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Abstract

A camera’s auto-white-balance (AWB) module operates
under the assumption that there is a single dominant illumi-
nation in a captured scene. AWB methods estimate an im-
age’s dominant illumination and use it as the target “white
point” for correction. However, in natural scenes, there
are often many light sources present. We performed a user
study that revealed that non-dominant illuminations often
produce visually pleasing white-balanced images and, in
some cases, are even preferred over the dominant illumi-
nation. Motivated by this observation, we revisit AWB to
predict a distribution of plausible illuminations for use in
white balance. As part of this effort, we extend the Cube++
illumination estimation dataset [12] to provide ground truth
illumination distributions per image. Using this new ground
truth data, we describe how to train a lightweight neural
network method to predict the scene’s illumination distri-
bution. We describe how our idea can be used with existing
image formats by embedding the estimated distribution in
the RAW image to enable users to generate visually plausi-
ble white-balance images.

1. Introduction
Illumination estimation (IE) is the core operation per-

formed by a camera’s auto white balance (AWB) module.
IE algorithms estimate the sensor’s response to scene il-
lumination directly from an image in order to remove the
color cast caused by the illumination. White balance cor-
rection is performed by scaling the image’s color channels
such that the estimated illumination value becomes achro-
matic (i.e., R=G=B). Because the white balance correc-
tion procedure results in the estimated illumination being
mapped to the achromatic color line, the estimated illumi-
nant is often called the “white point” of the image. White
balance correction simulates the mechanism of color con-
stancy in the human visual system [17] to achieve realistic
and aesthetically pleasing images.

IE algorithms operate under the assumption that a sin-
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Figure 1. This figure shows the illumination distribution captured
by the chrome ball on the SpyderCube calibration tool as described
in Sec. 3. The distribution is plotted in the sensor’s chromaticity
plane. Three different visually plausible white-balance corrections
are shown based on illuminations (i.e., white points) sampled from
the distribution.

gle light source serves as the dominant illumination in the
scene. Most IE datasets for benchmarking and training have
only a ground truth illumination label per image. This is
achieved by placing an achromatic calibration object (e.g.,
a grey patch, grey ball, or grey cube) in the scene and mea-
suring the average color recorded by the camera sensor of
the calibration object.

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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However, most real scenes contain multiple light
sources [1]. In outdoor environments, the sun, sky, and
shadows can be treated as different illuminations. In in-
door environments, artificial light sources (e.g., tungsten,
fluorescent, LED) and natural light from the windows of-
ten illuminate the scene. In such cases, estimating a ground
truth illumination value for a scene is highly dependent on
the position and orientation of the gray patch. Moreover,
white balance corrections performed using non-dominant
environment illuminations often result in visually pleasing
images (e.g., Fig. 1).

In this paper, we consider a new formulation of the IE
problem that allows for a physically-plausible model of
complex illumination in the scene. Instead of estimating
a single dominant illumination, we propose to estimate a
global illumination distribution for the whole scene. Sam-
pling the illumination distribution allows us to generate a
family of plausible white-balance corrections.

Contribution We leverage the existing Cube++ dataset [12]
to establish ground truth illumination distributions for 4198
images by extracting color values from the chrome ball
present in the Cube++ images. We perform a user study to
verify that images white balanced with illuminations sam-
pled from the extracted distributions are preferred over re-
sults obtained on samples from outside the distribution.
Next, we examine how to an illumination distribution given
a single input image. We describe how to adapt spatially-
varying illuminant estimation algorithms and a DNN-based
method to predict an illumination distribution. These base-
line methods, however, produce suboptimal results. To ad-
dress this, we propose a lightweight neural network trained
on our dataset using a two-dimensional earth mover’s dis-
tance as a discrete version of the Wasserstein metric for the
loss function. We show that a properly configured EMD
provides compatibility with previous single-illuminant so-
lutions estimated for angular and reproduction errors [16].
Our simple neural network provides better results than
the baseline approaches. Finally, we discuss how an es-
timated illumination distribution could be embedded and
used within the DNG RAW file format.

2. Related work

We describe prior work and datasets focused on single-
illuminant and spatially-varying illumination estimation.
Single-illuminant estimation The vast majority of illumi-
nation estimation methods estimate a single illuminant per
image. Given an estimated illumination represented as a
sensor-specific color vector [R,G,B], the white-balance
operation is performed by dividing the image’s color values
by the illumination. The problem can be reduced to predict-
ing the 2D chromaticity representation of the illumination
in the RAW-RGB space by predicting (R/G,B/G).

Single illumination estimation is a long-standing prob-
lem in the computer vision field, with early methods ad-
dressing the problem using statistical features (e.g., [2, 20,
18, 15, 37, 21, 14]). Modern methods use neural network
models which have proven to have state-of-the-art perfor-
mance (e.g. [26, 3, 4, 6, 36]). Datasets used for single
illumination estimation (e.g., Gehler-Shi [19], NUS [10],
INTEL-TAU [29]) have a single ground truth (GT) illumi-
nant associated per image. Deep-learning-based methods
train on these datasets using either an L2 loss, reproduc-
tion [16] or angular error loss on the ground truth value.

The Cube++ dataset [12] is unique because it is labeled
with two GT illumination values per image. The GT val-
ues are computed from the two sides of the SpyderCube
calibration object placed in each scene, as shown in Fig. 1.
Ershov et al. [12] showed that the angular distance between
the two sides of the SpyderCube could be as high as 20 de-
grees, highlighting the weakness in the single illumination
assumption.

Spatially-varying illumination estimation There are
methods that seek to perform spatially-varying illumina-
tion correction. Such methods ideally estimate per-pixel
illumination, which implicitly models the distribution of
the scene’s illumination. A major challenge for spatially-
varying methods is capturing annotated datasets for train-
ing and testing. As a result, many approaches rely on
synthesized data by fusing images with known illumina-
tions [22, 5] or using computer graphics [25].

Several works have captured datasets of real scenes with
spatial GT labels. For example, work by Bleier et al. [7]
sprayed entire scenes with achromatic paint to provide per-
pixel illumination labels, but did so for only a handful of ex-
amples. Aghaei and Funt [1] placed a gray ball on a drone
and flew it in a static scene capturing approximately 100
spatial samples of the environment’s illumination. Work by
Kim et al. [27] prepared a large multi-illumination dataset
by capturing several images of the same scene with a fixed
camera with different light sources turned on or off. Work
by Murmann et al. [33] used a similar strategy that captured
scenes with diverse lighting conditions by adjusting a flash
in different directions on a stationary camera. This latter
work did not target computational color constancy but ex-
amined downstream tasks’ robustness to lighting variations.

While spatially-varying datasets provide dense GT val-
ues per image, no prior spatially-varying correction meth-
ods attempted to predict a illumination distribution for the
purpose of global white-balance correction. In Sec. 7.2, we
develop baseline methods fashioned after spatially-varying
IE methods for comparison with our proposed neural net-
work method.
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3. Single illuminant vs. distribution
The assumption of a single illuminant model is an

oversimplification, as most scenes contain multiple light
sources. The image formation of a scene with n light
sources can be expressed as:

r(x) =

∫
ω

n∑
i=1

αi(x)Si(λ)R(λ,x)χ(λ)dλ, (1)

where r is a sensor response, λ is a wavelength over the
visible spectrum ω, Si(λ) is the spectra of i-th light source
with weight αi ≥ 0, R(λ,x) is the scene reflectance at
scene point x, and χ(λ) = (χR(λ), χG(λ), χB(λ)) repre-
sents the sensor’s channels spectral sensitivity.

Now let’s consider the camera sensor’s response to a
diffuse achromatic object—such as a grey ball, where
R(λ,x) = 1 for every x of the ball—illuminated by one,
two, and n light sources as shown in Fig. 2.

Single light source S case: According to Eq.1 an achro-
matic surface with only one light source can be modeled
as:

r(x) = α(x)

∫
ω

S(λ)χ(λ)dλ,

where α(x) is a scale factor that depends on the surface
geometry. An image histogram (for all points x) plotted
in the 2D-chromaticity space will result in a single point,
which is the sensor’s response to the light source S. The
image’s RGB histogram will consist of points lying on a ray
starting from zero in the direction of light source S color.

Two illuminant S1 and S2 case: Two light sources give
the following formation model:

r(x) =

∫
ω

(α1(x)S1(λ) + α2(x)S2(λ))χ(λ)dλ,

where α1(x), α2(x) ∈ R+ are weighting factors, which
depend on light source intensity and geometry of the scene.
For the two light source arrangement, the RGB histogram
will have two beams starting from zero that coincide with
light sources (S1, S2) colors and all their linear combina-
tions. The histogram on the chromaticity plane will be a
line segment.

Multiple Si light source case: Given n light sources, Si,
we have:

r(x) =

∫
ω

n∑
i=1

αi(x)Si(λ)χ(λ)dλ. (2)

In this case, the sensor image histogram will be bounded in
the chromaticity plane by the convex set defined by the Si
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Figure 2. Illustration of RGB histograms of grey ball illuminated
by a single light source (left), two light sources (center), and four
light sources (right).

chromaticity values. Any value inside this set represents a
mixture of the scene’s light sources. The set of all possible
mixtures defines the illumination distribution.

While the illumination distribution does not resolve if a
particular light source (or combination) is dominant, it does
indicate that white points falling within this distribution
are plausible choices for white-balance correction. As we
will show in Sec. 5, images corrected using values within
the plausible illumination distribution are preferred to those
outside the distribution.

The following section describes how we used the mirror
ball in the Cube++ dataset to approximate the illumination
distribution.

4. Illumination distribution dataset
As previously discussed, we extend the Cube++

dataset [12] consisting of 4890 RAW images captured with
Canon 600D cameras. A SpyderCube calibration target was
placed in each image. In the original Cube++ dataset, each
image has been annotated with two global ground truth il-
lumination values based on SpyderCube’s top left and right
surface appearance. Fig. 3 shows several example images
from the dataset.

Fig. 3 also shows a zoomed region with the small chrome
ball attached above the cube calibration target. We segment
out the ball region using a manually marked-up polygon. A
bounding box is assigned to this polygon to block out these
pixels for training and testing. The average box size for the
Cube++ dataset is 86× 89 pixels.

Each mask is segmented into three regions. The first re-
gion is the lower half of the ball, which is discarded, as we
assume the light sources are coming from above. Next, we
segment overexposed or underexposed regions that provide
unreliable sensor values. The remaining region (shown in
green in Fig. 3) contains the pixel values that are used to
estimate the illumination distribution. Images with masks
where 50% of the pixels are over or underexposed are dis-
carded. In the end, we had 4198 valid images. These were
divided as follows: 2934 for training, 978 for validation,
and 978 for testing.
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GT preparation

Example images
from Cube++ dataset
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Figure 3. This figure shows examples from the Cube++ dataset. The chrome ball attached to the SpyderCube calibration target is shown.
A mask is manually marked up for the chrome ball. The ground truth illumination distribution, represented as a 2D histogram, is estimated
for each image using the RGB values that fall within the green mask region. Two black points on a chromaticity plane correspond to
SpyderCube left and right grey sides.

The RGB-RAW values under the valid part of the mask
are projected onto the chromaticity plane (α = (2B− (R+
G))/(R + G + B), β = (

√
3(R − G))/(R + G + B)).

To represent the illumination distribution, we generate a 2D
histogram of the chrome ball pixels’ chromaticity values us-
ing a 116×100 grid, where the size of each grid cell equates
to 0.03 in (α, β) coordinates. We pad both the x and y axes
of the grid with zeros to make the final ground truth distri-
bution per image 128× 128 as shown in Figure 3. Because
many images were captured in relatively low light condi-
tions, we denoise the mirror ball pixels using BM3D [11] to
improve the GT quality.

The extracted 2D histogram is binarized, so each non-
zero histogram entry is treated as an equally probable il-
luminant. The binarized histogram is processed with sim-
ple morphology operations to remove outliers which is fol-
lowed by small connected components filtration. Also, we
add to the histogram points corresponding to SpyderCube
grey edges. Finally, we use Graham’s method [24] to en-
sure the final distribution is a convex set, to be consistent
with described physically-plausible illumination model (see
Sec. 3). The GT preparation procedure is illustrated in
Fig. 4.

5. Preference study
Using the GT illumination distributions described in the

previous section, we want to determine if there are, in fact,
multiple solutions from this distribution that may be pre-
ferred in addition to the dominant illumination. To answer
this question, we performed a user study described in the
following.
Study protocol We randomly sampled 100 images from
our dataset. For each image, three illumination white-point
chromaticities are sampled inside and three from outside the
image’s GT illumination distribution. White-balance cor-

rection is applied to the image using these six selected white
points.

A study was conducted by pairwise comparisons. The
participants were presented with two images with different
white-balance corrections and asked to choose the one they
found more visually appealing. The controls available to the
subjects are three buttons: “the left image is better”, “the
right image is better” and “images are the same”. To deal
with inattentive subjects, we include control tasks: pairs of
identical images, for which it has to be selected that they
are the same. Submissions containing wrong answers to
the control tasks are discarded. For each scene each, two
different corrections form a pair, and each pair is assessed
by 10 people. Scores are calculated using the Borda Count
method [35], which gives the share of pairs won by the cor-
rection.

Results The results of the user study are shown in Fig. 5.
For images corrected using illuminations sampled from the
ground truth illumination distribution, the mean opinion
scores are generally not less than 0.6, while opinion scores
of those corrected using white point outside of the dis-
tribution are distributed approximately uniformly between
[0, 0.6]. This result reveals a strong negative correlation be-
tween the scores and the distance from the distribution. Im-
ages corrected using white points sampled from within the
illumination distribution are preferred to the outside. More-
over, as we see a significant decline in scores at the border
of the distribution, we can conclude that the quality of the
ground truth illumination distributions in the dataset is rea-
sonable.

To confirm the reliability of the study, we perform it
again several months later. The scatter plot of scores from
two runs in Fig. 6 suggests that the results are stable and
reliable.
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Figure 4. Example of the GT stages. (1) we first calculate the chromaticity histogram of the pixels within the chrome ball; (2) next, we
perform histogram binarization; (3) Morphological filtering is used to remove small outliers. (4) The convex hull is computed to obtain the
final distribution that will serve as the ground truth for the image.
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Figure 5. Scatter plot of the opinion study results. Each point cor-
responds to one correction. The angular distance for each cor-
rection is measured between the white point and the closest point
within the illumination distribution (ID). For points within the ID,
the angular distance equals zero.
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Figure 6. Comparison between two runs of the user study.

6. Evaluation metrics

Because we are working with distributions instead of a
single value, we need to select a metric for training and
evaluation on distributions. The most widely used met-

rics for distribution comparison are Kullback-Leibler diver-
gence [28] and earth mover’s distance, also called Wasser-
stein or Monge–Kantorovich distance [34].

We opted to use the earth mover’s distance (EMD) ap-
plied to the 2D chromaticity histogram. For further details
on this metric, see [31, 34]. Since the precise computation
of EMD, even for the 2D case, is a time-consuming pro-
cedure [30], we have used an approximation of this metric
based on fast Hough transform (FHT) [13]. The method
works by computing 1D Earth mover’s distance between
cumulative parallel projections of the histogram (calculated
via FHT), and then averaging the results by angles, follow-
ing the approach of [8]. Implementations are available with
the code provided on our project page.

7. Methods for ID estimation
This section first describes several baseline approaches

for illumination distribution (ID) estimation: single-
illumination, spatially-varying, and a DNN-based method
modified to predict a distribution. This is followed by a de-
scription of our neural network estimator.

7.1. Single illuminant estimation

Single illumination estimation methods may be evalu-
ated using the collected ID dataset since a single estimate
can also be treated as a simple distribution. We have im-
plemented the following well-known statistical-based meth-
ods: GreyWorld [9], GreyEdge [37], MaxRGB [2]. We also
include the FC4[26] deep-learning method. For the FC4
method, we fine-tuned the network on the Cube++ dataset
using the left SypderCube value as ground truth.

7.2. Spatially-varying methods

As discussed in Sec. 2, spatially-varying methods esti-
mate multiple illumination values over the image. We fol-
low the approach proposed by Gisenji et al. [23], which
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Figure 7. Proposed lightweight DNN for illumination distribution prediction. Input: image chromaticity histogram of 128×128 size.
Output: illumination distribution of the same size.

uses traditional illumination estimation methods—namely,
MaxRGB, Grey World, GreyEdge—to predict illumination
within local regions. We have adapted their approach as
follows:

1. Patch sampling Different sampling strategies can be
used, such as dense sliding window (SW), keypoint-
based (KP) and segmentation-based. We utilize SW,
where the image is split into equal-sized patches and
KP sampling.

2. Patch-wise illuminant estimation Estimation is per-
formed on each image patch to obtain a result using
the methods described above.

3. Combination of estimates The patch estimations are
aggregated to form the estimated illumination distri-
bution.

For the SW approach, we downsample the input image
to resolution 128×192 and split it into 24 non-overlapping
windows of size 32× 32.

For the KP approach, key point are detected using a
Harris-Laplace detector [32] with the following parameters:
the number of octaves in the scale-space pyramid is 8; the
threshold for the Harris ‘cornerness’ measure is 0.01; the
threshold for the Difference-of-Gaussians scale selection is
0.01; the maximum number of corners to consider is 500;
the number of intermediate scales per octave is 2.

7.3. Modified FC4 neural network

Hu et al. [26] proposed a fully convolutional neural net-
work (FC4) that predicted a spatial map of illuminations
over the image and a corresponding confidence map. A
confidence pooling mechanism aggregates the spatial map
to produce a single illumination value. This approach is
straightforward to generalize to produce an illumination dis-
tribution by applying a threshold to the confidence values
and extracting the corresponding RGB values.

We used the pre-trained network1 with SqueezeNet as a
backbone. This was fine-tuned using the Cube++ dataset,
using single illumination ground truth and angular error as
the loss function. We fine-tuned the network for 100 epochs
with batches of 8 images and used Adam optimizer with a
learning rate equal to 0.0003. For tuning the hyperparame-
ters (i.e., determining the confidence pooling threshold and
histogram binarization threshold), a grid search was con-
ducted. The best confidence map threshold was estimated
as 0.3, and the optimal histogram threshold was 0.37.

7.4. Our neural network

We also designed a lightweight fully convolutional neu-
ral network that accepts as input an image histogram in-
stead of an image. Our network architecture is illustrated in
Fig. 7 and consists of eight convolution layers with ReLU
activation functions. ReLU after the last layer imposes the
non-negativity constraints for the output.

One reason for choosing the histogram domain over the
image domain is the nature of convolutional neural net-
works. Our goal was to create a shallow network, thus, its
perceptive field will be limited by the number of layers and
their kernel sizes. However, if the network is to make the
transition from the image domain to the histogram domain,
every pixel of the input image should affect every pixel of
the output distribution. If the input is a histogram, then this
is not required. In addition, we observe that the illumina-
tion distribution histogram is often similar to the image his-
togram.

To train, we used the Adam optimizer with a learning
rate 0.001 and weight decay 0.0001. Batches consisted of
8 images and was trained for 100 epochs. Histogram bi-
narization threshold (set to 0.2) was obtained through grid
search using the validation images. We used the fast EMD
approach for the loss function as discussed in Sec. 6.

1The code for the network, as well as a pre-trained net was obtained
from GitHub repo.
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8. Experimental results

Table 1 shows that the statistical-based single illumina-
tion estimation methods (GreyWorld, MaxRGB, GreyEdge)
have decent performance when evaluated using EMD
against the 2D GT illumination distribution. To help un-
derstand the EMD result, the first row shows ground truth
illumination estimated from the left side of the SyperCube
(SP). The single-illuminant version of the FC4 neural net-
work, trained on the SyperCube left GT value, produces a
better result in terms of EMD. It is interesting to note that
its error is not significantly larger than the error between
ground truth distribution and one point estimate of the left
edge of the SpyderCube.

Table 1. 2D EMD results for methods that predict only a single
illumination. To help gauge the results, the EMD score of the
SpyderCube’s left GT value is also plotted.

Algorithm Mean Median 10% worst 1% worst
SPCube left 2.1 1.9 4.7 6.8
Grey World 3.2 2.7 7.4 10.6
Max RGB 4.9 3.5 13.4 18.3
Grey Edge 3.1 2.7 7.1 10.2

FC4 2.5 2.3 4.1 7.9

However, in Table 2, it can be seen that FC4—when used
to predict histograms (we will refer to this case as the “mod-
ified FC4”) —does not perform significantly better than the
MaxRGB with the sliding window method. Our proposed
neural network that takes an image histogram as input out-
performs all baseline methods by a notable margin.

Fig. 8 and Fig. 9 show subjective comparisons between
the proposed and baseline solutions. Fig. 8 shows an ex-
ample of an outdoor scene, while Fig. 9 shows an indoor
scene. Both figures show the input image, the ground truth

Table 2. 2D EMD results for different methods predicting illumi-
nation distributions. Methods are shown the sliding-window ap-
proach (SW) with different estimators, the keypoint-based (KP)
approach with different estimators, and the two neural networks
(NN) approaches.

Algorithm Mean Median 10% worst 1% worst

SW

Grey World 3.3 2.9 7.5 10.7
Max RGB 3.1 2.9 6.7 9.2
Grey Edge 3.3 2.9 7.3 10.9

K
P

Grey World 3.6 3.2 7.9 11.4
Max RGB 3.5 3.2 7.4 11.4
Grey Edge 3.6 3.1 7.9 11.7

N
N Modified FC4 3.0 2.5 5.4 8.7

Our NN 2.0 1.6 2.8 6.6

illumination distribution, and the distribution estimated by
the different methods. The first row shows white-balanced
results corrected using the single-illumination approaches.
The second row shows white-balanced results sampled from
a distribution produced by the sliding-window method that
used MaxRGB as its estimator. This approach was one of
the better baseline performers (on par with the modified
FC4). The final row shows images corrected using illumi-
nations sampled from our neural network predicted distri-
bution. We can see that our results produce plausible white-
balance corrections. It is interesting to note that corrections
generated by the proposed solution produce results that vary
from low to high color temperatures for the outdoor case.
Similarly, the indoor case exhibits notable variation in the
white balanced images, but all appear visually pleasing.

Ablation An alternative to training our neural network
with an EMD loss would be replacing it with an L2 loss
computed between the predicted and ground truth distribu-
tions. We performed this experiment by retraining our neu-
ral network approach with an L2 loss. Table 3 shows the
results, where the metric for evaluation is still the EMD.
Note that the first row is repeated from Table 2. We can see
that our method performs notably worse when relying on
L2 instead of the fast EMD loss.

Table 3. This table shows the results when our proposed method is
trained using an L2 loss versus the EMD loss.

Loss type Mean Median 10% worst 1% worst
EMD 2.0 1.6 2.8 6.6
L2 2.7 2.2 4.8 10.2

Illumination distribution in practice Storing the esti-
mated distribution inside the image container, specifically
within a DNG file, is necessary to allow post-capture cor-
rection. A compact way of representing the distribution is
to compute its convex hull points. The average number of
convex hull points required for the ground-truth distribu-
tions in the proposed dataset was 7.6, while the maximum
number was 35. Storing such information would be triv-
ial in terms of the additional overhead required to include
this in a DNG file. We envision such information could
easily be used by RAW image processing software such as
Photoshop and RawTherapee. While such software already
allows users to adjust an image’s white point by manually
tuning the color temperature and tint via slider controls, the
user must rely on visual feedback for guidance. Directly
sampling the estimated illumination distribution can help
constrain results to lie within a plausible set of solutions,
reducing the time needed to find good results.
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Figure 8. Different outdoor scene corrections: predicted illumination distribution using classical single illumination methods (first row),
distribution estimated by sliding-window MaxRGB method (second row), and distribution estimated by the proposed lightweight DNN.
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Figure 9. Different indoor scene corrections: predicted illumination distribution using classical single illumination methods (first row),
distribution estimated by sliding-window MaxRGB method (second row), and distribution estimated by the proposed lightweight DNN.

9. Conclusion

We have introduced a new approach to address com-
putational color constancy, which advocates estimating an
illumination distribution versus a single illumination. To-
wards this goal, we have annotated 4198 images from the
Cube++ dataset with ground truth illumination distribu-
tions. Using subjective studies, we justified that the col-
lected dataset is suitable for correction using physically-
plausible white points. In addition, we have described
how to modify existing spatially-varying estimation meth-
ods to perform distribution estimation and introduced a
lightweight neural network method that performs well on
this task. Our dataset and code are available at: https:
//github.com/createcolor/IDE.
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