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Abstract

Nearest neighbour-based methods have proved to be
one of the most successful self-supervised learning (SSL)
approaches due to their high generalization capabilities.
However, their computational efficiency decreases when
more than one neighbour is used. In this paper, we propose
a novel contrastive SSL approach, which we call All4One,
that reduces the distance between neighbour representa-
tions using ”centroids” created through a self-attention
mechanism. We use a Centroid Contrasting objective along
with single Neighbour Contrasting and Feature Contrast-
ing objectives. Centroids help in learning contextual in-
formation from multiple neighbours whereas the neighbour
contrast enables learning representations directly from the
neighbours and the feature contrast allows learning repre-
sentations unique to the features. This combination enables
All4One to outperform popular instance discrimination ap-
proaches by more than 1% on linear classification evalua-
tion for popular benchmark datasets and obtains state-of-
the-art (SoTA) results. Finally, we show that All4One is
robust towards embedding dimensionalities and augmenta-
tions, surpassing NNCLR and Barlow Twins by more than
5% on low dimensionality and weak augmentation settings.
Source code is available in https://github.com/
ImaGonEs/all4one.

1. Introduction
Deep learning (DL) models strongly depend on the avail-

ability of large and high-quality training datasets whose
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Figure 1: Simplified architecture of All4One. All4One
uses three different objective functions that contrast differ-
ent representations: Centroid objective contrasts the contex-
tual information extracted from multiple neighbours while
the Neighbour objective assures diversity [14]. Addition-
ally, the Feature contrast objective measures the correlation
of the generated features and increases their independence.

construction is very expensive [25]. Self-supervised learn-
ing (SSL) claims to allow the training of DL models with-
out the need for large annotated data, which serves as a
milestone in speeding up the DL progression [25]. The
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most popular SSL approaches rely on instance discrimina-
tion learning, a strategy that trains the model to be invariant
to the distortions applied to a single image defined as pos-
itive samples [6, 18, 31]. As all the views belong to the
same image, consequently, they belong to the same seman-
tic class. Bringing them together in the same feature space
encourages the model to create similar representations for
similar images. The encouraging results of initial works
such as SimCLR [6] and BYOL [15] boosted multiple im-
provements that address common problems of instance dis-
crimination such as lack of diversity between samples and
model collapse.

Neighbour contrastive learning hinges on the fact that
data augmentations do not provide enough diversity in se-
lecting the positive samples, as all of them are extracted
from the same initial image [14]. To solve it, Nearest neigh-
bour Contrastive Learning (NNCLR) [14] proposes the use
of nearest neighbours (NN) to increase the diversity among
the positive samples which in turn boosts the generalization
of the model. Instead of bringing together two distortions
created from the same image, they increase the proximity
between a distorted sample and the NN of another distorted
sample. However, relying entirely on the first neighbour
holds back the real potential of the approach. MSF [21]
proposes the use of k neighbours to increase the generaliza-
tion capability of the model. However, MSF suffers from
high computation as the objective function needs to be com-
puted for each neighbour (k times). Apart from the low
diversity of positive samples, instance discrimination ap-
proaches suffer from model collapse, a scenario where the
model learns a constant trivial solution [15]. Barlow Twins
[38] proposes a redundancy reduction-based approach that
naturally avoids the collapse by measuring the correlation
among the features on the generated image representations.
However, this collapse avoidance suffers from the require-
ment of projecting embeddings in high dimensions.

In our work, we contrast information from multiple
neighbours in a more efficient way by avoiding multiple
computations of the objective function. This way, we are
able to increase the generalization from neighbour con-
trastive approaches while avoiding their flaws. For that, we
propose the use of a new embedding constructed by a self-
attention mechanism, such as a transformer encoder, that
combines the extracted neighbour representations in a sin-
gle representation containing contextual information about
all of them. Hence, we are able to contrast all the neigh-
bours’ information on a single objective computation. We
make use of a Support Set that actively stores the repre-
sentations computed during the training [14] so that we can
extract the required neighbours. In addition, we integrate
our approach with a redundancy reduction approach [38].
Making the computed cross-correlation matrix close to the
identity reduces the features redundancy of the same image

representation while also making them invariant to their dis-
tortions. This idea contrasts the representations in a com-
pletely different way than the rest of instance discrimina-
tion approaches [28, 30, 14]. For this reason, we increase
the richness of the representations learnt by the model by
combining the neighbour contrast approach with the redun-
dancy reduction objective that directly contrasts the features
generated by the encoder and aims to increase their indepen-
dence. In addition, the need for high-dimensional embed-
dings of redundancy reduction feature contrast approaches
[38] is alleviated thanks to our SSL objective combination.

As a summary, in this paper, we introduce a new sym-
biotic SSL approach, which we call All4One, that lever-
ages the idea of neighbour contrastive learning while com-
bining it with a feature contrast approach (see Figure 1).
All4One integrates three different objectives that prove to
benefit each other and provide better representation learn-
ing. Our contributions are as follows: (i) We define a novel
objective function, centroid contrast, that is based on a pro-
jection of sample neighbours in a new latent space through
self-attention mechanisms. (ii) Our proposal, All4One, is
based on a combination of centroid contrast, neighbour con-
trast and feature contrast objectives, going beyond the sin-
gle neighbour contrast while avoiding multiple computa-
tions of the objective function; (iii) We demonstrate how
contrasting different representations (neighbours and dis-
torted samples) using InfoNCE [28] based and feature con-
trast objectives benefit the overall performance and alleviate
individual flaws such as the reliance of high-dimensional
embeddings on feature contrast approaches; (iv) We show
that All4One, by contrasting the contextual information of
the neighbours and multiple representations, outperforms
single nearest neighbour SSL on low-augmentation settings
and low-data regimes, proving much less reliance on aug-
mentations and increased generalization capability; and (v)
We prove that All4One outperforms single-neighbour con-
trastive approaches (among others) by more than 1% in dif-
ferent public datasets and using different backbones.

2. Related Works
Self-supervised Learning. In SSL methods, a model

is trained to learn intermediate representations of the data
in a completely unsupervised way to be transferred later to
multiple tasks [25]. Since the introduction of contrastive
loss [10], several works such as SimCLR [6] and MoCo
[18] proved their usefulness in multiple downstream tasks
by proposing variations of InfoNCE [28], a contrastive
objective function inspired by Noise Contrastive Estima-
tion (NCE) [26]. In image representation learning, this
objective function works with the assumption of positive
pairs (za, z+), formed by two representations that share the
same semantic class, and negative pairs (za, z−), which are
formed by image representations that do not belong to the
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Figure 2: Neighbour contrast comparison. While the
common neighbour contrastive approaches only contrast the
first neighbour, we create representations that contain con-
textual information from the k NNs and contrast it in a sin-
gle objective computation.

same semantic class. Thus, the positive pairs are pulled to-
gether in the same feature space while the negative pairs are
repelled to avoid model collapse. Later, BYOL [15] proved
that it is possible to achieve the same effect without using
negative samples by avoiding the collapse with the introduc-
tion of architectural changes such as a predictor. Addition-
ally, Barlow Twins [38] introduced a novel objective func-
tion based on the redundancy reduction principle instead of
InfoNCE that naturally avoided the collapse.

Overall, discriminative frameworks have been obtaining
exceptional results [5, 7, 8, 6] due to the improvements
done by introducing new architectures [18, 5, 9], applying
new objective functions individually (e. g. redundancy re-
duction) [27, 4, 2], alternative augmentation settings [32]
or even proposing novel strategies such as NN based ap-
proaches [14, 21], providing an increased generalization by
contrasting distortions with NNs.

During training, NN-based approaches store the repre-
sentations in a queue and extract them by applying a k-NN
algorithm that uses one of the representations in the positive
pair as a query. This way, one of the pair representations is
swapped by its neighbour for the loss computation. Never-
theless, using a single neighbour per sample holds back the
potential of the approach meanwhile using k neighbours re-
duces the efficiency of the NN approaches as the objective
function needs to be computed multiple times.

Self-attention. Since the introduction of the Trans-
former [33] architecture, self-attention-based models have
proved to be one of the most successful approaches in
Computer Vision (CV). In fact, multiple works analyse
the behaviour of the self-attention mechanism and combine
it with other well-known tools such as k-NN algorithms
[35, 16, 22, 34]. In SSL, Self-attention has been widely
used on generative frameworks [17, 3, 40], where they train

the transformer backbone to reconstruct the given masked
image. However, these reconstruction objectives used in
works such as iBOT [40], BEiT [3] and MAE [17] are com-
putationally expensive and rely on vision transformers ex-
clusively. In our research, different to previous MIM works,
we still maintain a contrastive objective. We take advantage
of the capacity of the transformer encoder to mix the neigh-
bour representations into a single one that contains informa-
tion from the neighbours and contrast it using a variation of
InfoNCE [28].

3. The All4One Symbiosis

In order to increase the performance and efficiency of
previous neighbour contrastive methods, we propose a sym-
biotic SSL framework that combines three different ap-
proaches into one. We show our proposed All4One pipeline
in Figure 3, where we show the three different objectives:
the first objective is a neighbour contrast objective (green
path); the second objective is a centroid contrast objective
(purple path), which is carried out by the application of self-
attention mechanisms [33] and the final objective is a redun-
dancy reduction-based feature contrast objective (red path).
During training, initial representations are transformed de-
pending on the followed path to adapt them to the objective
of the path.

The pipeline is composed of a pair of encoders or neu-
ral networks, f , and a pair of projectors, g. The projector
consists of a basic MLP that transforms the output of the
encoders [6]. In this case, we apply a momentum encoder,
which is a smoothed version of the online encoder, similar
to BYOL [15]. The pipeline is iterated by a batch of images,
X . For each image, two batches of augmented/distorted
images, X1 and X2 are generated using a data augmenta-
tion pipeline. Then, both distorted images are fed to the en-
coder and, next, to the projector. This sequence of encoder-
projector is defined as momentum or online branch depend-
ing on the encoder used. We call the momentum branch the
encoder-projector sequence that contains a momentum pro-
jector and vice-versa [15]. The output of momentum and
online branches can be defined as Z1 = gξ(fξ(X1)) and
Z2 = gθ(fθ(X2)) respectively, being g and f the projec-
tors and encoders of each branch. Next, we brief each of the
objectives used in the proposal.

3.1. Neighbour Contrast

NNCLR [14] is the most popular neighbour contrastive
approach. Instead of contrasting two distortions of the same
image, it uses the simple KNN operator to extract from a
queue or Support Set [14] the NN of the first distortion and
contrast it against the second distortion using a variant of
InfoNCE [28]. For each i-th pair in the batch, the neighbour
contrast loss is defined as:
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Figure 3: Complete architecture of All4One framework. Feature, Centroid and Neighbour contrast objective functions are
indicated by red, purple, and green respectively.

LNNCLR
i = −log( exp(nn1

i · p2i /τ)∑N
k=1 exp(nn

1
i · p2k/τ)

) (1)

where nni is the i-th NN of the representation z, pi is the
second distortion, τ refers to the temperature constant and
N is the number of samples in the batch. This way, it in-
creases the generalization of the model through the use of
more diverse samples. Note that, in our case, the second
predictor qnnθ is used for the Neighbour Contrast objective.

3.2. Centroid Contrast

According to MSF [21], using a single NN could be
holding back the potential of the approach. In fact, they
showed that contrasting the second distorted image with
multiple NN could provide a better SSL framework that
also obtains higher accuracy regarding the selection of the
neighbours. Nevertheless, contrasting multiple neighbours
hurts the computational efficiency of the model, as they
need to compute the objective function k times, where k
is the number of extracted neighbours. For this reason, the
improvement is severely constrained by computational re-
sources. Following the idea of using multiple neighbours,
we introduce an alternative proposal that does not require
multiple-loss computations. We compile the relevant infor-
mation from the extracted k neighbours to create a pair of
representations, defined as ”centroids” that contain contex-
tual information about all the neighbours and pull them to-
gether in the feature space applying a variation of the In-
foNCE [28] objective function. This way, the generaliza-

tion of the model is improved without contrasting multiple
neighbours one by one.

Once Z1 and Z2 are computed from the pair of dis-
torted images, we calculate the cosine similarity between
each Z (query representation) and the Support set Q, a
queue that stores the computed representations [14]. Next,
we extract a sequence with the K most similar representa-
tions (nn1

i = KNN(z1i , Q)) for each representation in both
batches. Then, for each Z1 and Z2, we obtain their respec-
tive batch of sequences of NNs, NN1 and NN2. As we try
to avoid contrasting the neighbours one by one, we intro-
duce a new element to the pipeline: a transformer encoder,
ψ. Given NN1 and NN2, we input ψ with each sequence
nn1

i to compute the self-attention of the sequences.
Given a sequence of neighbour representations nn1

i , we
obtain a single representation c1 that contains as much in-
formation as possible about the input sequence nn1

i . When
computing self-attention [33], we mix the representations
of the input sequence in a weighted manner so that a new
enriched vector of representations is returned. Each ele-
ment of this enriched vector contains contextual informa-
tion about all the neighbours in the sequence. During train-
ing, for each sequence in NN1, the process is made up of
the following steps: (i) for each sequence Seqi in NN1,
we add sinusoidal positional encoding [33]; (ii) then, we
feed the transformer encoder ψ with Seqi; (iii) inside the
transformer encoder, self-attention is computed and a new
sequence is returned Seqci ; (iv) finally, we select the first
representation Seqci 1 in the returned sequence Seqci as our
centroid ci as we aim to contrast a single representation
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that contains context information from the rest of the neigh-
bours. After selecting the first representation on all se-
quences, we obtain a batch of representations defined asC1.

On the online branch, a slightly different process is fol-
lowed. A second MLP similar to the projector, the predictor,
is used to change the feature space of Z2 batch and obtain
P c2 = qcθ(Z

2) batch of transformed representations. More
concretely, we pass Z2 through the centroid predictor qcθ.
Then, we replace the fifth neighbour in each sequence nn2

i

of NN2 by pc2i . Finally, we reorder each sequence so pc2i
is the first element. We define this process as Shift opera-
tion. This is done to introduce the distorted image in the se-
quence, thereby impacting the back-propagation. More in-
formation about the Shift operation is provided in Section 1
of the supplementary material. Once modified NN2 is cre-
ated, we pass it through the transformer encoder to obtain
C2 by following the previously explained process. Finally,
we contrast C1 and C2 using a variation of the InfoNCE
[28] loss function aiming to bring the neighbour centroids
together (see Figure 2). For each centroid pair, the centroid
loss can be defined as:

Lcentroid
i = −log

(
exp(c1i · c2i /τ)∑n

n=1 exp(c
1
i · c2n/τ)

)
(2)

3.3. Reducing Redundancy: Feature Contrast

The application of the redundancy reduction principle to
increase the independence of the features is one of the most
successful approaches in the SSL SoTA [38]. The Barlow
Twins’ main idea is that, instead of focusing on the im-
ages, to directly contrast the features by computing a cross-
correlation matrix Cij . Then, it aims to increase the invari-
ance of the features by equating the diagonal elements cii
of Cij to one (invariance term) while also decreasing the re-
dundancy between the features by reducing the correlation
between different features (ith and jth features). Inspired
by this approach, we increase the richness of our frame-
work by introducing a feature contrast objective function
that measures the correlation of the features and aims to in-
crease their independence.

To do so, we construct the output of the momentum
and online projectors as (Z)ij matrices where each element
represents an exact feature j of a single augmented image
representation, i. Then, we use L2 normalization on both
matrices in the batch dimension [38] and we compute the
cosine similarity between the transposed matrix, Z1T and
Z2 to obtain the cross-correlation matrix, CC1. We com-
pute this term symmetrically. This is done by swapping the
branches and computing the similarities. Finally, two cross-
correlation matrices CC1 and CC2 are obtained. Redun-
dancy reduction feature contrast objective [2] is computed

as follows:

LRed. =
1

2

√√√√ 1

2D

D∑
i=1

((1− cc1ii)
2 + (1− cc2ii)

2)

+
1

2

√√√√ 1

2D(D − 1)

D∑
i=1

D∑
j ̸=i

((cc1ij)
2 + (cc2ij)

2)

(3)

As it can be noted, the first term increases the correlation
between the elements that represent the same feature among
the distorted images (diagonal elements), while the second
term decreases the correlation between elements that repre-
sent different features (off-diagonal elements).

3.4. Final Objective: The All4One Objective

Once all objectives are computed, the final loss function
is formed by summing the previously defined objectives.
The All4One objective is defined as:

LAll4One = σLNNCLR + κLCentroid + ηLRed (4)

where σ, κ and η are determined through loss progression as
0.5, 0.5 and 5, respectively. Depending on the dataset, giv-
ing more importance to each objective could increase the
performance of the models. However, the common bench-
marks used for validation are balanced, so we keep the three
All4One objectives uniformly weighted. By combining dif-
ferent objectives, the All4One objective improves the learn-
ing of representations. We show the improvements over
other methods below.

4. Experiments
In this section, we first describe the implementation de-

tails of All4One and its training. Then, we evaluate it using
the common image classification linear evaluation pipeline
on different datasets: CIFAR-10 [23], CIFAR-100 [23],
ImageNet-1K [24] and ImageNet-100, a reduced ImageNet
of 100 classes. We extensively study the different compo-
nents of our proposal and discuss the various design deci-
sions in detail. Finally, we also extend our proposal to a
transformer-based backbone using ViT [13] and also show
the efficacy of our proposal on other downstream tasks.

4.1. Implementation Details

Architecture. All4One follows a momentum instance
discrimination pipeline (Figure 3). The momentum branch
includes the usual momentum projector, gξ [15]. The on-
line branch, on the contrary, includes a projector, gθ and
double predictor, qnnθ and qcθ. MLP projectors are formed
by 3 fully connected layers of size [2048, 2048, 256], while
the MLP predictor uses 2 fully connected layers with a di-
mensionality of [4096, 256]. Similar to NNCLR [14], all
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fully-connected layers, except the last ones, are followed
by batch-normalization [19].

MLP components of a SSL method filter the features
generated by the encoder, keeping those that are useful for
the downstream task [1]. In All4One, there are multiple ob-
jectives that are applied in completely different representa-
tions, so the predictors involved should filter the features in-
dependently. For this reason, we propose the use of two dif-
ferent predictors that work separately for each objective. Fi-
nally, our approach introduces a small Transformer encoder,
ψ, that is applied for both branches and a sharedKNN(·, ·)
operator that extracts image representations from the Sup-
port Set, Q, given a query. The final objective of our pro-
posal follows Eq. (4), which brings together both contrast-
ing approaches.

Training. We train All4One on CIFAR-10, CIFAR-100,
ImageNet100 (using a ResNet-18 backbone) and the com-
plete ILSVRC2012 ImageNet (using a ResNet-50 back-
bone) without any class label or annotation. During the
training, all backbones are initialized with default Solo-
learn [11] initialization. All MLP components use the
PyTorch default initialization. The transformer encoder
uses three transformer encoder layers with 8 heads each
[33]. Following SimCLR [6], lr is adapted using lr ∗
batchsize/256 formula and readapted for each layer using
LARS [37] (only for CNNs). For ResNet-18 and ResNet-
50, we use the SGD optimizer and on the ViT-Small back-
bone, we use AdamW. We find it optimal to use 1.0, 0.00015
and 0.1 as base learning rates for the CNN backbones, ViT
and the internal transformer encoder respectively, which
are gradually reduced by using a warm-up cosine anneal-
ing scheduler. When using AdamW, we detach the lr of
the transformer encoder by setting it to a constant of 0.1.
For the complete ILSVRC2012 ImageNet experiments, we
adapt the learning rates to 1.5 and 0.45 for All4One and
NNCLR respectively. All experiments are run with the
same batch size and for the same amount of epochs. Finally,
the queue or Support set size is set to 98304, following the
settings of NNCLR [14]. The rest of the hyperparameters of
the model are directly extracted from NNCLR [14]. All the
training processes are done on a single NVIDIA RTX 3090
GPU, except for ImageNet experiments where the evalua-
tions are done on 4xNVIDIA V100 GPUs. Training curve
comparison is shown in Section 4 of the supplementary ma-
terial.

4.2. All4One Evaluation

CIFAR and ImageNet100 Linear Evaluations. We
compare our approach against the current SoTA SSL frame-
works. We first show the evaluations on the CIFAR datasets
and the ImageNet-100 dataset. ImageNet-100 is a re-
duced ImageNet version with 100 classes and the images
are 224x224 (as compared to CIFAR which has 32x32).

CIFAR-10 CIFAR100 ImageNet100
Method Top-1 Top-5 Top-1 Top-5 Top-1 Top-5
BYOL 92.58 99.79 70.46 91.96 80.16 95.02
DC V2 88.85 99.58 63.61 88.09 75.36 93.22
DINO 89.52 99.71 66.76 90.34 74.84 92.92

MoCoV2+ 92.94 99.79 69.89 91.65 78.20 95.50
MoCoV3 93.10 99.80 68.83 90.57 80.36 95.18
ReSSL 90.63 99.62 65.92 89.73 76.92 94.20

SimCLR 90.74 99.75 65.78 89.04 77.64 94.06
Simsiam 90.51 99.72 66.04 89.62 74.54 93.16
SwAV 89.17 99.68 64.88 88.78 74.04 92.70

VIbCReg 91.18 99.74 67.37 90.07 79.86 94.98
VICReg 92.07 99.74 68.54 90.83 79.22 95.06
W-MSE 88.67 99.68 61.33 87.26 67.60 90.94

BT 92.10 99.73 70.90 91.91 80.38 95.28
NNCLR 91.88 99.78 69.62 91.52 79.80 95.28
All4One 93.24 99.88 72.17 93.35 81.93 96.23

Table 1: Linear evaluation results on CIFAR-10, CIFAR-
100 and ImageNet100. The results are extracted from
Solo-learn Self-supervised learning library [11].

We report Top-1 and Top-5 linear accuracies for all the
datasets. As can be seen from Table 1, our approach clearly
outperforms the previous SoTA approaches, including the
ones that inspired our own approach. We gain 1.36%,
2.55% and 2.13% over NNCLR on CIFAR-10, CIFAR-100
and ImageNet-100 respectively, and similarly improve by
1.14%, 1.27% and 1.55% over Barlow Twins. This empha-
sizes the fact that we are able to outperform both the feature
contrast approach and the neighbour contrast approach by
a considerable margin by combining them and adding the
new contrastive centroid loss.

Linear Evaluation on ImageNet. In table 2a, we
compare NNCLR [14] and All4One on the complete
ILSVRC2012 ImageNet [12] dataset for linear evaluation
task. Considering the computational resources for Ima-
geNet, we perform the linear evaluation only for 100 epochs
with an effective batch size of 1024. We are able to outper-
form NNCLR on the larger ImageNet. This highlights the
improvements in the performance of our approach on larger
datasets.

Linear evaluation on Transformer Backbone. We
study the All4One behaviour on a different backbone by re-
placing the ResNet with a Transformer backbone. We use a
ViT-Small on CIFAR-100 for this study. In Table 2b, we see
how All4One outperforms NNCLR verifying the indepen-
dence of our approach on backbones. We have an improve-
ment of 1.15% compared to the ViT version of NNCLR.

Semi-supervised ImageNet100 and ImageNet Evalu-
ations. We perform semi-supervised evaluation following
the experiments in NNCLR [14]. We fine-tune the Ima-
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Method Top-1 Top-5
NNCLR 65.74 86.90
All4One 66.60 87.51

(a) Linear evaluation on ILSVRC2012 ImageNet. For
NNCLR, all hyperparameters except for the batch size (we use
1024 for both approaches) are the ones recommended in the
original paper [14].

Method Top-1 Top-5
NNCLR 68.55 90.94
All4One 69.7 91.65

(b) Linear evaluation on CIFAR-100 using ViT-Small back-
bone. Same hyperparameter settings are used for both meth-
ods.

ImageNet100 ImageNet
Method 1% 10% 1% 10%
NNCLR 54.14 75.49 37.51 58.74
All4One (Ours) 58.73 76.95 38.96 60.14

(c) Semi-supervised learning results (Top-1 linear accuracy) on
ImageNet100 and ImageNet.

Food-101 Caltech-101 Dogs Pets
NNCLR 69.52 90.15 67.47 83.34
All4One 71.16 91.10 68.07 81.57

(d) Transfer learning evaluation (Top-1 linear accuracy).

Table 2: All4One linear evaluation experiments.

geNet pre-trained model (ResNet-50 on 100 epochs) on 1%
and 10% subsets of the datasets. The results are presented
in Table 2c. As can be seen, All4One generalizes better
than NNCLR, outperforming it for both ImageNet100 and
ImageNet on 1% and 10% subsets of the data.

Transfer Learning. Finally, we evaluate All4One and
NNCLR on transfer learning downstream tasks for Food101
[20], Caltech-101 [36], Dogs [39] and Pets [29] dataset.
For all datasets, we freeze the ImageNet pre-trained model
(ResNet-50 on 100 epochs) and train a single linear clas-
sifier on top of it for 90 epochs on train splits while per-
forming a sweep over the lr to obtain the best-performing
one. Then, we evaluate the performance on the validation
split for the Food101 dataset and test split for the rest of
the datasets. The results are shown in Table 2d. As can be
seen, All4One outperforms NNCLR in 3 out of 4 datasets,
further validating the increased generalization capabilities
of All4One.

4.3. Ablation Study

First, we show the importance of each objective defined
by our approach. Then, we analyse the dimensionality and
augmentation robustness of our model. Finally, we present
some design choices such as the number of layers used by
the transformer encoder and the number of extracted neigh-
bours. All the ablations are done following exactly the same
settings defined in Section 4.1 if not stated otherwise.

Objective Importance. As explained, our approach in-
troduces redundancy reduction and novel neighbour con-
trast objectives. For this reason, we find it interesting to
analyse, one by one, the importance of each of them. In
Table 3, we report the performance of each objective of the
framework. In addition, we also study the importance of
EMA (v2 vs v3). We see that the addition of EMA boosts
the overall performance of the model.

As can be seen with the different versions of All4One, all

three objectives are important regarding the overall perfor-
mance. Intuitively, both NNCLR [14] and Centroid-based
objectives focus on contrasting neighbour image represen-
tations, so it is possible that, during the training, both ob-
jectives may partially overlap. This is not the case for
the redundancy reduction, as it focuses on the features in-
stead, causing its removal to be more critical than the oth-
ers. Moreover, we designed the redundancy objective to
use the representations z1i and z2i to compute the loss rather
than using the neighbours. This fact adds more richness to
the final loss function, as a total of three different represen-
tations (original neighbour nn1

i , centroid derived from the
neighbours c1i and image representation z1i ) are used for the
unified objective.

On the other hand, we check that the Centroid objective
is the one that increases the most on the NN retrieval ac-
curacy, reaching 86.16% when combined with the NNCLR
[14] and EMA architecture (experiment v3). As expected,
contrasting contextual information from multiple neigh-
bours encourages the model to create better representations
easier to distinguish just by using a simple KNN opera-
tor. However, the introduction of different objectives, such
as the redundancy reduction objective, forces the model to
generalize more and, consequently, perform better on the
downstream tasks.

Dimensionality Robustness. Redundancy reduction ap-
proaches such as Barlow Twins [38] highly depend on the
dimensionality of the embeddings. Other approaches such
as Opt-SSL [2] required high dimensional embeddings to
provide SOTA results. Our approach, however, manages
to outperform Barlow Twins with much lower dimensional
embeddings as it does not only depend on the redundancy
reduction. Even if the dimensionality of the embedding is
low, the symbiosis formed avoids the decrease in perfor-
mance, as can be seen in Table 4a. Another factor of con-
sideration to use low dimensions is that KNN(·, ·) suffers
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Method NNCLR obj. Cen. obj. Feat. obj. EMA Top-1 k-NN Top-1 NN Top-1
All4Onev0 ✓ 69.62 62.16 68.8 (77.8*)
All4Onev1 ✓ 67.4 59.61 82.8
All4Onev2 ✓ ✓ 71.02 63.21 85.28
All4Onev3 ✓ ✓ ✓ 71.08 63.83 86.16
All4Onev4 ✓ ✓ ✓ 71.31 63.72 80.6
All4Onev5 ✓ ✓ ✓ 71.64 64.58 78.8
All4Onev6 ✓ ✓ ✓ ✓ 72.17 64.84 82.16

Table 3: All4One objective function ablation study (using CIFAR-100). All4Onev0 is equal to vanilla NNCLR. NN
retrieval accuracy marked by * represents the NN retrieval obtained by increasing the queue size from 65503 to 98304 [14]

Top-1 k-NN Top-1
Barlow Twins (2048) 71.21 63.11
Barlow Twins (256) 62.14 54.64
All4One (256) 72.17 64.84

(a) Dimensionality analysis using CIFAR-100 dataset.

Method Top-1 k-NN Top-1
Barlow Twins [38] 39.66 30.89
NNCLR [14] 35.39 27.64
All4One (Ours) 44.7 33.99

(b) Augmentation analysis using CIFAR-100.

Layer number Top-1 k-NN Top-1
3 72.17 64.84
6 71.86 64.50
9 71.75 64.52

(c) Number of transformer layers.

Number of NN Top-1 k-NN Top-1
5 72.17 64.84
10 72.00 64.54
15 71.92 64.63
20 71.79 64.6

(d) Number of NNs extracted.

Table 4: All4One ablation experiments. Evaluated on CIFAR-100 for linear and k-NN classification.

from the curse of dimensionality, which decreases its effi-
ciency when high dimensional embeddings are used.

Augmentation Dependency. SSL frameworks depend
heavily on the augmentations used by the Pretext task gen-
erator to create hard positive samples. However, neigh-
bour contrastive approaches [14, 21] empirically proved
that they are naturally more robust to augmentation re-
movals. NNCLR [14] proposes the removal of all the
augmentations except random crop augmentation to com-
pare NNCLR frameworks robustness with SimCLR [6] and
BYOL [15] frameworks. We follow the same to check the
robustness of All4One compared to NNCLR and Barlow
Twins. As it can be seen in Table 4b, our approach proves
to be more robust than Barlow Twins [38] and NNCLR [14]
to augmentation removal. Intuitively, adding a term that
uses multiple neighbours increases, even more, the richness
of the loss function and makes the augmentations less rele-
vant.

Number of Transformer Layers. We increase the
transformer encoder complexity by increasing the number
of encoder layers (Table 4c). We infer that more complex
encoders decrease the overall performance of the model. In
SSL paradigms, the main goal is to train an encoder or the
backbone. We hypothesize that simplifying the transformer
encoder encourages the backbone to produce more useful
features, rather than letting the transformer encoder create
them with their feed-forward layers, thus decreasing perfor-

mance.
Number of Neighbours. We study the effect of the

neighbours’ number on All4One (Table 4d). Similar to
previous works [14, 21], All4One is robust regarding the
number of neighbours extracted, obtaining the best results
when 5 of them are used. As we increase the number of
neighbours, the contextual information obtained from the
Self-Attention operations performed by the transformer en-
coder may get more sparse, decreasing slightly the model
performance while also increasing the required computation
time.

4.4. Discussions

Dimensionality of the Embeddings. Feature contrast
approaches such as Barlow Twins [38] state high dimen-
sional embeddings as a requirement for their frameworks.
However, we prove that combining the basic ideas behind
feature contrast with another instance discrimination strat-
egy drastically reduces this dependency. Usually, different
SSL approaches tend to be applied individually and obtain
improvements. We show that by combining and comple-
menting these ideas could lead to higher improvements.

NN Retrieval Increase and Comparison. In neighbour
contrast approaches, the number of times the KNN opera-
tor retrieves a neighbour from the same semantic class as
the query (NN retrieval accuracy) has been defined as crit-
ical. However, we prove that increasing this accuracy does
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Figure 4: Top-1 NN retrieval accuracy comparison.
 -  

Figure 5: NN extractions performed by All4One.

not imperatively lead to a high overall accuracy increase.
In fact, the best-performing version of All4One is not the
one that obtains the highest NN retrieval accuracy. Hyper-
parameters such as the Support Set size or even the pretext
task defined affect directly this accuracy. In Figure 4, we
show how adding different pretext tasks affects the origi-
nal NNCLR [14] method regarding the NN retrieval accu-
racy. As can be seen, adding the feature contrast strategy
to vanilla NNCLR slightly boosts this performance. Also,
combining NNCLR with a centroid pretext task provides a
NN retrieval accuracy of 86%. However, when the three of
them are combined, the NN retrieval accuracy does not sur-
pass the 86% mark, even if it is the best overall performing
version of All4One. This shows that the NN retrieval accu-
racy is not as critical as it is stated. In fact, as can be seen
in Figure 5, neighbour contrast frameworks aim to bring to-
gether images that are similar so, even if the retrieved neigh-
bour does not belong to the same semantic class, bringing
it together with a very similar image on the feature space
would not bring down the overall performance of the model.
More NN extractions can be found in Section 5 of supple-
mentary material.

4.5. Limitations

Even though All4One produced promising results, we
identify some limitations.

Computation Efficiency. All4One, due to the introduc-

tion of three different objective functions, is more efficient
than NN approaches that use multiple neighbours, but less
efficient than NNCLR [14], which only contrasts a single
neighbour. This is a limitation on low computation con-
straints. We provide a computation complexity analysis in
the supplementary material.

Increased Number of Hyperparameters. The final
All4One objective function introduces 3 additional hyper-
parameters to tune. Also, the transformer encoder uses a
different learning rate, which also adds an extra hyperpa-
rameter to the overall framework.

Transformer Encoder Parameters. Several advances
are available in terms of training transformers. The stabil-
ity of the transformer encoder when using different settings
compared to that of the other components is not known.

5. Conclusions
We propose a symbiotic approach that leverages NN con-

trastive learning by contrasting contextual information from
multiple neighbours in an efficient way via self-attention.
Also, we integrate a feature contrast objective function ben-
eficial to the overall framework. All4One proves to general-
ize better and provide richer representations, outperforming
previous SoTA contrastive approaches thanks to the inte-
gration of its different objectives. This highlights its excep-
tional performance in low data regimes, low dimensionality
scenarios and weak augmentation settings. In the future, we
plan to extend All4One to more complex backbones and in-
vestigate its application in diverse downstream tasks such
as Object Detection and Instance Segmentation.
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