

trained on the union of the data of a node and all its outbound edges.

sion of SAFE, we provide a mixed learning algorithm (each
shard is non-private with respect to itself, but private for
other shards) using differential privacy [, 24]. The work of
[9, 52, 10, 39] studies the problem of unlearning on graph
modalities for tasks such as edge prediction; we note our
method is concerned with typical modalities albeit the syn-
ergy between data subsets is described via a directed graph
(see Sec. 3 and description of the SG).

3. Forgetting on Shard Graphs

In this section we introduce the notion of a Shard Graph and
the flexible forgetting approach it enables. We then show
that existing shard-based forgetting algorithms can be re-
interpreted as a degenerate case where the graph does not
contain any edges. In the next section we will introduce
SAFE, a forgetting algorithm that can take full advantage
of the provided graph.

Shard Graphs. For ease of notation, in this section we will
assume our label space is the discrete set) = {1,..., K}.
The Shard Graph (SG) is a directed graph G = (V, E)
where the set of nodes V' := {51, ..., S, } denotes different
data sources or data shards .S; C X x), which are defined
by the user based on their application. We use a directed
edge (S5;,59;) € E between two shards (i.e., “S; points to
S;”) to denote that when training the adapter corresponding
to S; we also allow access to data from S; (see later). In all
graphs we consider we assume implicitly that each node S;
has a self connection, (S;,.5;) € E, that is, the adapter of a
shard is always trained on that shard’s data.

Definition of forgetting. Consider an algorithm 4 (possi-
bly stochastic like SGD) that, given a shard graph G as in-
put, outputs a model trained on the shards of GG. In this case,

we denote with © — P(A(G) € ©) the probability distri-
bution of possible models produced by A given a graph G.
Let G’ be a shard graph where some of the data has been
removed (for example, removing an entire node/shard or re-
moving samples of the shard). For a training algorithm A,
we define a forgetting procedure U (A(G), G’) which takes
a trained model M = A(G) and the reduced graph G’ to
output a new model M’ which is indistinguishable from a
model trained directly on G’. To incorporate the stochastic-
ity of A, we require that the distribution of models outputted
by the forgetting procedure U (A(G), G’) matches A(G'):

P(U(A(G),G") € ©) =P(A(G') € ©) for all events O.

Note that a forgetting algorithm can always trivially satisfy
this by ignoring A(G) and retraining from scratch on the
reduced graph G’, that is, setting U(A(G),G") = A(G).
Doing so, however, is expensive especially if G’ contains
lots of data. The quality of a forgetting procedure is gauged
by its ability to minimize the cost of forgetting while main-
taining high accuracy.

Independent shard forgetting. Given a shard graph G, a
trivial but efficient forgetting approach [5, 6, 51] is to dis-
card the edges and train a separate adapter on each node
S; € V. More precisely, let A(S;) denote the adapter
trained on the data in .S;. The model corresponding to the
graph G is then the ensemble of all the adapters:

A(G) = ensemble({A(S;)}s,ev)- ()

The ensembling procedure is application specific, for in-
stance, in classification we average the logits of the models.

Such A admit a simple forgetting procedure U. If requested
to forget an entire node/shard in G, we simply need to drop

17110

140%

—— SAFE
0,
_120% SISA
2 100% —— ProtoSISA
o 80% —— Proto
—
W 60%
E 40%
20%
0%
0.3% 1% 10% 30% 100%

Rel. re-training time (%)

Figure 2. Accuracy vs. expected cost of forgetting. By reducing
the number of shards one can improve the error (y-axis) at the ex-
pense of increasing the training time per forget request (x-axis).
We show while the error of uniform sharding methods (SISA,
orange), (ProtoSISA, green) grows significantly at fine-sharding
scales, SAFE is able to maintain low error and uniformly outper-
forms the baseline of classification based on class prototypes (blue
line). We report the avg. for the datasets in Tab. 1.

the corresponding adapter incurring a constant expected for-
getting cost O(1). When requested to forget a sample (or
subset of samples) from a shard, we only need to retrain
the corresponding adapter on the remaining data. Assum-
ing that the cost of training an adapter is linear in the size
of its training data, the expected cost to forget one sample
is O(|S]), where | S| is the expected shard size.

When the data is divided into small shards, the expected
forgetting cost is a fraction of the cost of retraining the
whole model from scratch (all shards). However, as we
see in Fig. 2, the accuracy of an ensemble model trained
on many small shards (SISA, orange curve) can be signifi-
cantly lower than the accuracy of a single model trained on
all the data simultaneously (right-most point in the curve).
This can be attributed to the loss of synergistic information
when training independently on many small shards.

4. SAFE

SAFE aims to reduce the impact of the loss of synergistic
information by allowing shards connectivity in a way that
does not significantly increase the expected forgetting cost
while improving performance. Our proposed method can be
formulated easily in our proposed shard graph formalism.

Let G be a shard graph. Rather than training an adapter
independently on the data of each shard, SAFE trains an
adapter using also all the data contained in the connected
shards. Formally, the model produced by SAFE is:

A(G) = ensemble ({A(U N(S:)) }Sig) (2)

where | J N (S;) denotes the union of all the data contained
in the shards connected to S; — that is, its outbound neigh-

borhood N (S;) (see Fig. 1C). Note that, when the graph G
doesn’t have any edges, Eq. (2) reduces to Eq. (1).

Training on the union of data from connected shards ex-
ploits the synergistic information among those shards to im-
prove accuracy at the expense of increasing the forgetting
cost. However, depending on the structure of the data and
the likelihood of forget requests, the increase in accuracy
can greatly outweigh the increase in forgetting cost.

Forgetting with SAFE. Unlike before, if a sample in a
shard is deleted, we need to retrain not only the adapter cor-
responding to that shard, but also the adapters of all shards
pointing to it. The cost of the procedure scales with the to-
tal amount of training data that needs to be revisited to train
the adapters. Letting z € S; be a sample to be forgotten,
we can write as

M, = | J{UN(S)) : Si € N(S;)} 3)

the total data needed to retrain the adapters of all shards
S; that point to S;. Hence, the expected cost of forgetting
depends on the expected size of M, which in turns depends
on the graph topology. We now analyze some interesting
cases, which will inform our experimental setup.

Random connectivity. Suppose each node is connected to d
other nodes uniformly at random. Then in expectation (see
Appendix) we have:

E|M,| = O(|S|?).
Which scales quadratically with the degree.

Partition in disjoint cliques. Consider now the case where
the graph is partitioned into disjoint cliques of size d (see
Fig. 1B (b)). In this case, all the N(S;) in Eq. (3) perfectly
coincide and the union corresponds to N(S;). This leads
to an expected forget cost that scales with the size d of the
shard’s clique

E|M,|=d-|S|.

In particular, compared to the random connection case, the
cost is linear instead of quadratic in the degree of the nodes.

Based on this analysis, we focus on graphs that can be rep-
resented as a union of disjoint cliques, as it leads to lower
cost of forgetting while allowing the same amount of con-
nectivity. Finally, the case where an entire shard is deleted,
rather than a single example, has similar analysis. The cor-
responding adapter needs to be removed from the ensemble,
and all adapters of shards pointing to it need to be retrained.
The expected cost scales in the same way as before as a
function linear with d.

Refined Shard Graph. In practice, it may often happen
that different shards contain samples from different classes,
or even from a single class. To deal uniformly with all

17111

Ens. Test Acc
o
~
w

—— Forgetting cost @ 1/32
—— Forgetting cost @ 1/64
—— Forgetting cost @ 1/128

1 2 4 8 16 32
Number of cliques n¢

Figure 3. Shard graph class composition We report the test
accuracy for MIT-67 accuracy under different shard topologies.
The different curves correspond to different effective re-training
times (1/n) as compared with standard training (smaller means
faster). The points on each curve correspond to partitioning in
different numbers n of fine cliques.

the cases — and to enable finer level of sharding and thus
faster forgetting — it is convenient to restrict the adapters
of SAFE to binary classifiers for each label present in the
adapter’s training set. This can be seen as refining the graph
so that each node contains data from only one class (its pos-
itive samples) with the negative examples coming from the
connected nodes. Formally, given a shard S C X x) we
define the label occurrence map L(S) = {y : (z,y) € S}.
Furthermore, for each label k¥ €), we define the refined
shard S*) = {(z,y) € S : y = k}. Then given a shard
graph G = (V, E') we construct a refined vertex set

Vii={S®.SecV, kelL(S)}
and edge set
E = {(S™ 8§ ") . (S 8" e E,h e L(S),k € L(S")}.

Hence, for each node S € V' we train a binary classifier
where the positive examples come from S and the nega-
tive examples come from the all the connected nodes.

5. Synergistic Bilevel Sharding

We now tackle the question of how to generate a graph
structure that increases the synergistic information for a
given expected forgetting budget. Forgetting methods usu-
ally split the data in uniform shards. However, we note that
samples from the same classes, or related classes, have more
synergistic information, so should preferentially appear in
the same clique, even if this means that the clique may not
contain all classes due to size constraints (note that, as men-
tioned before, we do not need the adapters to see all classes
since each is a binary one-vs-all classifier). Following this
intuition, we suggest the following strategy: We first split
the data in n. disjoint “coarse” shards using class-balanced
subsampling. For each coarse shard, we draw the nodes

corresponding to each class and partition them randomly
into cliques of size d, i.e., each clique contains examples
from d classes. This results in a number 7y = Ncjasees/d Of
“fine” cliques per coarse shard, for a total of n = n. - ny
cliques. We note that the expected forgetting costs scales
with 1/n, i.e., the amount of data in each clique. Partition-
ing the data uniformly, as commonly done, is equivalent to
selecting ny = 1.

Optimal graph structure. Since the expected forgetting
cost is the same as long as the product n = n. - ny remains
constant, we check what ny produces the best model for
a fixed n. Low nj increases the variety of the classes in
each shard at the expense of loss of synergistic information,
while high n s increases the synergistic information but each
model sees a smaller subset of classes. In Fig. 3 we plot
the trade-off on the MIT-67 dataset. We see that indeed
uniform sharding (ny = 1) is never optimal, and that using
a higher (but not too high) values of n; is essential to get
good accuracy when aiming for a low forgetting time, and
can improve accuracy by more than 15%, thus supporting
the design choices for our method. Random partitioning
across coarse and fine levels also makes our method robust
against non-adaptive forget requests.”

6. Efficient implementation of SAFE

Training independent large models on hundreds of shards
leads to prohibitive storage and inference costs, and in-
creases the expected cost of retraining for each forget re-
quest. This suggest using a shared backbone and a series of
small shard-specific adapters. We use a variant of Open-
InCA cross-attention adapters [15], which lend themself
easily to massive parallel training and inference (See Ap-
pendix A for details) while also providing high-accuracy on
difficult fine-grained classification tasks. With Open-InCA
adapters, we can efficiently compartmentalize the training
data of each shard to its corresponding Open-InCA class
parameters.

InCA adapters [15]. Let z = (z1,...,2n) = fu(X) be
the activation map produced by a frozen vision encoder
fuw(x). Given a set of learnable class-specific query tokens
q = (q1,...,9k), the output y = CAy(z,q,v) of InCA
adapters CA are the logits y = (y1, .. ., Y,) defined by

Yi = Vi€

e = cross-attentiong(z, q)

where 6 are the parameters of the cross-attention layer and
v = (v1,...,vg) is a learnable set of vectors v; (which
can be interpreted as binary linear classifiers). To keep the
notation uncluttered, in the following we write ¢; to denote

*When the graph structure is data dependent, DP techniques may be
required to prevent information leakage from it.

17112

both the query vectors and the corresponding classification
vector v;. An important property of Open-InCA for our ap-
plication is compositionality. Let [q, q'] denote the concate-
nation of q and ¢, then

CAy (Zv [qv q/]) = [CA@ (z7 q)’ CAy (Z> q/)]' 4)

This suggests that, rather than training a separate model on
each node, we can train individual node specific ¢; together
by concatenating them to obtain the final model. In addition
to the compositionality by learning different queries g; for
each classifier, Open-InCA remains expressive in selecting
sub-task specific representations for each classifier.

Applying InCA to SAFE. We freeze and use the same cross
attention weights CAy which are shared across all nodes,
with frozen parameters 6." Then, for each reduced shard
S ,(:) we create corresponding queries ¢¥, and train the re-
sulting binary one-versus-all classifier

yzl‘c(z) = CA@(Zv qf)

on the data of all connected shards using a binary cross en-
tropy (BCE) loss. If there is a clique of nodes in the refined
shard graph, we can group them together and train simul-
taneously instead with the cross entropy loss. At inference
time, we utilize the compositionality of the CAy adapters,
by computing the concatenation of all ¥ sharing the com-
putation of all the adapters in a single forward pass and eas-
ily ensemble the resulting logits, leading to the final logits,

yi(z) = meany, (CAg(z, q, V))

In the equation above the embedding z = f,(x) is of a
test sample x. For classification, we select the class corre-
sponding to the highest logit. Training each ¢¥ and v¥ se-
quentially is still expensive, and wastes computation since
the same sample can be used as a negative to train multi-
ple connected nodes. Instead, since for the BCE loss the
gradients of different ¢; are independent, we can train all
the ¢; at the same time over a single epoch on the whole
(re)-training set, provided the loss is appropriately masked
to prevent information from unconnected shards from tran-
spiring into each ¢; (see Appendix A for details). Further
since InCA does not backpropagate through the backbone
fw> We can also pre-compute and store the embeddings z.
Using all these techniques, we are able to train hundreds
of shards at the same time in under 10 minutes on a single
GPU.

7. Prototypical classifier

Class prototypes are another viable approach to forgetting
used by ARCANE [51]. Given a dataset D = {(z;,v;)}¥,

"We find that simply using a random initialization for 6 provides a good
and unbiased performance across tasks.

and an embedding z = f,,(x), we define the prototype of
the k-th class as

Pr = NL Z fw(x)

€ (z,y)eD®

where D(*) are the samples of class k and N, = |D*)|. We
can then construct a simple linear classifier

yk(Z) = dcos(zapk)v

where d..s denotes the cosine distance. Such “prototypical”
classifiers allow instantaneous forgetting: to forget a train-
ing sample (z;,y;) we just need to remove it from its class
prototype p,, > W On the other hand, this
classifier has suboptimal classification accuracy compared
to a trained classifier on large shards of data.

However, when the shards consists only of a few samples,
classifiers trained on individual shards may overfit. In such
cases, the prototypical classifier can be used to provide an
inductive bias [44]. Since the added computational and
space complexity to use the prototypical classifier is neg-
ligible, we combine it into the SAFE model using the fol-
lowing expression:

SAFE(z) = (1 —) - M(G)(2) + A - Proto(z),

where M (G) is the ensemble model in Eq. (2), Proto de-
notes the prototype-based classifier and A = exp (- %)
is an interpolation weight that relies more on the prototyp-
ical classifier when the amount of data d|S| used to train

each adapter is small.

8. Extensions of SAFE

Stochastic forgetting for reduced cost. In the previ-
ous sections we presented forgetting approaches that use
the edges in the shard graph to define complete usage of a
shard or no usage (when there is no connection). Below we
present the notion of limited shard information defined via
differential privacy (DP), in which data of different nodes
(data shards) of the graph are shared to a sub-model in a dif-
ferentially private fashion. This can be defined by an edge
weight that bounds the information shared about each sam-
ple, and can be interpreted as the probability a sample is
identified in the training set. Specifically consider the bi-
nary classifier sub-models introduced in Section 6, for the
positive-negative samples defined by the graph topology we
assign complete usage to the positive node and limited us-
age to the outbound connections of the negative nodes. This
corresponds to a special case of mixed DP [21], which re-
sults in a simple training algorithm (SAFE-DP) where dur-
ing each epoch, each node is trained with its own data with-
out privacy, and with data from the neighbouring node us-
ing DP. This algorithm satisfies an approximate definition

17113

Number of shards

8 64 256

Dataset/Method |No Sharding Prototypes | SAFE SISA ProtoSISA| SAFE SISA ProtoSISA| SAFE SISA ProtoSISA
Caltech-256 94.3% 93.2% 94.0% 93.6% 93.6% 935% 86.7% 86.8% 93.3% 84.6% 90.5%
CIFAR-100 83.1% 71.2% 841% 84.0% 84.0% 822% 80.7% 80.7% 80.9% 77.6% 77.7%
CUB-200 88.3% 85.8% 86.1% 83.9% 83.9% 835% 65.1% 67.8% 84.5% 63.7% 83.5%
DTD 77.8% 73.8% 771% 76.1% 76.1% 751% 65.1% 66.7% 74.2% 52.6% 71.2%
MIT-67 87.9% 85.8% 86.9% 86.9% 86.9% 86.0% 81.5% 81.7% 86.4% 77.9% 84.4%
Stanford Cars 75.7% 41.0% 62.1% 55.8% 55.8% 474% 17.1% 17.8% 36.2% 7.0% 25.5%
Stanford Dogs 87.9% 88.0% 89.2% 89.2% 89.2% 88.3% 83.1% 83.2% 87.8% 79.8% 83.5%

Average Acc. 85.0% 77.0% 82.8% 814% 81.4% 79.4% 68.5% 69.3% 77.6% 63.3% 73.8%

Table 1. Accuracy of Unlearning Approaches: We report accuracy and re-training efficiency (measured by sharding level for re-training)
on a diverse set of visual classification datasets. Forgetting a sample is equivalent to re-training the shard containing the sample. The
retraining time is inversely proportional to the number of shards. SAFE allows sharding up to 256 subsets without significantly compro-
mising accuracy. For each level of sharding (for a fixed number of shards) we try different SG topologies and report the best results in the
table. We note that for 8 shards the accuracies for SISA and ProtoSISA are the same due to A being exponentially small when the shards

are large.

of forgetting, more precisely, A(G) is called an (a, §)-
unlearning algorithm if

P(U(A(G),G") € E) < ®P(A(G") € E) + 8

for all events E. This definition measures the privacy leak-
age in terms («, 3) using group DP. We enable each user
to specify their target uarger (Such that 5 < 1), and em-
ploy privacy accounting to identify budget overflow (8 > 1)
for sequential forget requests. Such an algorithm is useful
in adversarial conditions for protection against worst case
adaptive forget requests.

N

A-la-carte models via the Shard Graph. The problem of
constructing a unique model for a particular user that only
uses data consistent with their access permissions and per-
sonal preferences, i.e. the “a-la-carte learning” problem [6],
can be solved using SAFE. For a given user one can identify
which nodes in the graph the user is unable or unwilling to
access. Based on this, one can ensemble only the adapters
trained on the nodes with no outbound connections to the
ineligible nodes. Alternatively, one could simulate an arti-
ficial “forget request” by dropping all the data that the user
is unable to access and retraining the corresponding InCA
adapters. Since InCA adapters with cached activations can
be trained in seconds, one could potentially perform this
training efficiently to serve custom models to different users
on-demand.

9. Experiments

Model. In our experiments we use as encoder a VIT-L/16
transformer architecture [14] pretrained on ImageNet-21k
at 224 image resolution.* We use the InCA adapters from

*We use the vit_large_patchl6_224_in21k pre-trained model
in the t imm library [49].

[15], in particular we train the head and queries, but keep the
cross-attention layer frozen and shared between all shards.
We train each adapter with AdamW for 30 epochs using
cosine annealing starting from Ir = 0.05 and weight decay
of 10~%. See the Appendix for full details.

Datasets. We evaluate on the following vision classification
datasets, covering fine-grained classification tasks and do-
main shifts with respect to the ImageNet pretraining: CUB-
200 [47], MIT-67 [41], Caltech-256 [27], CIFAR-100 [33],
Describable Textures (DTD) [13], Stanford Cars [32], and
Stanford Dogs [30].

Baselines. We compare our method against two main
classes of methods for forgetting: Prototypes (motivated
by ARCANE? [51]) uses a prototype based classifier (Sec-
tion 7), which allows constant time forgetting but which
cannot be trained to improve accuracy, SISA [5] performs
forgetting by training an ensemble of models on shards cre-
ated by sampling uniformly at random. This corresponds to
using ny = 1 when structuring the bilevel sharding (Sec-
tion 5). Like in SAFE, increasing the number n of shards
leads to lower forgetting time but also lower accuracy. We
re-implement SISA using the same architecture and train-
ing scheme as SAFE for a direct comparison. [5] uses
further slicing of each shard (through intermittent model
checkpoints) to further speed-up re-training complementar-
ily. Slicing can be similarly incorporated in SAFE, but
we isolate slicing from our analysis as it is an orthogonal
and complementary approach that can be applied in each
method (with increased storage costs).

Comparison of SAFE with baselines. In Fig. 2 we plot the

SIn [51] they work with smaller models (e.g. ResNet-18 with 11M
params.) and train a separate embedding for each class, whereas we take
the embeddings of a fixed large pretrained transformer (305M params.).

17114

256 Shards

1.0
208
o
3
g 06
@
o4
© —— SAFE
]
@ 0.2 SISA
—— ProtoSISA
0.0
0 50 100 150 200 250

Num. of forget requests

Figure 4. Instant Forgetting. We simulate a series of forget re-
quests where for each forget request we drop an entire shard of
data without retraining. We plot the relative accuracy averaged
across the 7 datasets for the methods SAFE, SISA, and ProtoSISA
for 256 shards.

average trade-off between accuracy and forgetting time for
SAFE and other methods from the literature (SISA [5] and
Prototypes [51]) across the datasets in Table 1 for various
target forgetting times. We see that SAFE performs uni-
formly better than SISA and Prototypes for all forgetting
budgets. Thanks to the ability to train, it outperforms Pro-
totypes for higher forgetting time budgets, while it signif-
icantly outperform SISA in the low-forgetting-time regime
(high-sharding) due to better use of synergistic information.

Domain shift. In Table 1 we see that the accuracy of SAFE
and other forgetting methods decreases more rapidly with
the sharding level for datasets that have a significantly dif-
ferent distribution from the ImageNet-2 1k pretraining of the
backbone (e.g., DTD and Stanford Cars). We hypothesize
that this is because the synergistic information of different
samples is already contained in the backbone when the data
is similar to the pre-training, hence the loss due to sharding
is less influential. However, thanks to its better handling of
synergistic information, we see that SAFE performs signif-
icantly better than the other baselines on difficult domains.

Ablations. We can ask whether the better performance of
SAFE is due to the use of prototypes, the synergistic infor-
mation or both. We have seen in Figure 3 that synergistic
information alone improves over SISA (ny = 1). In Fig. 2
we also show the result of a further baseline, ProtoSISA,
obtained by adding a prototype classifier to SISA using the
same weighting scheme used for SAFE. We see that while
adding prototypes to SISA boosts performance, SAFE still
significantly outperforms both other methods, showing that
indeed both aspects are important.

Instant forgetting. In certain situations, a service provider
will need to satisfy a forget request instantly and thus will
need to drop an entire data source without retraining, mean-
ing that all adapters using those samples will need to be

Stanford Cars

525
& 50.0
o

S 475 —e— SAFE-DP
f ’ —— Prototypes
(7]
@ 45.0

42.5

6 7 8 9 10
Expected number k of forget requests
before full clique training
Figure 5. Stochastic forgetting. Training with DP on the out-
bound nodes we can satisfy k forget requests before having to re-
train the whole graph, at the expense of lower accuracy.

dropped without being retrained and replaced. To investi-
gate how robust SAFE, SISA, and ProtoSISA are to such
requests, in Fig. 4 we plot the relative accuracy of SAFE,
SISA, and ProtoSISA after a series of forget requests for
ensembles with 256 shards. We see that SAFE exhibits a
smaller decline in relative accuracy in the presence of forget
requests, and uniformly outperforms SISA and ProtoSISA.
For all methods the marginal decline in accuracy increases
as the number of forget requests increases, suggesting that
the ensemble becomes more sensitive as additional predic-
tors are dropped.

Stochastic forgetting. In Section 8 we propose a DP-based
mechanism that allows shards to receive up to a given num-
ber k of forget requests without having to retrain a whole
clique, at the expense of decreased accuracy due to the
bound on information imposed by DP. In Fig. 5 we show
this trade-off on a dataset with significant distribution shift
(Stanford Cars). The model trained, for example, with
SAFE-DP (k = 8) provides lower accuracy than SAFE
(n = 8) (51.0% instead of 62.1%), but has a better worst
case guarantee (it can accommodate 8 sequential forget re-
quests before retraining). Thus SAFE-DP may trade-off a
worst case privacy guarantee for model accuracy. This is
especially useful in settings with adversarial forget requests

[29].

10. Multi-Domain synergy experiments

Next we study SAFE’s ability to harness synergistic effects
for tasks involving multiple domains. For this we con-
sider the 4-domain challenge, DomainNet-126 [42] that is
a curated subset of the extended DomainNet suite [40]. To
best evaluate synergy between domains, we ensure each do-
main’s dataset is of the same size, and we sub-sample the
training and test set of each domain to be of fixed size and
with a balanced distribution of classes. This results in 6300
training samples and 2520 test samples for each domain.

To test the benefits of SAFE for the multi-domain task
of predicting among the 126 different common categories,

17115

Method ‘ All ‘Clipart Sketch Real Painting

SISA (in-domain) | 67.88 | 67.70 59.25 85.12 59.44
SAFE (in-domain) | 73.41 | 73.77 66.19 88.89 64.80

SISA (synergy) | 69.97 | 69.84 62.02 86.67 61.35
SAFE (synergy) | 76.11 | 77.14 68.10 90.40 68.81

Table 2. Multi-domain unlearning on DomainNet-126 We re-
port the test accuracy when using different shard graph topologies
on DomainNet-126. The column “All” corresponds to evaluation
on the union of the 4 domains, whereas the other four columns
correspond to the test accuracy on the single domain.

now with images coming from different domains, we con-
sider different SG topologies. We define the topologies
tested as follows.

e SISA In-Domain Each domain is trained separately
with SISA-style uniform sharding with 16 shards in
each domain (64 total shards).

» SISA Cross-Domain The training datasets are merged
into a single cross-domain training dataset that is used
for SISA-style uniform sharding (shards are main-
tained to be of same size as in “SISA In-Domain”, e.g.
64 total shards).

* SAFE In-Domain SAFE is applied to each domain
separately, which creates cliques containing subsets of
classes with each clique having the same re-training
costs as the previous two approaches.

* SAFE Cross-Domain The cliques are constructed to
contain synergistic connections between different do-
mains with the overall clique size remaining the same.

In Table 2 we evaluate the different approaches for a 64
shard level. For in-domain topologies this corresponds to
16 shards per-domain. For SAFE we use 4 coarse shards
and 4 fine shards. We observe that by modifying the Shard
Graph topology for SAFE and allowing for shard connec-
tions between different domains, SAFE is capable of learn-
ing more accurate representations at the same training and
unlearning costs.

11. Conclusion

We introduced the Shard Graph, a directed graph describ-
ing the access relations between data sources for training.
This graph informs the creation of SAFE: an ensemble of
lightweight adapters trained on the datasets specified by
the graph structure. By constructing the graph to maxi-
mize synergies between datasets while minimizing connec-
tions and retraining time, we are able to handle an order
of magnitude more shards than competing methods, and
achieve a 14% accuracy boost over competing methods for
the same forgetting cost. We conclude that maximizing syn-
ergistic information while minimizing dataset overlap is the

fundamental trade-off at the core of compartmentalization-
based forgetting, which so far has been under-explored. In
some cases, the accuracy of our method may be limited by
the use of light-weight adapters. However, InCA adapters
demonstrate high accuracy while allowing us to efficiently
train many adapters in parallel without information leak-
age and permit fast retraining, which make them conducive
to compartmentalization-based forgetting. Rather, we find
that the bottleneck in accuracy is mainly due to the loss of
synergistic information due to sharding which we alleviate
with SAFE. Finally, optimizing the shard graph structure to
utilize additional properties in the data without leaking sen-
sitive information is an important problem which we leave
to future work.

References

[1] Martin Abadi, Andy Chu, lan Goodfellow, H Brendan
McMahan, Ilya Mironov, Kunal Talwar, and Li Zhang. Deep
learning with differential privacy. In Proceedings of the 2016
ACM SIGSAC conference on computer and communications
security, pages 308-318, 2016. 2, 3, 6

Alessandro Achille, Aditya Golatkar, Avinash Ravichan-
dran, Marzia Polito, and Stefano Soatto. Lqf: Linear
quadratic fine-tuning. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
15729-15739, 2021. 2

Paul Barham, Aakanksha Chowdhery, Jeff Dean, San-
jay Ghemawat, Steven Hand, Daniel Hurt, Michael Is-
ard, Hyeontaek Lim, Ruoming Pang, Sudip Roy, Brennan
Saeta, Parker Schuh, Ryan Sepassi, Laurent Shafey, Chandu
Thekkath, and Yonghui Wu. Pathways: Asynchronous dis-
tributed dataflow for ml. In D. Marculescu, Y. Chi, and C.
Wu, editors, Proceedings of Machine Learning and Systems,
volume 4, pages 430-449, 2022. 8

Thomas Baumhauer, Pascal Schottle, and Matthias Zep-
pelzauer. Machine unlearning: linear filtration for logit-
based classifiers. Machine Learning, 111, 07 2022. 2

Lucas Bourtoule, Varun Chandrasekaran, Christopher A.
Choquette-Choo, Hengrui Jia, Adelin Travers, Baiwu Zhang,
David Lie, and Nicolas Papernot. Machine unlearning. In
2021 IEEE Symposium on Security and Privacy (SP), pages
141-159, 2021. 2,3, 7, 8

Benjamin Bowman, Alessandro Achille, Luca Zancato,
Matthew Trager, Pramuditha Perera, Giovanni Paolini, and
Stefano Soatto. A-la-carte prompt tuning (apt): Combining
distinct data via composable prompting. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 14984-14993, June 2023. 2, 3,
7

Xiaoyu Cao, Jinyuan Jia, Zaixi Zhang, and Neil Zhenqgiang
Gong. Fedrecover: Recovering from poisoning attacks in
federated learning using historical information. In 2023
IEEE Symposium on Security and Privacy (SP), pages 1366—
1383,2023. 2

2

—

3

—

[4

—_

[5

—

[6

—_

[7

—

17116

(8]

(9]

(10]

[11]

[12]

(13]

(14]

[15]

[16]

[17]

(18]

[19]

(20]

(21]

(22]

Yinzhi Cao and Junfeng Yang. Towards making systems for-
get with machine unlearning. In 2015 IEEE Symposium on
Security and Privacy, pages 463-480, 2015. 2

Min Chen, Zhikun Zhang, Tianhao Wang, Michael Backes,
Mathias Humbert, and Yang Zhang. Graph unlearning. In
Proceedings of the 2022 ACM SIGSAC Conference on Com-
puter and Communications Security, pages 499-513, 2022.
3

Eli Chien, Chao Pan, and Olgica Milenkovic. Certified graph
unlearning. In NeurlPS 2022 Workshop: New Frontiers in
Graph Learning, 2022. 3

Rishav Chourasia, Neil Shah, and Reza Shokri. Forget un-
learning: Towards true data-deletion in machine learning.
arXiv preprint arXiv:2210.08911, 2022. 2

Aakanksha et al. Chowdhery. Palm: Scaling language mod-
eling with pathways, 2022. 8

M. Cimpoi, S. Maji, 1. Kokkinos, S. Mohamed, , and A.
Vedaldi. Describing textures in the wild. In Proceedings of
the IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR),2014. 7,8

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is
worth 16x16 words: Transformers for image recognition at
scale. In International Conference on Learning Representa-
tions, 2021. 7

Yonatan Dukler, Alessandro Achille, Hao Yang, Varsha
Vivek, Luca Zancato, Ben Bowman, Avinash Ravichan-
dran, Charless Fowlkes, Ashwin Swaminathan, and Ste-
fano Soatto. Introspective cross-attention probing for
lightweight transfer of pre-trained models. arXiv preprint
arXiv:2303.04105,2023. 2, 5,7, 1

Cynthia Dwork, Aaron Roth, et al. The algorithmic foun-
dations of differential privacy. Foundations and Trends® in
Theoretical Computer Science, 9(3-4):211-407, 2014. 2, 6
William Fedus, Barret Zoph, and Noam Shazeer. Switch
transformers: Scaling to trillion parameter models with sim-
ple and efficient sparsity. Journal of Machine Learning Re-
search, 23(120):1-39, 2022. 7, 8

Andrea Gesmundo. Multipath agents for modular multitask
ml systems. arXiv preprint arXiv:2302.02721, 2023. 8
Andrea Gesmundo and Jeff Dean. munet: Evolving pre-
trained deep neural networks into scalable auto-tuning mul-
titask systems. arXiv preprint arXiv:2205.10937, 2022. 8
Antonio Ginart, Melody Guan, Gregory Valiant, and
James Y Zou. Making ai forget you: Data deletion in ma-
chine learning. Advances in neural information processing
systems, 32,2019. 2

Aditya Golatkar, Alessandro Achille, Avinash Ravichan-
dran, Marzia Polito, and Stefano Soatto. Mixed-privacy for-
getting in deep networks. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 792-801, June 2021. 2, 6

Aditya Golatkar, Alessandro Achille, and Stefano Soatto.
Eternal sunshine of the spotless net: Selective forgetting in
deep networks. In Proceedings of the IEEE/CVF Conference

(23]

[24]

(25]

(26]

(27]
(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

17117

on Computer Vision and Pattern Recognition (CVPR), June
2020. 2

Aditya Golatkar, Alessandro Achille, and Stefano Soatto.
Forgetting outside the box: Scrubbing deep networks of
information accessible from input-output observations. In
European Conference on Computer Vision, pages 383-398.
Springer, 2020. 2

Aditya Golatkar, Alessandro Achille, Yu-Xiang Wang,
Aaron Roth, Michael Kearns, and Stefano Soatto. Mixed
differential privacy in computer vision. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 8376-8386, 2022. 3, 6

Jinu Gong, Joonhyuk Kang, Osvaldo Simeone, and Rahif
Kassab. Forget-svgd: Particle-based bayesian federated un-
learning. In 2022 IEEE Data Science and Learning Work-
shop (DSLW), pages 1-6. IEEE, 2022. 2

Sivakanth Gopi, Yin Tat Lee, and Lukas Wutschitz. Numer-
ical composition of differential privacy. Advances in Neural
Information Processing Systems, 34:11631-11642, 2021. 6
Griffin, Holub, and Perona. Caltech 256, Apr 2022. 7, 8

Chuan Guo, Tom Goldstein, Awni Hannun, and Laurens Van
Der Maaten. Certified data removal from machine learning
models. In Hal Daumé III and Aarti Singh, editors, Pro-
ceedings of the 37th International Conference on Machine
Learning, volume 119 of Proceedings of Machine Learning
Research, pages 3832-3842. PMLR, 13-18 Jul 2020. 2
Varun Gupta, Christopher Jung, Seth Neel, Aaron Roth,
Saeed Sharifi-Malvajerdi, and Chris Waites. Adaptive ma-
chine unlearning. Advances in Neural Information Process-
ing Systems, 34:16319-16330, 2021. 2, 8

Aditya Khosla, Nityananda Jayadevaprakash, Bangpeng
Yao, and Li Fei-Fei. Novel dataset for fine-grained image
categorization. In First Workshop on Fine-Grained Visual
Categorization, IEEE Conference on Computer Vision and
Pattern Recognition, Colorado Springs, CO, June 2011. 7, 8
Korbinian Koch and Marcus Soll. No matter how you slice
it: Machine unlearning with sisa comes at the expense of
minority classes. In First IEEE Conference on Secure and
Trustworthy Machine Learning. 2

Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei.
3d object representations for fine-grained categorization. In
4th International IEEE Workshop on 3D Representation and
Recognition (3dRR-13), Sydney, Australia, 2013. 7, 8

Alex Krizhevsky. Learning multiple layers of features from
tiny images. Technical report, 2009. 7, 8

Vinayshekhar Bannihatti Kumar, Rashmi Gangadharaiah,
and Dan Roth. Privacy adhering machine un-learning in nlp.
arXiv preprint arXiv:2212.09573,2022. 2

Gaoyang Liu, Xiaogiang Ma, Yang Yang, Chen Wang, and
Jiangchuan Liu. Federated unlearning. arXiv preprint
arXiv:2012.13891, 2020. 2

Yi Liu, Lei Xu, Xingliang Yuan, Cong Wang, and Bo Li. The
right to be forgotten in federated learning: An efficient real-
ization with rapid retraining. In IEEE INFOCOM 2022-1EEE
Conference on Computer Communications, pages 1749—
1758. 1IEEE, 2022. 2

(37]

(38]

[39]

[40]

[41]

[42]

[43]

(44]

[45]

[46]

[47]

(48]

(49]

(501

[51]

Ilya Mironov. Rényi differential privacy. In 2017 IEEE
30th computer security foundations symposium (CSF), pages
263-275. IEEE, 2017. 6

Seth Neel, Aaron Roth, and Saeed Sharifi-Malvajerdi.
Descent-to-delete: Gradient-based methods for machine un-
learning. In Algorithmic Learning Theory, pages 931-962.
PMLR, 2021. 2

Chao Pan, Eli Chien, and Olgica Milenkovic. Unlearn-
ing nonlinear graph classifiers in the limited training data
regime. arXiv preprint arXiv:2211.03216, 2022. 3
Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang, Kate
Saenko, and Bo Wang. Moment matching for multi-source
domain adaptation. In Proceedings of the IEEE/CVF inter-
national conference on computer vision, pages 1406-1415,
2019. 8

Ariadna Quattoni and Antonio Torralba. Recognizing indoor
scenes. In 2009 IEEE Conference on Computer Vision and
Pattern Recognition, pages 413-420, 2009. 7, 8

Kuniaki Saito, Donghyun Kim, Stan Sclaroff, Trevor Dar-
rell, and Kate Saenko. Semi-supervised domain adaptation
via minimax entropy. In Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision (ICCV), October
2019. 8

Ayush Sekhari, Jayadev Acharya, Gautam Kamath, and
Ananda Theertha Suresh. Remember what you want to for-
get: Algorithms for machine unlearning. Advances in Neural
Information Processing Systems, 34:18075-18086, 2021. 2
Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical
networks for few-shot learning. Advances in neural informa-
tion processing systems, 30, 2017. 6

Anvith Thudi, Gabriel Deza, Varun Chandrasekaran, and
Nicolas Papernot. Unrolling sgd: Understanding factors in-
fluencing machine unlearning. In 2022 IEEE 7th European
Symposium on Security and Privacy (EuroS&P), pages 303—
319. IEEE, 2022. 2

Enayat Ullah, Tung Mai, Anup Rao, Ryan A Rossi, and Ra-
man Arora. Machine unlearning via algorithmic stability. In
Conference on Learning Theory, pages 4126—4142. PMLR,
2021. 2

C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie.
Technical Report CNS-TR-2011-001, California Institute of
Technology, 2011. 7, 8

Junxiao Wang, Song Guo, Xin Xie, and Heng Qi. Federated
unlearning via class-discriminative pruning. In Proceedings
of the ACM Web Conference 2022, pages 622—632, 2022. 2
Ross
els.

Wightman. Pytorch image mod-
https://github.com/rwightman/

pytorch-image-models, 2019. 7

Yinjun Wu, Edgar Dobriban, and Susan Davidson. Delta-

grad: Rapid retraining of machine learning models. In In-

ternational Conference on Machine Learning, pages 10355—

10366. PMLR, 2020. 2

Haonan Yan, Xiaoguang Li, Ziyao Guo, Hui Li, Fenghua
Li, and Xiaodong Lin. Arcane: An efficient architecture for
exact machine unlearning. In Lud De Raedt, editor, Pro-
ceedings of the Thirty-First International Joint Conference

(52]

(53]

17118

on Artificial Intelligence, IJCAI-22, pages 4006—4013. Inter-
national Joint Conferences on Artificial Intelligence Organi-
zation, 7 2022. Main Track. 2, 3, 6,7, 8

Xiangrong Zhu, Guangyao Li, and Wei Hu. Heterogeneous
federated knowledge graph embedding learning and unlearn-
ing. In Proceedings of the ACM Web Conference 2023,
WWW ’23, page 2444-2454, New York, NY, USA, 2023.
Association for Computing Machinery. 3

Xiaofei Zhu, Jie Wu, Ling Zhu, Jiafeng Guo, Ran Yu, Kata-
rina Boland, and Stefan Dietze. Exploring user historical
semantic and sentiment preference for microblog sentiment
classification. Neurocomputing, 464:141-150, 2021. 2

