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Abstract

In this paper, we introduce a novel approach to novel
object captioning which employs relative contrastive learn-
ing to learn visual and semantic alignment. Our approach
maximizes compatibility between regions and object tags in
a contrastive manner. To set up a proper contrastive learn-
ing objective, for each image, we augment tags by lever-
aging the relative nature of positive and negative pairs ob-
tained from foundation models such as CLIP. We then use
the rank of each augmented tag in a list as a relative rel-
evance label to contrast each top-ranked tag with a set of
lower-ranked tags. This learning objective encourages the
top-ranked tags to be more compatible with their image and
text context than lower-ranked tags, thus improving the dis-
criminative ability of the learned multi-modality represen-
tation. We evaluate our approach on two datasets and show
that our proposed RCA-NOC approach outperforms state-
of-the-art methods by a large margin, demonstrating its ef-
fectiveness in improving vision-language representation for
novel object captioning.

1. Introduction

Describing novel objects unseen in training data is a
highly desired capability for a real-world image captioning
model. Conventional image captioning models [4, 20, 28]
often fail to describe novel objects because they only cover
limited visual concepts and generalize poorly to images in
the wild [26]. To overcome this limitation, approaches that
rely on object detection as the external resource [7,8,13,18,
20, 25, 27, 33, 35] have been widely explored and demon-
strated breakthroughs in vision-language (VL) understand-
ing.

Although object detection models (e.g., Faster
RCNN [23]) have been improved to recognize a wide
range of objects including novel ones like zero-shot object
detection [14], using object detection in novel captioning
models brings a new challenge. VIVO [13] leverages extra
object tags to pre-train a visual vocabulary and help image
captioning generalize to new categories. NOC-REK [29]

(Train)

(b): Inference

NOC-REK: A raccoon sitting on top of a tree branch. 
(panda, tree, branch)

VIVO: A raccoon sitting on a tree branch. (panda, tree, 
branch)
Ours: A red panda sitting in a tree branch (panda, tree, 
branch)

NOC-REK: panda, animal, chunk, tree, branch.
VIVO: panda, bear, chunk, tree, branch, animal, 
raccoon, hedge, food, raccoon.

Ours: panda, animal, tree, branch, chunk… / hedge, 
raccoon, sky, advertisement, water…

(a) :Training

Figure 1. An illustrative example of our method to lever-
age relative semantic relevance to achieve modality alignment.
Our method could give accurate captions "A cute red panda
sitting in a tree branch" conditioned on the objects "red
panda"while VINVL+VIVO generates a wrong caption "A cute
raccoon sitting in a tree branch". This inference result
shows that our method can differentiate some confusing objects
and generate accurate captions for novel objects when the object
detection is well aligned with other modalities.

tries to augment object tags in the training stage based on
the similarity between region and word. Such methods sim-
ply concatenate regions, object tags, and caption features as
input to a Transformer-based model and use masked token
reconstruction to implicitly learn an alignment between
vision and language. Although such an alignment can help
bring regions and words of the same concept closer, it lacks
an effective mechanism to push away irrelevant concepts.
As a result, it still makes mistakes on some confusing
concepts, as shown in Figure 1.

Different from previous methods, this study aims to
learn visual and semantic alignment in a contrastive man-
ner. Gupta et al. [10] showed that modality alignment could
be achieved by maximizing the information lower bound
between an image and its object tags. That is, given pairs of
image and object tags, we can maximize the compatibility
between tags and their attention-weighted region represen-
tations, compared to regions and non-corresponding tags.
However, there are two critical problems that need to be
further addressed: 1) how to effectively generate contrastive
tags (augmented tags) that are closely relevant to an image,
and 2) how to design a proper contrastive learning objective
that allows the model to effectively leverage the contrastive
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tags to align vision and semantics.

To tackle the first problem, we utilize CLIP [22] to create
a list of contrastive tags which are closely linked to an im-
age and contain global structural information and high-level
concepts describing scenes. This approach aids in the dis-
covery of useful tags that are essential for contrastive learn-
ing. To address the second problem, a proper contrastive
learning objective needs to be explored. The major chal-
lenge here is that the augmented contrastive tags are inaccu-
rate and inevitably noisy. We cannot simply treat one tag as
positive and others as negative to perform contrastive learn-
ing, because the augmented tags might be highly correlated
or similar to each other. To tackle this problem, we leverage
the relative relevance, rather than the absolute relevance, of
the augmented tags, which is more robust to data noise.

Specifically, given an image, for each of its labeled ob-
ject tags, we generate a ranked list of contrastive tags using
CLIP. We regard the rank of each augmented tag as its rel-
ative semantic relevance with the image. In general, the
top-ranked tags are assumed to be more relevant to the im-
age than the lower-ranked tags. We divide the list into two
parts: the (relatively) relevant part with higher rank and the
(relatively) irrelevant part with lower rank (Figure 1 (a)).
In our proposed objective, we treat each tag in the relevant
part as positive and all tags in the irrelevant part as nega-
tive to perform contrastive learning. Note that we do not
let tags both in the relevant part contrast with each other
as they might be highly correlated concepts. In this way,
our approach weakens the strict assumption of contrastive
learning in previous works and exploits the relative ranking
in a loose form to achieve modality alignment.

We conduct experiments on the Nocaps and Held-Out
COCO datasets to demonstrate the effectiveness of RCA-
NOC. Our contributions can be summarized as follows:

• We propose Relative Contrastive Alignment (RCA)
to learn the relative semantic relevance in a loose form
by maximizing the compatibility between regions and their
relevant tags compared with regions and irrelevant tags to
achieve vision and language alignment and improve the dis-
criminative ability of the multi-modality representation.

• A method called Uncertainty-Aware Selection and
Reweighting (UASR) is proposed to estimate and exploit
the uncertainty of each contrastive sample to mitigate the
negative effect brought by noisy tags. UASR can effectively
prioritize highly reliable samples and demote false positives
and false negatives.

• We validate the proposed method on the Nocaps and
Held-Out COCO benchmarks, which outperforms other
state-of-the-art methods by a large margin.

2. Related Work

3. Related work
Novel object captioning aims to describe images with

objects that are unseen in the training stage (we define these
objects as novel objects) where many methods. [7,8,13,18,
20,22,27,31,33,35] have been proposed. Early works such
as Hendricks et al. [12] and Venugopalan et al. [27] uti-
lize unpaired labeled image and sentence data to enhance
semantically visual concepts. Recent studies propose to ex-
plicitly leverage the object detection results for NOC, Lu
et al. [20], Wu et al. [33], and Demirel et al. [8] fill the
generated template sentence with objects detected by ob-
ject/novel object detectors. Chen et al. [7] combine object
detector and human attention to identify novel objects. In
addition, Li et al. are the first to utilize semantics in VLP
tasks, which are further extended by Zhang et al. [35]. Hu et
al. [13] built upon [35] and propose to leverage extra region-
tag pairs to conduct pretraining. Duc et al. [29] tried to aug-
ment object tags in the training stage based on the similarity
of regions and objects.

However, most aforementioned methods for NOC ignore
the misalignment problem of object tags, thereby failing to
fully exploit the semantic relationship between vision and
language (Figure 1), which we argue is crucial to the qual-
ity of generated captions. In this paper, we propose a simple
but effective contrastive learning objective to learn the rela-
tive semantic relevance in a loose form where the object tags
could be explicitly aligned with their corresponding image
feature representations in a semantic space.

Contrastive Learning aims to learn discriminative rep-
resentations to distinguish an image from others. Many
methods [6,10,11,16,17,22,32] have shown their effective-
ness. For example, Chen et al. [6] proposed to learn visual
representations by maximizing agreement between differ-
ently augmented views of the same image via a contrastive
loss. He et al. [11] proposed Momentum Contrast (MoCo)
for unsupervised visual representation learning. Wei et al.
[32] utilized contrastive learning in the detection task. Li et
al. [16] focused on the problem of contextual outpainting.
Gupta et al. [10] proposed a method CPG1 to find hard neg-
ative words by replacing a word in a caption.

Other data-driven studies such as CLIP [22] and
ALIGN [17] focus on learning a corresponding relative rela-
tionship from massive web data. CLIP [22] predicts which
text goes with which image and learns a relative image-
text corresponding relationship from broad web data with
noisy supervision. ALIGN [17] further scales up CLIP by
leveraging a noisy dataset that covers more than one billion
image-text pairs. These methods achieve remarkable results
but require massive fully-annotated data, which are difficult
to obtain.

1For better illustration, we use the abbreviation CPG to denote the pa-
per "Contrastive Learning for Weakly Supervised Phrase Grounding" [10]
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“A close up of a small animal on a tree branch”

(a) Training: learn discriminative feature

Red panda

Multi-layer Transformer

`

Multi-layer Transformer

[MASK], branch, tree[CLS] A close up of a small [MASK]  
on a tree branch [SEP]

……

Result: “A red panda sitting in a tree branch"
(b) Inference: novel object captioning

panda, tree, branch[CLS] a [MASK]

Figure 2. The main pipeline of our proposed RCA-NOC, including training and inference: In addition to the normal caption loss LG in the
training process, we also compute the cross-modality and inner-modality loss Lcross and Linner in Eq. 22 and Eq. 23 by contrasting the
positive tags against the negative tags. The corresponding relationship is denoted in green and red line separately. During training, the input
is a concatenated sequence of words—ROI tags—ROIs and augmented contrastive tags. The training loss comprises caption loss (with
[MASK] in words for reconstruction) and contrastive learning loss (with [MASK] in ROI tags token for indicating the specific positions
where augmented tags are inserted). Augmented tags replace certain ROI tags and are encoded into contrastive tag feature embeddings
for comparison with region and caption embeddings. During prediction, the input is a concatenated sequence of ROI tags—ROIs without
additional retrieval steps.

4. Proposed Methods
We propose to enhance the modality alignment by ex-

plicitly injecting visual semantics. These semantics are ex-
tracted for each image, obtained with existing foundation
models such as CLIP.

There are two motivations behind our approach. First,
by maximizing the compatibility between regions and their
relevant tags compared with regions and irrelevant tags, we
could not only learn vision-semantic alignment and improve
the discriminative ability of the multi-modality representa-
tion, Second, we introduce a relative contrastive learning
objective that considers the relative relationships between
positive and negative examples, rather than using absolute
prototype-contrastive learning methods. This approach is
more generalized and can be easily integrated into any ex-
isting NOC method.

4.1. Visual Semantics Extraction

Different from other approaches (e.g., [13, 18]) that ex-
tract object tags using pretrained object detectors, we use
an off-the-shelf foundational model to extract more diverse,
larger and semantically meaningful set of visual seman-
tics. We show in section 6, that this approach helps to cap-
ture high level and global semantics describing the scenes,
which are hard to obtain with other approaches (e.g. object

detectors).

We use a pretrained CLIP (ViT-B/16) model to obtain
the embeddings of all the images and the extracted seman-
tics. For each image, we compute its cosine similarity with
all the embedded semantics and select the top M similar
semantics as augmented tags T = {tl}Ml=1. The augmented
tags will be ranked using global (image-level) cosine sim-
ilarity p(tl). Then we utilize the rank of each augmented
tag in T as a relative relevance label. In general, the top-
ranked tags are assumed to be more relevant to the image
than the lower-ranked tags. We divide T into positive and
negative tags: positive tags being the (relatively) relevant
tags with higher rank TP = {tPn }Kn=1 = {tl}Kl=1 and negative
tags being the (relatively) irrelevant tags with lower rank
TN = {tNl }Kl=1 = {tl}2Kl=K+1 (M = 2K).

Here we propose a simple yet effective augmentation
technique. Having a set of visual semantics extracted for
each image, instead of considering all the visual semantics
at once, we sample randomly a fraction of these augmented
tags at each iteration step. Hence, we could not only pre-
vent the model from overfitting on specific semantics and
potentially disregard the image or other semantics during
training, but also let the model see different combinations
of visual semantics, which helps to have more diversity.
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4.2. Relative Contrastive Alignment
InfoNCE [21] is a typical type of contrastive loss func-

tion used for self-supervised learning that contrasts one pos-
itive sample against a set of negative samples. CPG [10]
builds upon InfoNCE and proposes a compatibility function
for regions and a caption word. Both InfoNCE and CPG uti-
lize the absolute relevance to optimize the contrastive loss.

However, such a contrastive learning objective is hard to
optimize for object tags since they may be highly correlated
to each other. In RCA-NOC, we focus on the relative se-
mantic relevance and utilize the attention-based compatibil-
ity function to measure the relativity information for regions
and a set of object tags, which is more robust to data noise.

Specifically, we first compute the dot product for a
region-tag pair.

sjk = wT
j vk/

√
d, (1)

where wj and vk refer to the corresponding embeddings for
tag and region, and d is the feature dimension. Here, sjk
represents the similarity between the j-th tag and the k-th
region. To find a contextualized region representation for
the j-th tag, we define avj as follows.

avj =

K∑
k=1

αjkvk, (2)

where αjk =
esjk∑K

k′=1 e
sjk′

, (3)

To measure the compatibility between a tag wj and its
contextualized region representation avj , we define

ϕ(V,wj) = wT
j av

j . (4)

In this way, we can derive our cross-modality contrastive
loss function Lcross.

Lcross(V,WP ,WN ) =

− 1

K

K∑
n=1

log

(
eϕ(V,wP

n )

eϕ(V,wP
n ) +

∑K
l=1 e

ϕ(V,wN
l

)

)
, (5)

where WP = {wP
l }Kl=1 and WN = {wN

n }Kn=1 are the word
embeddings for positives/negatives TP and TN , extracted
from CLIP. ϕ() is the compatibility function defined in
Eq. 11.

This equation encourages each positive tag wP
n to be

more compatible with image regions V than all negative
tags in WN . Essentially, if tag tj is not relevant to the im-
age (negative), its representation wj should not be similar
to its contextualized region representation av

j since it would
not be able to collect good information while computing avj .
Note that we do not let two positive tags (top-ranked tags)
contrast with each other as it is hard to tell which one is
more relevant.
Inner modality Alignment. To further enhance modality
alignment, we also compute the inner-modality contrastive

loss over tag-caption pairs. The formulation for inner-
modality contrastive loss is similar to cross-modality con-
trastive loss but slightly different. We enforce contrastive
learning not to be between tags and all caption words, but
just between tags and noun caption words. This is because
a caption may have many irrelevant tokens, such as "the, a,
is", which will harm our alignment process and cause re-
dundant computational costs.

Finally, we can derive our inner-modality contrastive
loss function Linner.

ϕ(C,wl) = wT
l acl , (6)

Linner(C,WP ,WN ) =

− 1

K

K∑
n=1

log

(
eϕ(C,wP

n )

eϕ(C,wP
n ) +

∑K
l=1 e

ϕ(C,wN
l

)

)
, (7)

where this time we take noun caption words C = {ci}Pi=1

in Eq. 13 as input. By further considering inner-modality
alignment, we not only learn caption-tag semantics to con-
nect relevant caption tokens, but also enable region-caption
interactions.

5. Proposed Methods
We propose to enhance the modality alignment by ex-

plicitly injecting visual semantics. These semantics are ex-
tracted for each image, obtained with existing foundation
models such as CLIP.

There are two motivations behind our approach. First,
by maximizing the compatibility between regions and their
relevant tags compared with regions and irrelevant tags, we
could not only learn vision-semantic alignment and improve
the discriminative ability of the multi-modality representa-
tion, Second, we introduce a relative contrastive learning
objective that considers the relative relationships between
positive and negative examples, rather than using absolute
prototype-contrastive learning methods. This approach is
more generalized and can be easily integrated into any ex-
isting NOC method.

5.1. Visual Semantics Extraction

Different from other approaches (e.g., [13, 18]) that ex-
tract object tags using pretrained object detectors, we use
an off-the-shelf foundational model to extract more diverse,
larger and semantically meaningful set of visual seman-
tics. We show in section 6, that this approach helps to cap-
ture high level and global semantics describing the scenes,
which are hard to obtain with other approaches (e.g. object
detectors).

We use a pretrained CLIP (ViT-B/16) model to obtain
the embeddings of all the images and the extracted seman-
tics. For each image, we compute its cosine similarity with
all the embedded semantics and select the top M similar
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semantics as augmented tags T = {tl}Ml=1. The augmented
tags will be ranked using global (image-level) cosine sim-
ilarity p(tl). Then we utilize the rank of each augmented
tag in T as a relative relevance label. In general, the top-
ranked tags are assumed to be more relevant to the image
than the lower-ranked tags. We divide T into positive and
negative tags: positive tags being the (relatively) relevant
tags with higher rank TP = {tPn }Kn=1 = {tl}Kl=1 and negative
tags being the (relatively) irrelevant tags with lower rank
TN = {tNl }Kl=1 = {tl}2Kl=K+1 (M = 2K).

Here we propose a simple yet effective augmentation
technique. Having a set of visual semantics extracted for
each image, instead of considering all the visual semantics
at once, we sample randomly a fraction of these augmented
tags at each iteration step. Hence, we could not only pre-
vent the model from overfitting on specific semantics and
potentially disregard the image or other semantics during
training, but also let the model see different combinations
of visual semantics, which helps to have more diversity.

5.2. Relative Contrastive Alignment

InfoNCE [21] is a typical type of contrastive loss func-
tion used for self-supervised learning that contrasts one pos-
itive sample against a set of negative samples. CPG [10]
builds upon InfoNCE and proposes a compatibility function
for regions and a caption word. Both InfoNCE and CPG uti-
lize the absolute relevance to optimize the contrastive loss.

However, such a contrastive learning objective is hard to
optimize for object tags since they may be highly correlated
to each other. In RCA-NOC, we focus on the relative se-
mantic relevance and utilize the attention-based compatibil-
ity function to measure the relativity information for regions
and a set of object tags, which is more robust to data noise.

Specifically, we first compute the dot product for a
region-tag pair.

sjk = wT
j vk/

√
d, (8)

where wj and vk refer to the corresponding embeddings for
tag and region, and d is the feature dimension. Here, sjk
represents the similarity between the j-th tag and the k-th
region. To find a contextualized region representation for
the j-th tag, we define avj as follows.

avj =

K∑
k=1

αjkvk, (9)

where αjk =
esjk∑K

k′=1 e
sjk′

, (10)

To measure the compatibility between a tag wj and its
contextualized region representation avj , we define

ϕ(V,wj) = wT
j av

j . (11)

In this way, we can derive our cross-modality contrastive
loss function Lcross.

Lcross(V,WP ,WN ) =

− 1

K

K∑
n=1

log

(
eϕ(V,wP

n )

eϕ(V,wP
n ) +

∑K
l=1 e

ϕ(V,wN
l

)

)
, (12)

where WP = {wP
l }Kl=1 and WN = {wN

n }Kn=1 are the word
embeddings for positives/negatives TP and TN , extracted
from CLIP. ϕ() is the compatibility function defined in
Eq. 11.

This equation encourages each positive tag wP
n to be

more compatible with image regions V than all negative
tags in WN . Essentially, if tag tj is not relevant to the im-
age (negative), its representation wj should not be similar
to its contextualized region representation av

j since it would
not be able to collect good information while computing avj .
Note that we do not let two positive tags (top-ranked tags)
contrast with each other as it is hard to tell which one is
more relevant.
Inner modality Alignment. To further enhance modality
alignment, we also compute the inner-modality contrastive
loss over tag-caption pairs. The formulation for inner-
modality contrastive loss is similar to cross-modality con-
trastive loss but slightly different. We enforce contrastive
learning not to be between tags and all caption words, but
just between tags and noun caption words. This is because
a caption may have many irrelevant tokens, such as "the, a,
is", which will harm our alignment process and cause re-
dundant computational costs.

Finally, we can derive our inner-modality contrastive
loss function Linner.

ϕ(C,wl) = wT
l acl , (13)

Linner(C,WP ,WN ) =

− 1

K

K∑
n=1

log

(
eϕ(C,wP

n )

eϕ(C,wP
n ) +

∑K
l=1 e

ϕ(C,wN
l

)

)
, (14)

where this time we take noun caption words C = {ci}Pi=1

in Eq. 13 as input. By further considering inner-modality
alignment, we not only learn caption-tag semantics to con-
nect relevant caption tokens, but also enable region-caption
interactions.

5.3. Uncertainty-Aware Selection and Re-weighting

The augmented contrastive tags are often noisy and
would harm the discriminative ability and robustness of the
contrastive learning process. Therefore, we design a sample
selection strategy to deal with noisy contrastive tags (e.g.,
false positives/negatives).
Uncertainty-Aware Selection. Specifically, we first use the
local cosine similarity to calculate the correlation between
a region and a tag and filter false positives/negatives. The
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stronger the correlation, the more reliable a positive tag is
and the more uncertain a negative tag.

u(v,w) =
v⊤w

∥v∥ ∥w∥
, (15)

Then we retrieve L tags and their corresponding rep-
resentations H = {wj}Lj=1 for the given L region features
{vi}Li=1. We use argmax to choose the most correlated tag
tj for region vi.

j = argmax
k

(u(vi,wk)), (16)

According to the score in Eq. 15, the corresponding top-
L tags will be listed as confusion samples for negatives (ac-
tually positive), and these confusion samples will be re-
moved from the original contrastive tags. Similarly, we
will also choose the true positives based on these top-L tags
since tags with low-similarity scores should be regarded as
outliers to the positives and they are too sparse to have a
positive influence on the shape of embedding space. In this
way, we can derive Eq. 17, where / is the removing set op-
eration, ∩ is the intersection set operation. WP

= {w̄P
l }Kl=1

and WN
= {w̄N

n }Kn=1 is the final positive/negative tags’ em-
bedding sets. Note that if the set length of WP /WN is less
than M, we will over-sample WP /WN until the set length is
equal to M.

WP
= WP ∩ H,WN

= WN/H, (17)

Uncertainty-Aware Re-weighting. To further mitigate the
negative effect of noisy tags, we use the correlation func-
tion defined above to enhance reliable samples and reduce
the influence of high-uncertainty samples. The information
from more reliable samples should have a larger impact on
the shape of the embedding and vice versa. Specifically, we
first introduce the weight in Eq. 18.

q1(w̄P
n ) = exp (u(vk, w̄P

n )), (18)

j = argmax
k

(u(vi, w̄P
k )), (19)

q2(w̄P
n ) = p(tn), (20)

where q1(w̄P
n ) in Eq. 18 is the uncertainty score com-

puted by the most relevant region with the corresponding
tag. Moreover, we further consider how certain each tag
is and combine the corresponding score q2(w̄P

n ) in Eq. 20
with q1(w̄P

n ) to derive the final uncertainty score q(w̄P
n ) in

Eq. 21. Here p(tn) in Eq. 20 is the global similarity men-
tioned in Section 5.1.

q(w̄P
n ) = q1(w̄P

n ) ∗ q2(w̄P
n ), (21)

Thus, our method could mitigate the negative effect
of noisy contrastive tags by considering the similarity
from both the local region features (region-tag) and the

global structural information (image-tag). Finally, we could
rewrite our contrastive loss function in Eq. 22, Eq. 23.

Lcross(V,WP
,WN

) =

− 1

K

K∑
n=1

−q(w̄P
n ) log

(
eϕ(V,w̄P

n )

eϕ(V,w̄P
n ) +

∑K
l=1 e

ϕ(V,w̄N
l

)

)
, (22)

Linner(C,WP
,WN

) =

− 1

K

K∑
n=1

−q(w̄P
n ) log

(
eϕ(C,w̄P

n )

eϕ(C,w̄P
n ) +

∑K
l=1 e

ϕ(C,w̄N
l

)

)
, (23)

6. Experiments
6.1. Experimental Setup
Datasets. Our main experiments and ablation studies are
based on the Nocaps [2] dataset. Our method was built
with PyTorch, and we used a pre-trained BERT-base model
from Huggingfaces [1] for parameters initialization, and no
ground-truth tags are used on the Nocaps validation and test
sets. For the training stage, we use the COCO training set
which consists of 118K images, each with 5 captions. We
evaluate our model on the validation and test sets of the
Nocaps dataset, which consist of 4.5K and 10.6K images
from the Open Images validation and test sets, respectively.
Additionally, we test the proposed method on the Held-Out
COCO [12], which is a subset of MS COCO [19] where
the following eight object categories are excluded from the
training set: bottle, bus, couch, microwave, pizza, racket,
suitcase, and zebra. We randomly split the COCO valida-
tion set and use half of it for validation and the other half
for testing, each with 20,252 images. In addition, we em-
pirically set M = 50 to generate augmented object tags for
the best performance.
Implementation Details. In the training stage, the model is
trained for 30 epochs with a batch size of 512 and a learning
rate of 10−4, optimized using the cross-entropy loss and
our contrastive loss. We set the maximum caption length
to 40 and the maximum tag length to 30. To further boost
the performance, we also perform the SCST optimization
(Rennie et al. [24]) with a learning rate of 1.4 × 10−6 for
10 epochs. During inference, we use greedy decoding to
generate image captions with a maximum length of 20. Our
model is trained with 8 A100 GPUS and takes 1 day to train.

6.2. Quantitative evaluation.
Results on Nocaps dataset. In this section, we extensively
compare our frameworks with previous methods on the No-
caps benchmark. The other compared state-of-art results
are from NOC-REK [29]. Note that all the methods use
the BERT-base [9] for a fair comparison. We compare our
method with UpDown [2, 5], OSCAR [18], VinVL [35],
VIVO [13], and NOC-REK [29], which hold the state-of-
the-art result on the Nocaps benchmark. The training data
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Table 1. Our evaluation results using SPICE and CIDEr on the Nocaps validation and test sets. We achieve the best scores for in-domain,
near-domain, out-domain and Overall. Notably, the captions generated by our method are better than those by human in most cases. We
note that our results on the test set are better than those by other methods which are publicly submitted to Nocaps leader-boardb. Higher
score is better.

Method

Validation set Test set

in-domain near-domain out-domain Overall in-domain near-domain out-domain Overall

CIDEr SPICE CIDEr SPICE CIDEr SPICE CIDEr SPICE CIDEr SPICE CIDEr SPICE CIDEr SPICE CIDEr SPICE

UpDown [4] 78.1 11.6 57.7 10.3 31.3 8.3 55.3 10.1 76.0 11.8 74.2 11.5 66.7 9.7 73.1 11.2

Oscar [18] 83.4 12.0 81.6 12.0 77.6 10.6 81.1 11.7 81.3 11.9 79.6 11.9 73.6 10.6 78.8 11.7

VIVO [13] 92.2 12.9 87.8 12.6 87.5 11.5 88.3 12.4 89.0 12.9 87.8 12.6 80.1 11.1 86.6 12.4

VinVL [35] 96.8 13.5 90.7 13.1 87.4 11.6 90.9 12.8 93.8 13.3 89.0 12.8 66.1 10.9 85.5 12.5

VinVL + VIVO [13, 35] 103.7 13.7 95.6 13.4 83.8 11.9 94.3 13.1 98.0 13.6 95.2 13.4 78.0 11.5 92.5 13.1

NOC-REK [29] 104.7 14.8 100.2 14.1 100.7 13.0 100.9 14.0 100.0 14.1 95.7 13.6 77.4 11.6 93.0 13.4

RCA-NOC** 95.0 13.6 91.3 13.1 93.2 12.1 92.2 13.0 87.7 13.3 88.1 12.9 77.9 11.4 86.3 12.7

RCA-NOC 107.8 15.3 104.0 14.6 105.8 13.6 107.1 14.6 104.1 14.8 101.2 14.6 88.5 12.9 101.1 14.0

∆ 3.1↑ 0.5↑ 4.2↑ 0.5↑ 5.1↑ 0.6↑ 6.2↑ 0.6↑ 4.1↑ 0.7↑ 5.5↑ 1.0↑ 11.1↑ 1.3↑ 8.1↑ 0.6↑

Human [2] 84.4 14.3 85.0 14.3 95.7 14.0 87.1 14.2 80.6 15.0 84.6 14.7 91.6 14.2 85.3 14.6

Table 2. Comparison of F1-scores (in %) on object classes of Open
Images, evaluated on the Nocaps validation set. There are 504
classes in total. 80 of them are in-domain, which are common
classes from COCO. The remaining 424 classes are the out-of-
domain objects.

model in-domain out-of-domain entire

VIVO 39.2 29.1 30.4
NOC-REK 45.3 30.5 32.8
Ours 58.6 39.2 43.1

for the baselines is the COCO dataset. Following prior set-
tings, we also report the results after the model is optimized
using SCST [24]. Our generated captions also adopt Con-
strained Beam Search (CBS) following [3].

In Table 1, we present our results of SPICE and CIDEr
scores on the Nocaps validation and test sets. We also show
the results of our different training stages in the middle
of the table, where RCA-NOC** denotes our first train-
ing stage result and RCA-NOC is our final result after
CIDEr optimization. Note that we do not compare with the
data-driven methods [17, 30, 34] which use massive out-of-
domain image-caption pairs in the training and fail to fol-
low the rule of Nocaps. By leveraging relative semantic
relevance in contrastive learning, our method has achieved
a significant improvement compared to all prior works. It
is worth noting that our first stage training could generate a
comparable result with [13, 18, 35]. After the CIDEr opti-
mization process, our method could outperform the recent
state-of-art method NOC-REK [29] with a large margin,
which is 8.1 and 0.6 (CIDEr and SPICE) better than [29] on
the Nocaps Test set. This suggests that our model is more
capable of generating captions with novel objects.

To quantitatively evaluate how well the model can de-
scribe novel objects, we also calculate the F1-score between
our generated and the ground-truth tags on the validation
set. Table 2 shows the comparison with VIVO and NOC-

Table 3. Evaluation results on the Held-Out COCO test set. The
best results are highlighted in red.

Method Avg. F1-score SPICE Meteor CIDEr

NOC 48.8 – 21.4 –
NBT 48.5 15.7 22.8 77.0
DNOC 57.9 – 21.6 –
ZSC 29.8 14.2 21.9 –
ANOC 64.3 18.2 25.2 94.7
VinVL+VIVO 71.8 24.5 30.6 132.8
NOC-REK 76.3 26.9 32.8 138.4
RCA-NOC 79.5 27.0 35.9 142.8

REK on the Nocaps validation set. We see that RCA-NOC
improves NOC-REK and VIVO on F1-score substantially,
especially for out-of-domain objects. This again verifies the
effectiveness of RCA-NOC’s discriminative ability to de-
scribe and distinguish novel objects.
Results on the Held-Out COCO dataset. To further prove
the generalization ability of our method, we also conduct
experiments on the Held-Out COCO dataset. As we can see
from Table 3, our method consistently beats the baseline
VinVL+VIVO with a large margin. The improvements are
7.7, 2.5, 5.3, and 10.0 with BERT-base on the F1, SPICE,
METEOR, and CIDEr metrics. Additionally, our method
is superior to all other state-of-art methods. In particu-
lar, compared with the recent state-of-art method NOC-
REK [29], the recent state-of-art on the Held-Out COCO
dataset, RCA-NOC achieves a 4.4 improvement on CIDEr
(from 138.4 to 142.8) and 3.1 improvement on METEOR
(from 32.8 to 35.9). The 3.2 improvement on the F1 score
also shows that RCA-NOC performs better in describing
novel objects.

6.3. Ablation study.

In this subsection, we will discuss every component’s
contribution to our framework. If not mentioned by pur-
pose, all methods are conducted on the Nocaps validation
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Table 4. Effectiveness of the source of visual semantics.

Method in-domain near-domain out-of-domain Overall
CIDErSPICE CIDErSPICE CIDEr SPICE CIDErSPICE

N.A. 103.6 14.7 100.8 14.2 100.9 13.2 103.2 14.2
NOC-REK 103.9 14.9 101.6 14.3 102.0 13.4 103.4 14.3
VIVO 105.2 15.1 103.5 14.4 103.6 13.4 105.2 14.4
CLIP 107.8 15.3 104.0 14.6 105.8 13.6 107.1 14.6

Table 5. Effectiveness of the UASR. UAR: Uncertainty-Aware Re-
weight, UAS: Uncertainty-Aware Selection, UASN : Uncertainty-
Aware Selection for Negatives), UASR: Uncertainty-Aware Selec-
tion and Re-weight.

Method in-domain near-domain out-of-domain Overall
CIDEr SPICE CIDEr SPICE CIDEr SPICE CIDEr SPICE

N.A. 103.6 14.7 100.8 14.2 100.9 13.2 102.4 14.2
UASN 105.2 14.8 102.1 14.3 102.4 13.3 104.2 14.3
UAS 105.9 15.0 104.5 14.3 103.9 13.4 105.3 14.5
UAR 104.3 14.8 103.3 14.4 104.7 13.3 105.6 14.3
UASR 107.8 15.3 104.0 14.6 105.8 13.6 107.1 14.6

set with BERT-base. (we cannot use the Nocaps test set be-
cause only 5 times submissions are allowed for the test set).
Effectiveness of visual semantics. We enhance the modal-
ity alignment by incorporating visual semantics from foun-
dational models, with a specific instantiation using CLIP.
To evaluate the generalization ability of our approach, we
modify the model to extract visual semantics and conduct
further experiments to compare it with NOC-REK [29] and
VIVO for generating visual semantics. Our baseline model
is trained using a contrastive approach that ranks ROI tags
extracted from Faster R-CNN based on their softmax val-
ues, distinguishing between relevant and irrelevant tags.

Our findings indicate that using NOC-REK to generate
augmented tags provides only marginal improvement to our
framework, resulting in a 0.8 and 0.1 (CIDEr and SPICE)
increase compared to the baseline. We hypothesize that this
limited improvement may be due to the restricted linguistic
knowledge contained in BERT, which may not encompass
a wide range of novel categories and lack higher-level and
global concepts required to describe complex scenes. In
contrast, utilizing a larger pool of noisy visual semantics
(CLIP) extracted from captions leads to better results, with
a 4.9 and 0.4 (CIDEr and SPICE) increase compared to the
baseline. Using a smaller and cleaner pool of visual seman-
tics extracted from the classes of various object detection
datasets (VIVO) only results in a 2.0 and 0.2 (CIDEr and
SPICE) increase compared to the baseline. This is likely
due to the fact that the CLIP is pre-trained on vast amounts
of training data, enabling it to extract a more diverse, exten-
sive, and semantically meaningful set of high-level visual
concepts compared to NOC-REK.
Effectiveness of the UASR. We investigate the perfor-
mance of our Uncertainty-Aware Selection and Reweight-
ing (UASR) on the Nocaps validation set in this part. Ta-
ble 5 shows that Uncertainty-Aware Reweighting (UAR)
could effectively enhance the reliable contrastive samples

Table 6. Evaluation on COCO test set of Karpathy split [15]. All
results are based on single model with cross-entropy optimization.

pre-training BLEU4 Meteor CIDEr SPICE

N.A 33.8 28.1 118.3 21.2
OSCAR + VIVO 34.9 28.4 119.8 21.7
RCA-NOC 37.4 29.6 128.4 23.1

Table 7. Ablation study on the effectiveness of different compo-
nents, including (i) CA: Cross-modality Alignment, our prototype
contrastive loss for region-tag pairs, (ii) IA: Inner-modality Align-
ment, (iii) CLIP: Without CLIP refers to extracting visual seman-
tics with object detection, and (iv) UASR: Uncertainty-Aware Se-
lection and Re-weighting.

CA IA UASR CLIP CIDER SPICE
90.9 12.8

✓ 96.5 13.5
✓ ✓ 98.7 13.8
✓ ✓ ✓ 103.2 14.2
✓ ✓ ✓ ✓ 107.1 14.6

and bring 3.2 and 0.1 boosts on CIDEr and SPICE. In addi-
tion, the false positives/negatives severely harm our training
process. By further incorporating Uncertainty-Aware Se-
lection for Negatives (UASN ) into our method and filter-
ing false negatives, our model’s performance is boosted to
104.2 and 14.3 on CIDEr and SPICE. When filtering false
positives/negatives simultaneously, we could reach 105.3
and 14.5 on CIDEr and SPICE with Uncertainty-Aware Se-
lection (UAS). Finally, our method improves the perfor-
mance by 4.7 and 0.4 (CIDEr and SPICE) by combining
UAR and UAS, which illustrates the proposed UASR is a
more powerful tool for tackling noisy contrastive samples
in NOC.

6.4. Qualitative Results
In Figure 3, we display some qualitative results on Held-

Out COCO and Nocaps, and all the approaches are based
on BERT-base. On Held-Out COCO, the result compared
with GT shows that our proposed method could effectively
generate accurate and precise captions with novel objects
by leveraging relative semantic relevance into training. On
Nocaps, VinVL+VIVO [13, 35] sometimes cannot include
the desired novel objects in their captions (first and third
examples) or generate wrong captions (second example).
Our RCA-NOC, on the other hand, successfully generates
correct and coherent captions via differentiating confusing
classes and aligning object detection with other modalities.
For better illustration, we show top-5 Positive and Negative
Tag results extracted from CLIP.

6.5. General Image Captioning
Improving modality alignment is a shared objective of

general image captioning tasks. As demonstrated in Table 6,
our proposed method, RCL-NOC, improves the model’s
performance across all metrics assessed on the COCO test
set, particularly in the CIDEr score. However, we have ob-
served that the improvement on the COCO benchmark is
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GT: A boy in a tie holding a small suitcase.

RCA-NOC: A young boy wearing a tie holding a suitcase.

PT:  Person, human, tie, suitcase, dress*… (Person, human, suitcase, tie…)

NT: Hair*, chair, soda,  step, umbrella … (Chair, soda, step, umbrella…)

GT: 2 men sit on the couch, video game controllers inhands.

RCA-NOC: A couple of men sitting on a couch playing a video game with 
wheels.

PT: Couch, person, face, wheel, shirt… (person, wheel, couch, face, shirt…)

NT: Wheelchair, leg*, tie, stone, coat...(Wheelchair, tie, stone, coat…)

GT: Someone cutting a small pizza with a pizza cutter.

RCA-NOC: A person is cutting a pizza with a pizza cutter.

PT: Person, food, pizza, kitchen, bottle*… (Person, food, kitchen, pizza…)

NT: Microwave, design, hammer, wine, tie… (Microwave, design, hammer, 
wine, tie…)

VinVL + VIVO: A man with a jacket and a cowboy hat next to a bull.

RCA-NOC: A man with a blue shirt and a cowboy hat next to a bull.

PT: Hat, hay, bull, shirt, man… (Man, bull, shirt, hat, hay…)

NT: face*, tie, road, barn, jacket… (Tie, road, barn, jacket…)

VinVL + VIVO: A jaguar standing on top of a tree.

RCA-NOC: A jaguar standing behind a green fence.

PT: Jaguar, fence, dog*, carnivore, chest*… (Jaguar, fence, 
carnivore… )

NT: animal*, wall, coat, cage, sign… (wall, coat, cage, sign …)

VinVL + VIVO: A white plate of food with dessert and a tomato. 

RCA-NOC: A white plate with two pieces of bread and a tomato.

PT: Tomato, bread, lunch, plate, vegetable* …  (Tomato, bread, 
plate, lunch…)

NT: Piece*, salad, cake, snack, table*… (Salad, cake, snack…)

Figure 3. Examples of generated captions and contrastive tags by compared methods on Held-Out COCO (left) and Nocaps (right).
We show the ground-truth captions (GT) on Held-Out COCO for reference. PT/NT denotes the positive/negative tags before and after
Uncertainty-Aware Selection and Reweighting (UASR). Blue/Red text indicates novel objects in Held-Out COCO/Nocaps, and ∗ indicates
the false positives/negatives.

not as substantial as that on the nocaps benchmark. We hy-
pothesize that this discrepancy is due to the COCO dataset
having a limited number of visual concepts, thus reducing
the benefits of learning visual semantics. Additionally, our
method’s use of tags is general and does not rely on fully
annotated data. It’s possible to utilize potentially unlimited
amounts of images and different sources of tags, including
those from Faster R-CNN, image tagging, or keywords ex-
tracted from captions. These possibilities will be explored
in our future work..

6.6. Data and Compute Efficiency

The way the visual semantics are extracted (using CLIP)
is not central to our work, as for the gain coming from 400M
pairs of CLIP. This is supported in section 6.3. Table 7
shows that other components contribute significantly. No-
tably, the gain achieved by our Contrastive Alignment (CA)
component alone can surpass that of CLIP by a large mar-
gin. Importantly, our method achieves this without increas-
ing the number of parameters during training and inference,
with the same parameter count as NOC-REK and VINVL
(110 M). The training time of NOC-REK is 49 hours, for
NOC-REK the training time is much lower (23h). This
is with the paper setup (8 GPUs A100). Compared with
NOC-REK, which adopts test time augmentation during in-
ference, our inference time is much lower (1 minute) while
NOC-REK is 2 minutes.

7. Conclusion
In this paper, we present RCA-NOC, which achieves

visual-semantic alignment via relative contrastive learning.

Specifically, for each image, we first extract augmented tags
obtained from foundation models such as CLIP. Then we
utilize the rank of each augmented object tag in a list as a
relative relevance label to contrast each top ranked tag with
a set of lower ranked tags. We empirically find that such a
learning objective is effective and easy to optimize by en-
couraging the top ranked tags to be more compatible with
their image and text context than lower ranked tags, hence
improving the discriminative ability of the learned multi-
modality representation. We prove the effectiveness of our
paradigm in novel object caption, with the spotlight on No-
caps and Held-Out COCO benchmark.

The effectiveness of object tags has already been proved
in recent works. However, there are few studies to further
explore why such tags could perform well and the problem
of object tags’ misalignment is often ignored. So how to
further exploit use tags explicitly while having a deep un-
derstanding of their roles is meaningful in the future.
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