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Style 1:
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[43]

Style 2:
Few-shot Pokemon

[16, 35, 37]

Style 3:
48 Famous

Americans comics
[19, 44]

A side view of an
owl sitting in a

field.

A panda making
latte art.

Rainbow
coloured
penguin.

A cross-section
view of a brain.

A mouse using a
mushroom as an

umbrella.

A confused
grizzly bear in
calculus class.

Figure 1. Examples of style adaptations induced by Diffusion in Style. A small number of target style images are used to efficiently
adapt Stable Diffusion to a desired style: anime sketch (first row, [43]), few-shot Pokemon (middle row, [16, 35, 37]), and the 48 Famous
Americans comics (bottom row, [19, 44]). The adapted model can generate images in the desired style with any textual prompt, without
conditioning on a target style image at inference time. Each column is generated from only the textual prompt indicated at the bottom.

Abstract

We present Diffusion in Style, a simple method to adapt
Stable Diffusion to any desired style, using only a small set
of target images. It is based on the key observation that
the style of the images generated by Stable Diffusion is tied
to the initial latent tensor. Not adapting this initial latent
tensor to the style makes fine-tuning slow, expensive, and
impractical, especially when only a few target style images
are available. In contrast, fine-tuning is much easier if this
initial latent tensor is also adapted. Our Diffusion in Style is
orders of magnitude more sample-efficient and faster. It also
generates more pleasing images than existing approaches,
as shown qualitatively and with quantitative comparisons.

1. Introduction

Generating images of a specific style using large-scale
text-to-image models, such as Stable Diffusion [24], is an
attractive idea, owing to the high quality of the output im-
ages. However, enforcing a coherent style on the generated
images is not straightforward. Describing the style in the
input textual prompt is often insufficient to obtain images
in the desired style. As a consequence, the model needs to
be fine-tuned. Yet, current approaches for fine-tuning Stable
Diffusion to a particular style suffer from one or more of the
following limitations: results can be far from aesthetically
pleasing [40], results may not match the desired style pre-
cisely [38, 39], the method may require impractical amounts
of data and computational resources [46, 47], or fine-tuned
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models may undergo catastrophic forgetting [36].
To generate images, Stable Diffusion uses a U-Net [25]

to progressively denoise a tensor in the latent space of a
Variational Auto-Encoder (VAE) [13]. This latent tensor is
initially sampled from a standard Gaussian distribution. The
U-Net is conditioned on a textual prompt, preprocessed by
a CLIP text encoder [23], to iteratively denoise the noisy
latent tensor. Finally, the denoised latent tensor is passed
through the VAE decoder to obtain the generated image.

We observe empirically that the initial latent tensors in-
fluence the style and layout of generated images. Images
generated with the same initial latent tensor and different
textual prompts often lead to images with shared attributes,
such as similar colors, brightness, and object positioning.
We therefore hypothesize that the standard Gaussian distri-
bution, from which the initial latent tensors are sampled,
prevents generating images in a desired style.

We propose Diffusion in Style, a new method for adapt-
ing Stable Diffusion to a target style. The key idea behind
Diffusion in Style is to start the denoising process with style-
relevant initial latent tensors. We obtain the style-specific
distribution of initial latent tensors by simply estimating the
element-wise mean and standard deviation of the latent en-
codings of a small set of target style images. This leaves
us, in a second step, with a simple fine-tuning that requires
orders of magnitude fewer images and/or training iterations
than the previous approaches. Diffusion in Style generates vi-
sually pleasing results and does not suffer from catastrophic
forgetting. The highlights of Diffusion in Style are:

(1) To our knowledge, it is the first method that modifies
the initial latent distribution for style adaptation.

(2) Diffusion in Style requires only a small amount of
images from the target style, typically 50 to 200. This opens
the door to many practical applications where thousands of
images of the desired style might not be available. Through
minor modifications presented in Section 6, our method can
also work with as few as 3 target style images.

(3) Diffusion in Style is computationally efficient. Fine-
tuning the U-Net on the style-specific distribution takes less
than 20 minutes on a Tesla V100 GPU.

We evaluate Diffusion in Style quantitatively and qual-
itatively, and compare it to existing alternatives: prompt
engineering, classical fine-tuning [36], LoRA-based fine-
tuning [10, 42], and state-of-the-art image translation [2].
As presented in Figures 6, 7, and 8, Diffusion in Style consis-
tently outputs better qualitative results than prior art.

2. Related Work

2.1. Latent space statistics for style representation

The style of a set of images can be assessed using statistics
or correlations between features of a neural network, as
widely done in neural style transfer works [6, 11, 12, 31].

The style can be thought of as the feature distribution [15],
for example, mean and covariance of deep features of an
Inception model [30] trained on style classification [32] or
mean and variance of features in a VGG model [22, 29].

In our work, we use the element-wise mean and variance
of the latent tensors as a prior of the style. In a second step,
Stable Diffusion is fine-tuned on target style images, which
is much more efficient to do using our style prior.

2.2. Controlling the style of Stable Diffusion

Adapting Stable Diffusion to a particular style is typically
done by prompt engineering, or by fine-tuning the U-Net on
a set of target style images.

Prompt engineering. A natural way to influence the style
of the generated images is to describe the style in the textual
prompt. Modifier words or sentences [21] are typically added
to the prompts. Examples of these are names of artists, e.g.,
“Alphonse Mucha”; art forms, e.g., “#pixelart”; visual art
types, e.g., “in the style of a cartoon”; camera parameters,
e.g., “Polaroid” or “80mm Sigma f/1.4”; etc. But text alone
frequently falls short of accurately describing a desired style.
Furthermore, this approach utterly fails in straightforward
scenarios such as “on a white background” [34].

Textual Inversion [5] introduces a new way of prompt en-
gineering, by way of learning new “words” from a small set
of exemplar images. To generate images of a specific concept
or particular style, Textual Inversion optimizes the vocab-
ulary strategy of new tokens in a frozen diffusion model.
However, akin to the prompt engineering technique, this ap-
proach is limited by text embedding’s capacity to capture the
style characteristics. Since the U-Net is frozen, the output is
also confined to the model’s initial output domain [26], and
hence, may not accurately match the intended style.

Fine-tuning Stable Diffusion. It is possible to fine-tune
the U-Net of Stable Diffusion on a set of images [36], but it
takes an extensive amount of computational power or images.
To cite a few, Waifu Diffusion v1.4 [46] and OpenJourney
v2 [47], required tens of thousands of target images and
underwent fine-tuning for up to almost a quarter million iter-
ations. When the disparity between the target style and the
natural image domains is too big, classical fine-tuning is also
not sufficient. For instance, Text-To-Pokemon [38] was fine-
tuned for 15k iterations, with a batch size of 4, on the 833
images [16, 35, 37] that all have a white background. But
the images it generates frequently lack white background.

To save computational resources, more parameter-
efficient fine-tuning methods, such as LoRA [10], can be
used to reduce computational resources. Nonetheless, fine-
tuning based on LoRA [42] matches the style less pre-
cisely [39] than usual fine-tuning.

With 3 to 5 examplar images, one can fine-tune Stable
Diffusion to specific objects or people using a method called
DreamBooth [26]. However, using it for style adaptation is
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not covered by the original paper [26] and is more challeng-
ing because the optimal settings and regularization images
for that case remain unclear. While DreamBooth initially
requires about 1000 iterations and 3-5 images, some models
tuned with DreamBooth on particular styles required thou-
sands of target style images and up to 400k iterations [41].

Gradient guidance. Gradient guidance is a technique to
influence the generated images to have desired characteris-
tics. It entails using a frozen auxiliary model, for instance,
an image classifier [4] or a CLIP model [20]. The gradient
of the score predicted by the auxiliary model is incorporated
into the noise predicted by the diffusion model [4] at each
denoising step, influencing image generation. Because of
forward and backward passes on the auxiliary model, gen-
eration is significantly slower compared to without gradient
guidance. Pan et al. [22] propose a similar technique with
a style feature function as the auxiliary model. They are
able to generate images in desired styles with the GLIDE
diffusion model [20]. However, we were unable to obtain
comparable results with this technique on Stable Diffusion.
We hypothesize that the initial latent tensors might influence
the generated images more strongly with Stable Diffusion.

Towards our approach. As observed empirically [33],
images generated with Stable Diffusion from the same initial
latent tensor often share attributes, such as similar colors and
object positioning. Additionally, Meng et al. [18] show it is
possible to maintain some attributes of a reference image by
denoising a noisy version of the reference image instead of
a random initial latent tensor. This requires using the lowest
timesteps only. Given all the above observations, we foresee
that, in Stable Diffusion, the standard noise distribution,
from which the initial latent tensors are sampled, prevents
generating images in a desired style, and should be adapted
to a style-specific noise distribution.

2.3. Modifying the forward diffusion process

Bansal et al. [1] show that diffusion models can be gen-
eralized to image deteriorations other than noise in the for-
ward diffusion process. These include, for instance, blurring,
masking, or pixelating. Daras et al. [3] show that such types
of image corruption can result in faster image generation
and better image quality than regular image diffusion models
with Gaussian noise. These approaches re-train diffusion
models to perform other reverse diffusion tasks, e.g., deblur-
ring or super-resolution instead of denoising.

Instead of changing the type of image degradation, e.g.
to pixelation or blur, we propose to change standard noise
distribution N (0d, Id×d) to a style-specific noise distribu-
tion N (µstyle,Σstyle). By not changing the type of forward
diffusion, but only the location µ and covariance Σ of the
noise distribution, we avoid re-training Stable Diffusion from
scratch, and fine-tune it to the style-specific distribution for
only 1000 iterations and a small set of images.

3. Diffusion in Style
In Stable Diffusion, the forward diffusion, i.e., the nois-

ing process, degrades the training data using noise sampled
from zero-mean identity-covariance multivariate Gaussian
distribution, N (0d, Id×d), in the latent space of a VAE with
d = 4× 64× 64 dimensions. As discussed, style adaptation
of Stable Diffusion is currently done with the same noise
distribution, as visualized in the first row of Figure 2. We
present here a simple way to achieve superior results, which
is also computationally inexpensive. The key idea of our
two-step method is to use a style-adapted noise distribution
for noising and for sampling the initial latent tensors. Our
method adapts the initial latent distribution to the style. By
requiring relatively few target images, typically 50 to 200,
individual artistic styles can be leveraged.

µ = 0d

Σ = Id×d

µ = µstyle
Σ = Σstyle

z0
ϵ−−−−→ z333

ϵ−−−−→ z667
ϵ−−−−→ z1000 ϵ ∼ N (µ,Σ)

Figure 2. Conventional versus style-adapted forward diffu-
sion, visualized in the image space via the VAE decoder D.
Conventional forward diffusion process for Stable Diffusion
(top row), and our forward diffusion process adapted to the
48 Famous Americans style (bottom row). z0 ∈ Rd is the
VAE encoding of an original image from the target style.
z0 is degraded with a noise ϵ ∼ N (µ,Σ) to obtain more
and more noisy latent tensors zt, t ∈ [1 . . T ]. Targeting
the 48 Famous Americans style, we obtain better results when
the model is fine-tuned with the diffusion process of the bottom row.

3.1. Step 1: Adapting the noise distribution

In the first step, we obtain a noise distribution that is
better suited for the target style. Our style-adapted noise
distribution N (µstyle,Σstyle) has a location µstyle ∈ Rd and
a diagonal covariance matrix Σstyle = diag(σ2

style) ∈ Rd×d

with diagonal σ2
style ∈ Rd. In other words, each element

ϵk of the noise ϵ ∈ Rd is sampled from N (µstyle,k,σ
2
style,k),

independently of other elements. Note that, in the original
Stable Diffusion, the location µ ∈ Rd equals to 0d and the
covariance matrix Σ ∈ Rd×d equals to Id×d. We compute
values for the style-adapted location µstyle and the diagonal
σ2

style of the covariance matrix from a set of target style
images Istyle. To this end, we encode the images i ∈ Istyle of
the target style with the VAE encoder E , getting the latent
tensors E(i) ∈ Rd. We then estimate the mean and variance
of each element of those latent tensors, to obtain the new
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location µstyle and covariance matrix diagonal σ2
style:

∀k ∈ [1 . . d],µstyle,k = Meani∈IstyleEk(i)
∀k ∈ [1 . . d],σstyle,k = Stdi∈IstyleEk(i)

(1)

As simple as it is, sampling the initial latent tensors ẑT from
the noise distribution N (µstyle,Σstyle) helps style-adapting
Stable Diffusion very efficiently. As we illustrate in Fig-
ures 2 and 3, it can be understood intuitively that our adapted
noise distribution better represents the target style, while the
original noise distribution N (0d, Id×d) better represents the
entire set of original training images. Thus, it makes sense
to sample the initial latent tensor from the noise distribution
adapted to the style rather than from the style-agnostic one.

Target style D(ẑT ) with ẑT ∼ N (µstyle,Σstyle)

Style 1:
Anime
sketch
[43]

Style 2:
Few-shot
Pokemon

[16, 35, 37]

Style 3:
48 Famous
Americans

[19, 44]

Original Stable
Diffusion
(no style

adaptation)

Figure 3. Samples from the style-specific noise distributions,
visualized in the image space via the VAE decoder D. For each
style, we show three initial latent tensors ẑT randomly sampled
from the adapted noise distribution N (µstyle,Σstyle). Additional
styles and visualizations of µstyle are also presented in Figure 9.

3.2. Step 2: Fine-tuning the U-Net

In the second step, we fine-tune the U-Net on the target
style images, using the adapted noise distribution for the
forward diffusion process, as illustrated in the second row of
Figure 2. We follow regular training strategy, except we sam-
ple noise from the adapted noise distributionN (µstyle,Σstyle)
instead of N (0d, Id×d). This makes the fine-tuning require
orders of magnitude fewer target style images and iterations.

To fine-tune the U-Net, we need image captions. In our
experiments, we obtain the captions with BLIP [14, 37].
The fine-tuning strategy is then similar to the training of
Stable Diffusion. More precisely, at each iteration, the VAE

encodings of the images of the batch are computed using
the VAE encoder z0 = E(i). Noisy latent tensors zt =√
ᾱt z0 +

√
1− ᾱt ϵ are generated with a random time-step

t and a random noise ϵ ∼ N (µstyle,Σstyle). The function ᾱt

is defined by the noise schedule of the diffusion model. The
U-Net is given a noisy latent tensor zt, the random time-step
t, and the image caption. It outputs a predicted noise ϵ̂. An
MSE loss between the predicted noise ϵ̂ and the true noise ϵ
is used to optimize the parameters of the U-Net.

3.3. Inference

To generate an image with Diffusion in Style, we sample,
as explained before, the initial latent tensor ẑT from the
adapted noise distribution N (µstyle,Σstyle). The fine-tuned
U-Net then progressively denoise this latent tensor. Among
a few other parameters, one can select the textual prompt
and the guidance weight used to generate the image.

The guidance weight is for classifier-free guidance [9],
which most large-scale text-to-image models rely on. Espe-
cially, at each inference step, two noise predictions ϵ̂prompt
and ϵ̂uncond are made by conditioning the U-Net with and
without the textual prompt. The two predictions are com-
bined into one that is more strongly aligned with the textual
prompt. More precisely, the guidance weight w > 1 am-
plifies the direction dprompt = ϵ̂prompt − ϵ̂uncond, leading to
ϵ̂ = ϵ̂uncond + w · dprompt. This is obtained at the expense of
style matching, as we show in Section 4.2.

4. Experiments and results
4.1. Images generated with Diffusion in Style

We show images generated with Diffusion in Style in
Figures 1 and 4 for six different styles. Note that the objects
in the generated images do not need to be present in the
target style images.

The first style consists of anime sketches [43]. The sec-
ond style consists of images from the few-shot Pokemon
dataset [16, 35, 37]. The third style consists of 190 comic
panels from 48 Famous Americans (1947) [44], extracted
with annotations from the DCM772 dataset [19]. The fourth
style consists of 116 paintings tagged as symbolism art from
Salvador Dalı́ in the WikiArt dataset [28, 45]. The fifth
style consists of 67 pictograms. Finally, the sixth style is
composed of 3 paintings by Vincent van Gogh, namely Café
Terrace at Night (1888), Starry Night Over the Rhône (1888),
and The Starry Night (1889). To obtain the six presented
Diffusion in Style models, we use the number of target style
images as follows: 50 images from the training set for the
anime sketch style, 50 images for the few-shot Pokemon style,
all 190 images for the 48 Famous Americans style, all 116
images for the style of Dalı́, all 67 images for the pictograms
style, and all 3 images for Starry Night style. For the Starry
Night style, we perform some modifications to our method,
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Style 4:
Salvador Dalı́

[45]

Style 5:
Pictograms

Style 6:
Starry Night

[45]

A side view of an
owl sitting in a

field.

A panda making
latte art.

Rainbow
coloured
penguin.

A cross-section
view of a brain.

A mouse using a
mushroom as an

umbrella.

A confused
grizzly bear in
calculus class.

Figure 4. Style adaptations induced by Diffusion in Style for styles 4 to 6: Salvador Dalı́ (first row), pictograms (middle row), and Starry
Night (bottom row). Each column is generated from the textual prompt indicated at the bottom. Note that the adaptation of Stable Diffusion
to the sixth style, Starry Night, is performed with only 3 images from the target style. Styles 1 to 3 are presented in Figure 1.

as explained in Section 6. For the anime sketch style re-
sults in Figure 1, we increased the exposure of the generated
images as post-processing for better visual presentation.

Figure 9 further show uncurated results, including 3 addi-
tional styles. Additional applications, such as in-style image
editing, are also presented in Appendix F.

4.2. Trade-off between style and content

At inference time when generating images with Stable
Diffusion, recall that one can choose a guidance weight
for classifier-free guidance [9]. This guidance weight is
particularly useful with Diffusion in Style: it controls how
close the generated images are to the target style or to the
textual prompt. For low guidance weights, the generated
images are closer to the target style but do not match the
textual prompt well. For high guidance weights, the images
resemble the textual prompt more but the style might suffer.
We illustrate this in Figure 5. Similar to the original Stable
Diffusion, we also observe that the image quality is degraded
for very large guidance weights, as shown in the right-most
columns of Figure 5. Note that, the optimal guidance weight
may differ depending on the style. In the results we present
in this paper, we manually select one guidance weight for
each of the six styles. In practice, it is worthwhile to generate
each image with different guidance weights, and visually
choose the best one.

4.3. Visual comparison with prior art

For the anime sketch and few-shot Pokemon styles, we
qualitatively compare images generated by Diffusion in Style
with alternative approaches. For the remaining styles, no
methods are suitable for comparison to our knowledge. We
thus do not discuss them within our qualitative comparisons,
but hope the reader still notices the high quality of the style
adaptations in the Figures 1, 4, and 9.

Style 1: Anime sketch. In Figure 6, we visually com-
pare our Diffusion in Style model with the original Stable
Diffusion model, with prompt engineering, and with a SoTA
anime-sketches image translation model [2].

For prompt engineering, we append “In the style of an
anime drawing.” after each prompt. We provide more vari-
ations of prompt engineering in Appendix D.1. For image
translation, we apply the Informative Drawings model [2]
on top of images generated by the original Stable Diffusion.
Note that Informative Drawings was trained for 30 epochs
on the full training set of the Anime Sketch dataset [43], that
is 14k images, while Diffusion in Style is only fine-tuned for
1000 steps on 50 of those 14k images.

It can be seen that only Diffusion in Style and Informative
Drawings [2] consistently generate images in the desired
style. Compared to Diffusion in Style, image translation has
the drawback that generated images appear post-processed
and not directly generated in the desired style.

Style 2: Few-shot Pokemon. In Figure 7, we visually
compare our Diffusion in Style model with the original Stable
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1.0 1.5 2.0 3.0 4.0 5.0 6.0 7.0 8.0 10.0 15.0 20.0←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
low guidance guidance weight w high guidance

Figure 5. Trade-off between style and content. With the six models (one per row), we generate images from the prompt “Rainbow coloured
penguin.” with different guidance weights indicated at the bottom of each column. Low guidance weights lead to images that are closer to
the target styles, but do not match the prompt well, while high guidance weights lead to images that are closer to the prompt, but do not
match the target styles as precisely. A similar observation can be made with any other prompt.

Diffusion in Style
(ours)

Original Stable
Diffusion
(no style-

adaptation)

Prompt
engineering

Stable Diffusion
+ Informative
Drawings [2]

A side view of
an owl sitting

in a field.

A panda
making latte

art.

Rainbow
coloured
penguin.

A cross-
section view
of a brain.

Figure 6. Qualitative comparison on the anime sketch style.
We visually compare our Diffusion in Style model (first row), the
original Stable Diffusion model (second row), prompt engineering
(third row), and Informative Drawings [2] with Stable Diffusion
(fourth row). In each column, we generate images from the textual
prompt indicated at the bottom. For prompt engineering, we add
“In the style of an anime drawing.” after each prompt.

Diffusion model, with prompt engineering, with classical
fine-tuning [38], and with LoRA-based fine-tuning [39].

For prompt engineering, we append “In the style of Poke-
mon, white background.” after each prompt. For classical
fine-tuning, we compare with the Text-To-Pokemon [38]
model, which was fine-tuned for 15k steps on all 833 images
of the few-shot Pokemon dataset [16, 35, 37], while Diffusion
in Style is only fine-tuned for 1000 steps on 50 of those 833
images. For LoRA-based fine-tuning [10, 42], we compare
with Pokemon LoRA [39], which was fine-tuned for 100
epochs on all 833 images.

It can be seen that only Diffusion in Style consistently
replicates the style of the target style images. Images in the
few-shot Pokemon dataset all have white backgrounds. This
is not always the case with the outputs from prompt engi-
neering, Text-To-Pokemon [38], and Pokemon LoRA [39].
However, it is the case with Diffusion in Style.

5. Quantitative evaluation
Following the usual evaluation strategy of text-to-image

models [27], we evaluate Diffusion in Style models using
Pareto curves of CLIP and FID scores along a range of
guidance weights. The results are given in Figure 8.

CLIP score. The CLIP score is measured by the ViT-
B/32 model of CLIP [23] and represents the alignment be-
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Diffusion in Style
(ours)

Original Stable
Diffusion
(no style-

adaptation)

Prompt
engineering

Lengthy classical
fine-tuning (Text-
to-Pokemon [38])

LoRA
fine-tuning
(Pokemon

LoRA [39])

A side view of
an owl sitting

in a field.

A panda
making latte

art.

Rainbow
coloured
penguin.

A cross-
section view
of a brain.

Figure 7. Qualitative comparison on the few-shot Pokemon style.
We visually compare our Diffusion in Style model (first row), the
original Stable Diffusion model (second row), prompt engineering
(third row), the Text-To-Pokemon model [38] (fourth row), and
the Pokemon LoRA model [39] (fifth row). In each column, we
generate images from the textual prompt indicated at the bottom.
For prompt engineering, we add “In the style of Pokemon, white
background.” after each prompt.

tween the textual prompts and the generated images.
Normalized FID score. As done by Wright et al. [32] to

evaluate style transfer models, we use images from the target
style instead of using a set of realistic images to compute the
FID score [8] over the features of an Inception model [30]
trained on ArtFID dataset [32]. Additionally, to improve in-
terpretability, we normalize the FID score for each guidance
weight with the FID scores of the original Stable Diffusion.
Please see Appendix B.2 for more insight.

Style 1: Anime sketch. For the anime sketch style, the
normalized FID is computed with the 3546 images from the
validation set of the anime sketch dataset. In Figure 8, Dif-
fusion in Style is compared to the original Stable Diffusion,
prompt engineering, and the image translation method, as
explained in Section 4.3. Diffusion in Style dominates other
methods in terms of style-matching. Only for high guidance
weights, the image translation method, Informative Draw-
ings [2], surpasses Diffusion in Style quantitatively in both
prompt-alignment and style-matching.

Style 2: Few-shot Pokemon. For the few-shot Pokemon
style, the normalized FID is computed with the 833 images
from the few-shot Pokemon dataset. In Figure 8, Diffusion in
Style is compared to the original Stable Diffusion, prompt en-

gineering, classical fine-tuning, and LoRA-based fine-tuning,
as explained in Section 4.3. Diffusion in Style dominates all
alternatives in terms of style-matching, it also consistently
surpasses Text-To-Pokemon [38] in both style-matching and
prompt-alignment. A user-study for styles 1 and 2 is pre-
sented in the supplementary material, Appendix E.

Styles 3 to 5: 48 Famous Americans, Salvador Dalı́,
and pictograms. For the 3 other styles used in Figure 8,
the normalized FID is computed with the set of target style
images. We did not find existing fine-tuned models for these
styles, hence we only compare Diffusion in Style to the origi-
nal Stable Diffusion, and to prompt engineering. Details and
more variations of prompt engineering are given in Appendix
D.1. For those 3 styles, Diffusion in Style consistently better
matches the desired style, as shown by a lower normalized
FID.

6. Diffusion in Style with very few images
Diffusion in Style works well with 50 to 200 target style

images, which is the case for the first five styles presented in
this paper, as detailed in Section 4.1. We refer to Appendix
C for an ablation study on the required number of target style
images.

To make Diffusion in Style work with even fewer images,
e.g., n = 3, we apply the following modifications to our
method. We further impose the location µstyle ∈ R4×64×64

and the covariance diagonal σ2
style ∈ R4×64×64 to be con-

stant across the spatial dimensions of the latent space. We
therefore compute their values, not only from n samples,
which may provide an unreliable estimate of the style prior,
but from 64× 64× n samples, as follows:

∀k1 ∈ [1 . . 4],∀k2, k3 ∈ [1 . . 64]× [1 . . 64],

µstyle,(k1,k2,k3) = Mean i∈Istyle
j2∈[1. .64]
j3∈[1. .64]

E(k1,j2,j3)(i)

σstyle,(k1,k2,k3) = Std i∈Istyle
j2∈[1. .64]
j3∈[1. .64]

E(k1,j2,j3)(i)
(2)

In other words, we enforce the noise distribution to be
spatially constant. Furthermore, to avoid fine-tuning the
U-Net with only n captions, which could lead to catastrophic
forgetting, we generate with BLIP [14], not only 1 but 30
possible captions per image. At fine-tuning time, the 30
captions are used alternatively as conditioning for the U-Net.
Finally, instead of fine-tuning for 1000 iterations, we stop at
250 iterations, which amounts to less than 5 minutes of fine-
tuning. The Diffusion in Style model presented for the sixth
style, Starry Night, was obtained with these modifications.

7. Ethical considerations and limitations
Diffusion in Style inherits the limitations and biases of

Stable Diffusion. Image generation is slower when compared
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Figure 8. Curves of FID and CLIP scores along a range of guidance weights. Evaluation is performed with a range of guidance weights
({1.0, 1.5, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 10.0, 15.0, 20.0}), leading to a curve for each model. For each point in the figure, 800 images
have been generated with the corresponding model and guidance weight. These 800 images correspond to 4 images for each of the 200
prompts from DrawBench [27]. All 800 images are generated with different initial latent tensors, but the same initial latent tensors are used
across the different evaluation points. The left-most point of each curve always corresponds to a guidance weight of 1.0. The overall trend
for Diffusion in Style, a L-shape, confirms the trade-off between style and content observed in Section 4.2. Increasing the guidance weight
typically improves the prompt-alignment, as measured by the CLIP score, at the cost of degrading the style-matching, as measured by the
normalized FID score. A user study, presented in Appendix E, corroborates with the CLIP/FID scores presented here.

to GANs [7]. In our experiments, each image was generated
with 50 PLMS sampling steps [17] on a V100 GPU, which
amounts to around 4 seconds per image. The models reflect
language and social biases that were present in their training
data. Works on text-to-image models might lead to potential
misuse. In particular, our work should not be used to adapt a
model to generate misinformation or any prohibited content.

We acknowledge that it is sometimes difficult to find the
exact prompt, the guidance weight, and other parameters, to
reach the expected result. A current limitation of our work
is the manual selection of the guidance weight. The optimal
guidance weight does not only depend on the style but also
on the textual prompt. For instance, to generate images in
the pictograms style in Figure 4, we selected a guidance
weight of 15.0, which gives good results for most prompts,
but adds colors to the Rainbow coloured penguin. This does
not match the desired style precisely. As shown in Figure 5,
a lower guidance weight, 3.0, would be more adapted for this
exact prompt if we want to generate colorless pictograms.

Our Diffusion in Style models also inherit from Stable
Diffusion another limitation: generating images containing
text. In particular, we notice, in Figures 1 and 9, that the
text generated by Diffusion in Style in speech bubbles for the
comics styles is illegible.

Visual examples of such failure cases and limitations are
included in Appendix G.

8. Future work
In future work, we aim to understand more theoretically

why the original initial latent distribution N (0d, Id×d) pre-
vents good style adaptation results. Our current method
requires fine-tuning the U-Net to adapt it to the new distri-
bution N (µstyle,Σstyle). We would like to find initial latent
tensors that are both style-specific and close to the original
distribution, which may allow us to skip this fine-tuning step.

9. Conclusion
In this paper, we present Diffusion in Style, a new method

for style adaptation of Stable Diffusion. We find style-
specific initial latent distributions by computing the element-
wise mean and variance of the VAE encodings of a small
set of target style images. Stable Diffusion is then easily
fine-tuned to work with these new style-specific initial latent
tensors, producing images in the desired style. Our method,
Diffusion in Style, is able to generate diverse objects, even if
these objects were not present in the target style images, and
generate superior results than prior art, as we demonstrate
qualitatively and quantitatively. Diffusion in Style is a fast
and data-efficient method for style adaptation of Stable Dif-
fusion, which opens the door to many practical applications.

Acknowledgements: This work was supported by Innosu-
isse grant 48552.1 IP-ICT. The authors thank Athanasios
Fitsios and the members of the Image and Visual Represen-
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Figure 9. Number of target style images, locations and samples of the style-adapted initial latent distributions, and uncurated images
generated by our proposed Diffusion in Style. For each of the nine different styles, one per column, we show, in the first row the number
of target style images. The location µstyle of the style-specific initial latent distribution N (µstyle,Σstyle) computed in the first stage of our
method, is shown in the second row. The third row depicts a random sample ẑT from this style-specific initial latent distribution. The
remaining rows display uncurated images generated by Diffusion in Style from an empty textual prompt.
Diffusion in Style produces images that faithfully match the desired style. By adapting the initial latent distribution to the target style, we
ease the process of fine-tuning to the specific style. Generated images exhibit the specific characteristics and aesthetics of the style provided
by the user. By not conditioning or guiding the image generation at inference time, we maintain the flexibility and speed of Stable Diffusion.
Our approach is a practical and reliable solution for adapting Stable Diffusion to different styles.
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