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Figure 1. Guided Video Synthesis We present an approach based on latent video diffusion models that synthesizes videos (top and bottom)
guided by content described through text (top) or images (bottom) while keeping the structure of an input video (middle).

Abstract

Text-guided generative diffusion models unlock powerful
image creation and editing tools. Recent approaches that
edit the content of footage while retaining structure require
expensive re-training for every input or rely on error-prone
propagation of image edits across frames.

In this work, we present a structure and content-guided
video diffusion model that edits videos based on descrip-
tions of the desired output. Conflicts between user-provided
content edits and structure representations occur due to in-
sufficient disentanglement between the two aspects. As a so-
lution, we show that training on monocular depth estimates
with varying levels of detail provides control over structure
and content fidelity. A novel guidance method, enabled by
joint video and image training, exposes explicit control over
temporal consistency. Our experiments demonstrate a wide
variety of successes; fine-grained control over output char-
acteristics, customization based on a few reference images,
and a strong user preference towards results by our model.

1. Introduction

Demand for more intuitive and performant video edit-
ing tools has increased as video-centric platforms have been
popularized. But editing in the format is still complex
and time-consuming due the temporal nature of video data.
State-of-the-art machine learning models have shown great
promise in improving editing workflows.

Generative approaches for image synthesis recently ex-
perienced a rapid surge in quality and popularity due to the
introduction of powerful diffusion models trained on large-
scale datasets. Text-conditioned models, such as DALL-
E 2 [34] and Stable Diffusion [38], enable novice users to
generate detailed imagery given only a text prompt as input.
Latent diffusion models especially enable efficient methods
for producing imagery via synthesis in a perceptually com-
pressed space.

Motivated by this progress, we investigate generative
models suited for interactive applications in video editing.
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Current methods repurpose existing image models by ei-
ther propagating edits with approaches that compute ex-
plicit correspondences [5] or by finetuning on each individ-
ual video [63]. We aim to circumvent expensive per-video
training and correspondence calculation to achieve fast in-
ference for arbitrary videos.

We propose a controllable structure and content-aware
latent video diffusion model trained on a large-scale dataset
of uncaptioned videos and images. We opt to represent
structure with monocular depth estimates, and content with
embeddings predicted by a pre-trained neural network. Our
approach offers several powerful modes of control. First,
we train our model such that the content of inferred videos,
e.g. their appearance or style, match user-provided images
or text prompts (Fig. 1). Second, we vary the fidelity of
the structure representation during training to allow select-
ing the strength of the structure preservation at test-time.
Finally, we also adjust the inference process via a custom
guidance method, inspired by classifier-free guidance, to
enable control over temporal consistency.

In summary, we present the following contributions:

• We extend latent diffusion models to video generation
by introducing temporal layers into a pre-trained im-
age model and by joint training on images and videos.

• We present a structure and content-aware model that
edits videos given example images or text. Our method
does not require per-video training or pre-processing.

• We demonstrate full control over temporal, content and
structure consistency. We show for the first time that
joint image-video training enables control over tempo-
ral stability. And, training on varying levels of detail
in the structure representation allows choosing the de-
sired level of preservation during inference.

• We show that our approach is preferred over several
other approaches in a user study. We further improve
the accuracy of previously unseen content by finetun-
ing on a small set of images of the desired subject.

2. Related Work
Controllable video editing and media synthesis is an ac-

tive area of research. In this section, we review prior work in
related areas and connect our method to these approaches.
Unconditional video generation Generative adversarial
networks (GANs) [12] can learn to synthesize videos based
on specific training data [59, 45, 1, 56]. These methods of-
ten struggle with stability during optimization, and produce
fixed-length videos [59, 45] or longer videos where artifacts
accumulate over time [50]. [6] synthesize longer videos us-
ing a GAN with a better encoding of the time axis. Autore-
gressive transformers have also been proposed for uncon-

ditional video generation [11, 64]. Our focus is on provid-
ing user control over the synthesis process whereas these
approaches are limited to sampling random content resem-
bling their training distribution.
Diffusion models for image synthesis Diffusion models
(DMs) [51, 53] can synthesize detailed media in many for-
mats, such as images [34, 38], 3d shapes [66] and anima-
tions [54]. Many works improve diffusion-based image syn-
thesis by changing the parameterization [14, 27, 46], intro-
ducing advanced sampling methods [52, 24, 22, 47, 20], de-
signing more powerful architectures [3, 15, 57, 30], or con-
ditioning on additional information [25]. Text-conditioning,
based on embeddings from CLIP [32] or T5 [33], has be-
come a particularly powerful approach for providing artis-
tic control over model output [44, 28, 34, 3, 65, 10]. La-
tent diffusion models (LDMs) [38] perform diffusion in
a compressed latent space reducing memory requirements
and runtime. Our video model is an LDM trained simulta-
neously on videos and images.
Diffusion models for video synthesis Recently, diffusion
models, masked generative models and autoregressive mod-
els have been applied to text-conditioned video synthe-
sis [17, 13, 58, 67, 18, 49]. Similar to [17] and [49], we ex-
tend image synthesis diffusion models to video generation
by introducing temporal connections into a pre-existing im-
age model. Our model edits videos rather than synthesizing
them from scratch. We demonstrate through a user study
that our model with explicit conditioning over structure is
preferred over other related approaches.
Video translation and propagation Image-to-image trans-
lation models, such as pix2pix [19, 62], can modify each
frame in a video individually. This produces temporal in-
consistencies as the time axis is ignored. Accounting for
temporal or geometric information, such as flow, can in-
crease consistency across frames when repurposing image
synthesis models [42, 9]. We can extract such structural
information to aid our spatio-temporal LDM in text- and
image-guided video synthesis. Many generative adversar-
ial methods, such as vid2vid [61, 60], leverage this type of
input to guide synthesis.

Video style transfer takes a reference style image and sta-
tistically applies its style to an input video [40, 8, 55]. In
contrast, our method edits both style and content while pre-
serving the structure of a video instead of matching feature
statistics only. Text2Live [5] allows editing input videos us-
ing text prompts by decomposing a video into neural lay-
ers [21]. Once available, a layered video representation
[37] provides consistent propagation across frames. Sin-
Fusion [29] and Tune-a-Video [63] use diffusion models to
edit videos but require per-video training. This limits the
practicality of the approaches in creative tools. We opt to
instead train our model on a large-scale dataset permitting
inference on any video without individual training.
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Figure 2. Overview: During training (left), input videos x are encoded to z0 with a fixed encoder E and diffused to zt. We extract a
structure representation s by encoding depth maps obtained with MiDaS, and a content representation c by encoding one of the frames
with CLIP. The model then learns to reverse the diffusion process in the latent space, with the help of s, which gets concatenated to zt, as
well as c, which is provided via cross-attention blocks. During inference (right), the structure s of an input video is provided in the same
manner. To specify content via text, we convert CLIP text embeddings to image embeddings via a prior.

3. Method

For our purposes, it will be helpful to think of a video
in terms of its content and structure. By structure, we refer
to characteristics describing geometry and dynamics, e.g.
shapes and locations of subjects as well as their temporal
changes. We define content as features describing the ap-
pearance and semantics of the video, such as the colors and
styles of objects and the lighting. The goal of our model is
to edit the content of a video while retaining its structure.

To achieve this, we learn a generative model p(x|s, c) of
videos x conditioned on representations of structure s and
content c. We infer the shape representation s from an input
video, and modify it based on a text prompt c describing
the edit. First, we describe our realization of the genera-
tive model as a conditional latent video diffusion model and,
then, we describe our choices for shape and content repre-
sentations. Finally, we discuss the optimization process of
our model. See Fig. 2 for an overview.

3.1. Latent diffusion models

Diffusion models Diffusion models [51] learn to reverse
a fixed forward diffusion process, which is defined as

q(xt|xt−1) := N (xt,
√

1− βtxt−1, βtI) . (1)

Normally-distributed noise is slowly added to each sample
xt−1 to obtain xt. The forward process models a fixed
Markov chain and the noise is dependent on a variance
schedule βt where t ∈ {1, . . . , T}, with T being the total
number of steps in our diffusion chain, and x0 := x.

Learning to Denoise The reverse process is defined accord-

ing to the following equation with parameters θ

pθ(x0) :=

∫
pθ(x0:T )dx1:T (2)

pθ(x0:T ) = p(xT )

T∏
t=1

pθ(xt−1|xt), (3)

pθ(xt−1|xt) := N (xt−1, µθ(xt, t),Σθ(xt, t)) . (4)

Using a fixed variance Σθ(xt, t), we are left learning the
means of the reverse process µθ(xt, t). Training is typically
performed via a reweighted variational bound on the maxi-
mum likelihood objective, resulting in a loss

L := Et,qλt∥µt(xt, x0)− µθ(xt, t)∥2 , (5)

where µt(xt, x0) is the mean of the forward process poste-
rior q(xt−1|xt, x0), which is available in closed form [14].
Parameterization The mean µθ(xt, t) is then predicted by
a UNet architecture [39] that receives the noisy input xt and
the diffusion timestep t as inputs. Other parameterizations
and weightings, such as ϵ [14] and v-parameterizations [46],
can significantly improve sample quality compared to di-
rectly predicting the mean. Similar to [13], we found that
v-parameterization improves color consistency thus all our
experiments use it (see supp. material for more details).
Latent diffusion Latent diffusion models [38] (LDMs) take
the diffusion process into the latent space. This provides
improved separation between compressive and generative
learning phases of the model. Specifically, LDMs use an au-
toencoder where an encoder E maps input data x to a lower
dimensional latent code according to z = E(x) while a de-
coder D converts latent codes back to the input space such
that perceptually x ≈ D(E(x)).

Our encoder downsamples RGB-images x ∈ R3×H×W

by a factor of eight and outputs four channels, resulting in a
latent code z ∈ R4×H/8×W/8. Thus, the diffusion UNet op-
erates on a much smaller representation which significantly
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Figure 3. Temporal Extension: We extend an image-based UNet
architecture to videos, by adding temporal layers in its building
blocks. We add a 1D temporal convolution after each 2D spatial
convolution in its residual blocks (left), and we add a 1D temporal
attention block after each of its 2D spatial attention blocks (right).

improves runtime and memory efficiency. The latter is cru-
cial for video modeling where the additional time axis in-
creases memory costs.

3.2. Spatio-temporal Latent Diffusion

To correctly model a distribution over video frames, the
architecture must account for temporal relationships. We
also want to jointly learn an image model with shared pa-
rameters to benefit from better generalization obtained by
training on large-scale image datasets.

To achieve this, we extend an image architecture by in-
troducing temporal layers, which are only active for video
inputs. All other layers are shared between the image and
video model. The autoencoder remains fixed and processes
each frame in a video independently.

The UNet consists of two main building blocks: Resid-
ual blocks and transformer blocks (see Fig. 3). Similar to
[17, 49], we extend them to videos by adding both 1D con-
volutions across time and 1D self-attentions across time. In
each residual block, we introduce one temporal convolution
after each 2D convolution. Similarly, after each spatial 2D
transformer block, we also include one temporal 1D trans-
former block, which mimics its spatial counterpart along the
time axis. We also input learnable positional encodings of
the frame index into temporal transformer blocks.

3.3. Representing Content and Structure

Conditional Diffusion Models Diffusion models are
well-suited to modeling conditional distributions such as
p(x|s, c). The forward process q remains unchanged while
the conditioning variables s, c become additional inputs to
the model.

Our goal is to edit a video based on a text prompt de-
scribing the desired output. We choose to train on un-
captioned video data due to the lack of large-scale paired
video-text datasets of similar quality as image datasets like
[48]. Therefore, during training, we must derive structure
and content representations from the training video x itself,
i.e. s = s(x) and c = c(x), resulting in a per-example loss
of

λt∥µt(E(x)t, E(x)0)− µθ(E(x)t, t, s(x), c(x))∥2 . (6)

In contrast, during inference, structure s and content c
are derived from an input video y and from a text prompt t
respectively. An edited version x of y is obtained by sam-
pling the generative model conditioned on s(y) and c(t):

z ∼ pθ(z|s(y), c(t)), x = D(z) . (7)

Content Representation We utilize CLIP [32] to infer a
content representation from both text inputs t and video in-
puts x similar to previous works [35, 3]. CLIP embeddings
are a promising content representation as they are more sen-
sitive to semantic and stylistic properties while being more
invariant towards geometric attributes [34]. During train-
ing, we encode a random frame in each input video with
CLIP. To support text-based editing at inference, we train a
prior model that allows sampling image embeddings from
text embeddings [35, 49].
Structure Representation We need a representation that
provides adequate separation between structure and content.
We find that depth estimates extracted from input video
frames provide the desired properties as they encode signif-
icantly less content information compared to simpler struc-
ture representations, such as edge filters which also encode
textural properties. Still, depth maps reveal the silhouttes of
objects which can prevent content edits involving changes
in object shape.

To offer control over the amount of structure to preserve,
we propose to train a model on structure representations
with varying amounts of information. In particular, we blur
depth estimates given a parameter ts. During training, ts is
randomly sampled between 0 and Ts. The parameter can
then be controlled at inference to achieve different editing
effects (see Fig. 10).

While depths map work well for our usecase, our ap-
proach generalizes to other geometric guidance features or
combinations of features that might be more helpful for
other specific applications. For example, models focus-
ing on human video synthesis might benefit from estimated
poses or face landmarks.
Conditioning Mechanisms We account for the different
characteristics of our content and structure representations
with two different conditioning mechanisms. Since struc-
ture represents a significant portion of the spatial informa-
tion of video frames, we use concatenation for conditioning
to make effective use of this information. In contrast, at-
tributes described by the content representation are not tied
to particular locations. Hence, we leverage cross-attention
which can effectively transport this information to any po-
sition.

We use the spatial transformer blocks of the UNet archi-
tecture for cross-attention conditioning. Each contains two
attention operations, where the first one perform a spatial
self-attention and the second one a cross attention with keys
and values computed from the CLIP image embedding.
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Figure 4. Temporal Control: By training image and video models jointly, we obtain explicit control over the temporal consistency of
edited videos via a temporal guidance scale ωt. On the left, frame consistency measured via CLIP cosine similarity of consecutive frames
increases monotonically with ωt, while mean squared error between frames warped with optical flow decreases monotonically. On the
right, lower scales (0.5 in the middle row) achieve edits with a ”hand-drawn” look, whereas higher scales (1.5 in the bottom row) result in
smoother results. Top row shows the original input video, the two edits use the prompt ”pencil sketch of a man looking at the camera”.

Prompt Driving Video (top) and Result (bottom)

a man using
a laptop in-
side a train,
anime style

a woman
and man
take selfies
while walk-
ing down
the street,
claymation

kite-surfer
in the ocean
at sunset

alien ex-
plorer
hiking in
the moun-
tains

Figure 5. Our approach enables a wide range of video edits, including changes to animation styles such as anime or claymation, changes
of environment such as time of day, and changing characters such as humans to aliens.
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Figure 6. Prompt-vs-frame consistency: Image models such as
SD-Depth achieve good prompt consistency but fail to produce
consistent edits across frames. Propagation based approaches such
as IVS and Text2Live increase frame consistency but fail to pro-
vide edits reflecting the prompt accurately. Our method achieves
the best combination of frame and prompt consistency.

To condition on structure, we first estimate depth
maps for all input frames using the MiDaS DPT-Large
model [36]. We then apply ts iterations of blurring and
downsampling to the depth maps, where ts controls the
amount of structure to preserve. We resample the perturbed
depth map to the resolution of the RGB-frames and encode
it using E . This latent representation of structure is concate-
nated with the input zt given to the UNet. We also input
four channels containing a sinusoidal embedding of ts.
Sampling While Eq. (2) provides a direct way to sample
from the trained model, many other sampling methods [52,
24, 22] require only a fraction of the number of diffusion
timesteps to achieve good sample quality. We use DDIM
[52] throughout our experiments. Furthermore, classifier-
free diffusion guidance [16] significantly improves sam-
ple quality. For a conditional model µθ(xt, t, c), this is
achieved by training the model to also perform uncondi-
tional predictions µθ(xt, t, ∅) and then adjusting predictions
during sampling according to

µ̃θ(xt, t, c) = µθ(xt, t, ∅) + ω(µθ(xt, t, c)− µθ(xt, t, ∅))

where ω is the guidance scale that controls the strength.
Based on the intuition that ω extrapolates the direction be-
tween an unconditional and a conditional model, we ap-
ply this idea to control temporal consistency of our model.
Specifically, since we are training both an image and a video
model with shared parameters, we can consider predictions
by both models for the same input. Let µθ(zt, t, c, s) de-
note the prediction of our video model, and let µπ

θ (zt, t, c, s)
denote the prediction of the image model applied to each
frame individually. Taking classifier-free guidance for c into
account, we then adjust our prediction according to

µ̃θ(zt, t, c, s) = µπ
θ (zt, t, ∅, s)

+ ωt(µθ(xt, t, ∅, s)− µπ
θ (xt, t, ∅, s))

+ ω(µθ(xt, t, c, s)− µθ(xt, t, ∅, s))
(8)

Figure 7. User Preferences: Based on our user study, the results
from our model are preferred over the baseline models.

Our experiments demonstrate that this approach controls
temporal consistency in the outputs, see Fig. 4.

3.4. Optimization

We train on an internal dataset of 240M images and 6.4M
video clips. We use image batches of size 9216 with reso-
lutions of 320× 320, 384× 320 and 448× 256, as well as
the same resolutions with flipped aspect ratios. We sample
image batches with a probabilty of 12.5%. For videos, we
use batch size 1152 and 8 frames from each video sampled
four frames apart with a resolution of 448× 256.

We train our model in multiple stages. First, we initial-
ize model weights based on a pretrained text-conditional
latent diffusion model [38]1. We change the conditioning
from CLIP text embeddings to CLIP image embeddings and
fine-tune for 15k steps on images only. Afterwards, we in-
troduce temporal connections as described in Sec. 3.2 and
train jointly on images and videos for 75k steps. We then
add conditioning on structure s with ts ≡ 0 fixed and train
for 25k steps. Finally, we resume training with ts sampled
uniformly between 0 and 7 for another 10k steps.

4. Results
To evaluate our approach, we use videos from DAVIS

[31] and various stock footage. To automatically create edit
prompts, we first run a captioning model [23] to obtain a
description of the original video content. We then use GPT-
3 [7] to generate edited prompts.

4.1. Qualitative Results

We demonstrate that our approach performs well on a
number of diverse inputs (see Fig. 5). Our method handles
a large variety of footage, such as landscapes and close-
ups, and diverse camera motion without any explicit track-
ing of the input. Our depth-based structure representation
combined with large-scale image-video joint training en-
able strong generalization and powerful editing capabili-

1https://github.com/runwayml/stable-diffusion
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Input

Mask

A snowboarder
in a snow park
on the moun-
tain

Figure 8. Background Editing: Masking the denoising process allows us to restrict edits to backgrounds for more control over results.

ties. For example, we can produce various animation styles,
changes in time of day, and more complex changes of sub-
ject, such as turning a hiker into an alien (see Fig. 5). Please
see the supplementary material for more results.

Using CLIP image embeddings as the content represen-
tation allows users to specify content through images. As
an example application, we demonstrate character replace-
ment in Fig. 9. For every video in a set of six videos, we re-
synthesize it five times, each time providing a single content
image taken from another video in the set. We can retain
content characteristics with ts = 3 despite large differences
in their pose and shape.

Lastly, we illustrate the use of masked video editing in
Fig. 8, where the model predicts everything outside the
masked area(s) while retaining the original content inside
the masked area. Notably, this technique resembles inpaint-
ing with diffusion models [43, 25].

4.2. User Study

We benchmark against Text2Live [5], a recent approach
for text-guided video editing that employs layered neu-
ral atlases [21]. As a baseline, we compare against
SDEdit [26] in two ways; per-frame generated results and
a first-frame result propagated by a few-shot video styl-
ization method [55] (IVS). We also include two depth-
based versions of Stable Diffusion; one trained with depth-
conditioning [2] and one that retains past results based on
depth estimates [9]. We also include an ablation: applying
SDEdit to our video model trained without conditioning on
a structure representation (ours, ∼ s).

We judge the success of our method qualitatively based
on a user study. We run the user study using Amazon Me-
chanical Turk (AMT) on an evaluation set of 35 represen-
tative video editing prompts. For each example, we ask
5 annotators to compare faithfulness to the video editing
prompt (”Which video better represents the provided edited
caption?”) between a baseline and our method, presented in
random order, and use a majority vote for the final result.

The results can be found in Fig. 7. Across all compared

methods, results from our approach are preferred roughly 3
out of 4 times. A visual comparison among the methods can
be found in the supplementary. We observe that SDEdit is
sensitive to the editing strength. Low values fail to achieve
the desired editing effect whereas high values change the
structure of the input. Even with a fixed seed, both style
and structure can change in unnatural ways between frames
as their relationship is ignored by image-based approaches.
Propagation of SDEdit outputs (IVS) leads to more con-
sistent results but often introduces propagation artifacts es-
pecially with large motion. Depth-SD produces accurate,
structure-preserving edits for individual frames but frames
are inconsistent across time. The outputs of Text2Live tend
to be temporally smooth due to its reliance on Layered Neu-
ral Atlases [21], but it often produces edits that represent
the edit prompt inaccurately. A direct comparison with
Text2Live is difficult as it requires input masks and sepa-
rate edit prompts for foreground and background. In addi-
tion, computing a neural atlas takes about 10 hours whereas
our approach requires approximately a minute.

4.3. Quantitative Evaluation

We quantify trade-offs between frame consistency and
prompt consistency with the following two metrics.
Frame consistency We compute CLIP image embeddings
on all frames of output videos and report the average cosine
similarity between all pairs of consecutive frames.
Prompt consistency We compute CLIP image embeddings
on all frames of output videos and the CLIP text embed-
ding of the edit prompt. We report average cosine similarity
between text and image embedding over all frames.

Fig. 6 shows the results of each model using our frame
consistency and prompt consistency metrics. Our model
tends to outperform the baseline models in both aspects
(placed higher in the upper-right quadrant of the graph). We
also notice a slight tradeoff with increasing the strength pa-
rameters in the baseline models: larger strength scales im-
plies higher prompt consistency at the cost of lower frame
consistency. Increasing the temporal scale (ωt) of our model
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Figure 9. Image Prompting: We combine the structure of a driv-
ing video (first column) with content from other videos (first row).

results in higher frame consistency but lower prompt consis-
tency. We also observe that an increased structure scale (ts)
results in higher prompt consistency as the content becomes
less determined by the input structure.

4.4. Customization

Customization of image models enables generation of
previously unseen content, such as specific people or styles,
based on a small dataset used for finetuning [41]. We fine-
tune our depth-conditioned latent video diffusion model on
a set of 15-30 images and produce videos containing the de-
sired subject. Half of the batch elements are of the subject
and the other half belong to the original training dataset.

Fig. 10 shows an example with different numbers of
customization steps as well as different levels of structure
preservation ts. Customization improves fidelity to the style
and appearance of the character. In combination with higher
ts values, accurate animations are possible despite using a
driving video of a person with different characteristics.

Figure 10. Controlling Fidelity: We obtain control over structure
and appearance-fidelity. Each cell shows three frames produced
with decreasing structure-fidelity ts (left-to-right) and increasing
number of customization training steps (top-to-bottom). The bot-
tom shows examples of images used for customization (red border)
and the input image (blue border). Same driving video as in Fig. 1.

5. Conclusion

Our latent video diffusion model synthesizes new videos
given structure and content information. We ensure struc-
tural consistency by conditioning on depth estimates while
content is controlled with images or natural language. Tem-
poral layers and joint image-video training achieve stable
results across frames. A novel guidance method, inspired
by classifier-free guidance, allows for control over tempo-
ral consistency. By training on depth maps with varying
degrees of detail, we can adjust the level of structure preser-
vation. This, together with model customization, improves
content fidelity. Our quantitative evaluation and user study
show that our method is preferred over related approaches.
Future works should investigate other conditioning data,
such as facial landmarks and pose estimates, and additional
3d-priors to improve generated results. Our model is in-
tended for creative applications in content creation, but we
realize the risks of dual-use and hope that further work will
be aimed at combating abuse of generative models.
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