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Abstract

Semi-supervised learning (SSL) methods effectively
leverage unlabeled data to improve model generalization.
However, SSL models often underperform in open-set sce-
narios, where unlabeled data contain outliers from novel
categories that do not appear in the labeled set. In this
paper, we study the challenging and realistic open-set SSL
setting, where the goal is to both correctly classify in-
liers and to detect outliers. Intuitively, the inlier classi-
fier should be trained on inlier data only. However, we
find that inlier classification performance can be largely
improved by incorporating high-confidence pseudo-labeled
data, regardless of whether they are inliers or outliers. Also,
we propose to utilize non-linear transformations to sepa-
rate the features used for inlier classification and outlier
detection in the multi-task learning framework, preventing
adverse effects between them. Additionally, we introduce
pseudo-negative mining, which further boosts outlier detec-
tion performance. The three ingredients lead to what we
call Simple but Strong Baseline (SSB) for open-set SSL. In
experiments, SSB greatly improves both inlier classification
and outlier detection performance, outperforming existing
methods by a large margin. Our code will be released at
https://github.com/YUE-FAN/SSB.

1. Introduction

Semi-supervised learning (SSL) has achieved great suc-

cess in improving model performance by leveraging un-

labeled data [26, 25, 42, 29, 4, 3, 41, 45, 11, 50, 44].

However, standard SSL assumes that the unlabeled samples

come from the same set of categories as the labeled samples,

which makes them struggle in open-set settings [33], where

unlabeled data contain out-of-distribution (OOD) samples

from novel classes that do not appear in the labeled set (see

Fig. 1). In this paper, we study this more realistic setting

called open-set semi-supervised learning, where the goal is
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Figure 1: Open-set semi-supervised learning considers a re-

alistic and challenging setting, where unlabeled data con-

tains samples from novel classes (seen outliers) that do not

appear in the labeled data. At test time, the model should

correctly classify inliers, while identifying outliers seen

during the training and, most importantly, unseen outliers
that do not appear in the training set. We measure test accu-

racy for the inlier classification performance and AUROC

for the outlier detection performance. Our method (SSB)

achieves superior performance in both tasks.

to learn both a good closed-set classifier to classify inliers

and to detect outliers as shown in Fig. 1.

Recent works on open-set SSL [20, 7, 38, 48, 14, 16,

17, 21] have achieved strong performance [43, 28, 19, 1]

through a multi-task learning framework, which consists of

an inlier classifier, an outlier detector, and a shared fea-

ture encoder, as shown in Figure 2. The outlier detector

is trained to filter out OOD data from the unlabeled data so

that the classifier is only trained on inliers. However, this

framework has two major drawbacks. First, detector-based

filtering often removes many inliers along with OOD data,

leading to suboptimal classification performance due to the

low utilization ratio of unlabeled data. Second, the inlier

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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classifier which shares the same feature encoder with the

outlier detector can have an adverse effect on the detection

performance as shown in Table 1.

To this end, we contribute a Simple but Strong Baseline,

SSB, for open-set SSL with three ingredients to address the

above issues. (1) In contrast to detector-based filtering aim-

ing to remove OOD data, we propose to incorporate pseudo-

labels with high inlier classifier confidence into the training,

irrespective of whether a sample is an inlier or OOD. This

not only effectively improves the unlabeled data utilization

ratio but also includes many useful OOD data that can be

seen as natural data augmentations of inliers (see Fig. 5).

(2) Instead of directly sharing features between the classi-

fier and detector, we add non-linear transformations for the

task-specific heads and find that this effectively reduces mu-

tual interference between them, resulting in more special-

ized features and improved performance for both tasks. (3)

In addition, we propose pseudo-negative mining to further

improve outlier detector training by enhancing the data di-

versity of OOD data with pseudo-outliers. Despite its sim-

plicity, SSB achieves significant improvements in both in-

lier classification and OOD detection. As shown in Fig. 1,

existing methods either struggle in detecting outliers or have

difficulties with inlier classification while SSB obtains good

performance for both tasks.

2. Related Work

Semi-supervised learning. Semi-supervised learning

(SSL) aims to improve model performance by exploiting

both labeled and unlabeled data. As one of the most widely

used techniques, pseudo-labeling [26] is adopted by many

strong SSL methods [41, 4, 4, 45, 50, 2, 35, 46, 5, 27]. The

idea is to generate artificial labels for unlabeled data to im-

prove model training. [4, 3] compute soft pseudo-labels

and then apply MixUp [51] with labeled data to improve

the performance; [41, 45, 50] achieves good performance

by combining pseudo-labeling with consistency regulariza-

tion [25, 29, 42]; [35] proposes a meta learning approach

that uses a teacher model to refine the pseudo-labels based

on the training of a student model; [46] leverages the idea

of self-training which generates pseudo labels in an iterative

way and inject noise to each training stage. In this paper, we

also adopt a simple confidence-based pseudo-labeling [41]

for classifier training, which is an effective way of lever-

aging unlabeled data to improve the model performance.

Compared to standard SSL, SSB has an additional outlier

detector, which enables the model to reject samples that do

not belong to any of the inlier classes.

Open-set SSL & Class-mismatched SSL. First shown by

[33], standard SSL methods suffer from performance degra-

dation when there are out-of-distribution (OOD) samples in

unlabeled data. Since then, various approaches have been

proposed to address this challenge [7, 14, 48, 38, 20, 34,

16, 17, 21]. Existing methods seek to alleviate the effect of

OOD data by filtering them out in different ways so that the

classification model is trained with inliers only. For exam-

ple, [7] uses model ensemble [40] to compute soft pseudo-

labels and performs filtering with a confidence threshold;

[14] proposes a bi-level optimization to weaken the loss

weights for OOD data; [48] assigns an OOD score to each

unlabeled data and refines it during the training; [38] lever-

ages one-vs-all (OVA) classifiers [39] for OOD detection

and propose a consistency loss to train them; [20] proposes

a cross-modal matching module to detector outliers. [21]

employs adversarial domain adaptation to filter unlabeled

data and find recyclable OOD data to improve the perfor-

mance; [16] uses energy-discrepancy to identify inliers and

outliers. In contrast, we show that if the representations

of the inlier classifier and the outlier detector are well-

separated, OOD data turns out to be a powerful source to

improve the inlier classification without degrading the de-

tection performance. So, instead of filtering OOD data, we

use a simple confidence-based pseudo-labeling to incorpo-

rate them into the training.

Open-world SSL. Open-set SSL is similar to open-world

SSL [6, 36, 37] but bears several important differences.

While both have unlabeled data of novel classes during the

training, the goal of open-world SSL is to classify inliers

and discover new classes from OOD data instead of reject-

ing them. Another important difference is that open-world

SSL is often a transductive learning setting while open-set

SSL requires generalization beyond the current distribution.

Namely, the model should be able to detect OOD data from

novel classes that present in the training set as well as OOD

data from classes that are never seen during training.

3. SSB: Simple but Strong Baseline for Open-
Set Semi-Supervised Learning

In this section, we first present the problem setup of

open-set semi-supervised learning (SSL). Then, we give an

overview of our method SSB in Section 3.1 before present-

ing details of the three simple yet effective ingredients used

in our method in Section 3.2, 3.3, and 3.4.

Problem setup and notations: As shown in Fig. 1, open-

set SSL generalizes the settings of standard SSL and out-

of-distribution (OOD) detection. It considers three disjoint

sets of classes: C corresponds to the inlier classes that are

partially annotated, US contains the outlier classes seen dur-

ing training but without annotations, and lastly, UU is com-

posed of the classes that are not seen during training (only

seen at test time). The training data contains a small labeled

set Dlabeled = {(xli, yi)}Ni=1 ⊂ X × C and a large unla-

beled set Dunlabeled = {(xui )}Mi=1 ⊂ X , where X is the input

space. While the labeled set only consists of samples of in-
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Figure 2: Left: Our baseline for open-set SSL consists of an inlier classifier gc, an outlier detector gd, and a shared feature

encoder f whose features are separated from the task-specific heads by two projection heads hc and hd. Unlike the detector-

based filtering, we adopt confidence-based pseudo-labeling by the inlier classifier to leverage useful OOD data for classifier

training. For detector training, we train one-vs-all (OVA) classifiers as in OpenMatch [38]. Right: Given the inlier scores

(s1 to s4), pseudo-negative mining selects confident negatives (s2 and s3 in the figure), whose inlier scores are lower than a

pre-defined threshold, as pseudo-outliers to help the outlier detector training.

lier classes, the unlabeled set contains both samples from

C and US . Thus, the the ground-truth label of xu is from

C ∪ US with C ∩ US = ∅.

The goal of open-set SSL is to train a model that can per-

form good inlier classification as well as detecting both seen

and unseen outliers. Without loss of generality, consider a

test set Dtest = {(xi, yi)}Ni=1 ⊂ X × (C ∪ US ∪ UU ), where

C ∩ UU = ∅ and US ∩ UU = ∅. The learned model should

be able to correctly classify inliers {(xi|yi ∈ C)} and detect

outliers from {(xi|yi ∈ US)} as well as {(xi|yi ∈ UU )},

which is crucial for practical applications.

3.1. Method Overview

Following [20, 7, 38, 48, 14, 16, 17, 21], we adopt a

multi-task learning framework for open-set SSL, which per-

forms inlier classification and outlier detection. As shown

in Fig. 2, SSB comprises four components: (1) An inlier

classifier gc, (2) an outlier detector gd, (3) a shared fea-

ture encoder f , and (4) importantly, two projection heads

hc and hd. Inspired by [38], the outlier detector gd consists

of |C| one-vs-all (OVA) binary classifiers, each of which is

trained to distinguish inliers from outliers for each single

class. Given a batch of labeled data Xl = {(xli, yi)}Bl
i=1 and

unlabeled data Xu = {(xui )}Bu
i=1, the total loss for training

the model is:

Ltotal = Lcls(Xl,Xu; f, hc, gc) + Ldet(Xl,Xu; f, hd, gd)
(1)

where Lcls and Ldet are the classification and detection

losses, respectively. For the sake of brevity, we will drop

the dependencies of the loss function on f , hc, gc, hd, and

gd in the following. The complete algorithm of SSB is sum-

marized by Alg. 1 in Appendix D.

During inference, the test image is first fed to the inlier

classifier to compute the class prediction. Then, the corre-

sponding detector is used to decide whether it is an inlier of

the predicted class or an outlier. We explain the details of

SSB in the following three sections.

3.2. Boosting Inlier Classification with Classifier
Pseudo-Labeling

Existing methods for open-set SSL [20, 7, 38, 48, 14]

aim to eliminate OOD data from the classifier training. This

is typically accomplished by training outlier detectors that

can filter out OOD data from unlabeled data, as shown in

Fig. 2. However, as we will see in Table 3, detector-based

filtering often removes many inliers along with OOD data,

which leads to a low utilization ratio of unlabeled data and

hinders inlier classification performance.

In this work, instead of using detector-based filtering,

we propose to incorporate unlabeled data with confident

pseudo-labels (as generated by the inlier classifier) into the

training, irrespective of whether it is inlier or OOD data.

This not only effectively improves the unlabeled data uti-

lization ratio but also includes many useful OOD data as

natural data augmentations of inliers into the training (see

Fig. 5). Inspired by [41], we train the model with pseudo-

labels from the inlier classifier whose confidence scores are

above a pre-defined threshold. Specifically, for each un-

labeled sample xu
i , we first predict the pseudo-label distri-

bution as p̂ui = softmax(hc(gc(f(xu
i ))). Then, the confi-

dence score of the pseudo-label is computed as max p̂ui . Fi-

nally, the cross-entropy loss is calculated for samples whose

pseudo-labels have confidence scores greater than a pre-
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defined threshold τ as:

Lu
cls(X

u) =
1

Bu

Bu∑

i=1

�(max p̂ui ≥ τ)H(p̂ui , ŷ
u
i ) (2)

where H(·, ·) denotes the cross-entropy, ŷui = argmaxp̂ui ,

and �(·) is the indicator function which outputs 1 when the

confidence score is above the threshold τ .

The total classification loss is computed as the summa-

tion of a labeled data loss and the unlabeled data loss as:

Lcls(Xl,Xu) = Ll
cls(X

l) + Lu
cls(X

u) (3)

where Ll
cls is a standard cross-entropy loss for labeled data.

Despite its simplicity, we obtain a substantial perfor-

mance improvement in inlier classification through classi-

fier confidence-based pseudo-labeling as shown in Table 1.

Our method is conceptually different from previous meth-

ods as we aim to leverage OOD data rather than remove

them. On the one hand, our method effectively improves

the unlabeled data utilization ratio as shown in Table 3,

which leads to great inlier classification performance im-

provement. On the other hand, our method provides an

effective way of leveraging useful OOD data for classifier

training. In fact, many OOD data are natural data augmen-

tations of inliers and are beneficial for classification perfor-

mance if used carefully. As shown in Fig. 5, the selected

OOD data present large visual similarities with samples of

inlier classes, and, thus, significantly enhance the data di-

versity, leading to improved generalization performance.

3.3. Non-Linear Feature Boosting

In previous methods, simply including OOD samples

into the classifier training harms detection performance

since the inlier classifier and the outlier detector use the

same feature representation [38, 48, 20]. On the one hand,

the classifier uses OOD data as pseudo-inliers, thus mix-

ing their representations in the feature space. On the other

hand, the outlier detector is trained to distinguish inliers and

outliers, which leads to separated representations in the fea-

ture space. As a result, the contradiction between the clas-

sifier and the outlier detector ultimately adversely affects

each other, which limits the overall performance, as shown

in Table 1.

In this work, we find empirically that simply adding non-

linear transformations between the task-specific heads and

the shared feature encoder can effectively mitigate the ad-

verse effect. Given a sample xi, two multi-layer perceptron

(MLP) projection heads hc and hd are used to transform

the features from the encoder. The output of the network

is thus hc(gc(f(xi))) for the classifier and hd(gd(f(xi)))
for the outlier detector. Compared to the previous meth-

ods, the non-linear transformations effectively prevent mu-

tual interference between the classifier and detector, result-

ing in more specialized features and improved performance

in both tasks. In Table 1, while the OOD detection per-

formance degenerates when adding OOD data for classifier

training for the model without the projection heads, SSB,

in contrast, still exhibits excellent performance in detecting

outliers with the help of the projection heads. Moreover, the

efficacy of the non-linear projection head also generalizes to

other frameworks. We show in the experiment section that

it is compatible with various SSL backbones and open-set

SSL methods and leads to performance improvement.

3.4. Outlier Detection with Pseudo-Negative Mining

In this section, we first describe the outlier detector used

in SSB and then introduce a simple yet effective technique

called pseudo-negative mining to improve the outlier detec-

tor training.

Following [38], we adopt |C| one-vs-all (OVA) binary

classifiers for OOD detection, where each OVA classifier is

trained to distinguish between inliers and outliers for each

individual inlier class. Given a labeled sample xl
i from class

yi, it is regarded as an inlier for class yi and an outlier

for class k, k �= yi. Therefore, the OVA classifiers can

be trained using binary cross-entropy loss on the positive-

negative pairs constructed from the labeled set as:

Ll
det(X

l) = − 1

Bl

Bl∑

i=1

log(pyi
(xli))+

1

K

∑

k �=yi

log(1−pk(xli))

(4)

where pk(xl
i) is the inlier score of xl

i for class k computed

by the k-th detector and K = |C| − 1.

However, due to data scarcity, it is difficult to learn good

representations for outliers with labeled data only. To this

end, we propose pseudo-negative mining to further improve

the outlier detector training by leveraging confident neg-

atives as pseudo-outliers to enhance the data diversity of

OOD data. As shown in Fig. 2, given an unlabeled sam-

ple xui , we consider it as a pseudo-outlier for class k if the

inlier score for class k is lower than a pre-defined thresh-

old. Then, xu
i is used as a negative sample to calculate the

cross-entropy loss of class k. The final loss for xui is the

summation over all classes using it as the negative sample:

Lu
det(x

u
i ) = − 1∑

k �(pk < θ)

|C|∑

k=1

�(pk < θ)log(1−pk(xui ))

(5)

where pk is the inlier score from the k-th detector and �(·)
is the indicator function which outputs 1 when the confi-

dence score is less than the threshold θ. This increases

the data diversity of outliers and improves generalization

performance as shown in Table 5. Compared to standard

pseudo-labels, pseudo-outliers have much higher precision

because we specify which classes the sample does not be-

long to rather than which class it belongs to. The latter is
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a more difficult task than the former. Therefore, pseudo-

negative mining is less susceptible to inaccurate predictions

while increasing data utilization.

Our final loss for detector training also includes Open-

set Consistency (OC) loss [38] and entropy minimization

(EM) [12] because they can lead to further improvement.

The overall loss for training the detector is as follows:

Ldet(Xl,Xu) = Ll
det(X

l) + λu
detL

u
det(X

u)

+ λu
OCL

u
OC(X

u) + λu
emLu

em(Xu) (6)

where λu
det, λ

u
OC , and λu

em are loss weights; Lu
OC is the soft

open-set consistency regularization loss, which enhances

the smoothness of the OVA classifier with respect to in-

put transformations; Lu
em is the entropy minimization loss,

which encourages more confident predictions.

4. Experiments
In this section, we first compare SSB with existing meth-

ods in Section 4.1, and then provide an ablation study and

further analysis in Section 4.2.

4.1. Main Results

Datasets & Evaluation. As mentioned in Section 3, the

goal of open-set SSL is to train a good inlier classifier as

well as an outlier detector that can identify both seen and

unseen outliers. Therefore, we need to construct three class

spaces: inlier classes C, seen outlier classes US , and unseen

outlier classes UU . For each setting: the labeled set con-

tains samples from C only; the unlabeled set contains sam-

ples from C and US ; the test set contains samples from C,

US , and UU . The inlier classification performance is eval-

uated on C using test accuracy as in standard supervised

learning. The OOD detection performance is measured by

AUROC following [38] and we report the average perfor-
mance in detecting seen outliers and unseen outliers (see

Appendix A for separate AUROC on seen outliers and un-

seen outliers).

Following [38], we evaluate SSB on CIFAR-10 [24],

CIFAR-100 [24], and ImageNet [10] with different num-

bers of labeled data. For CIFAR-10, the 6 animal classes

are used as inlier classes, and the rest 4 are used as seen

outlier classes during the training. Additionally, test sets

from SVHN [31], CIFAR-100, LSUN [47], and ImageNet

are considered as unseen outliers, and used to evaluate the

detection performance on unseen outliers. For CIFAR-100,

the inlier-outlier split is performed on super classes, and two

settings are considered: 80 inlier classes (20 outlier classes)

and 55 inlier classes (45 outlier classes). Similar to CIFAR-

10, test sets from SVHN, CIFAR-10, LSUN, and ImageNet

are used to evaluate the detection performance on unseen

outliers. For ImageNet, we follow [38] to use ImageNet-

30[18], which is a subset of ImageNet containing 30 dis-

tinctive classes. The first 20 classes are used as inlier classes

while the rest 10 are used as outlier classes. Stanford Dogs

[22], CUB-200 [9], Flowers102 [32], Caltech-256 [13], De-

scribable Textures Dataset [8], LSUN are used as unseen

outlier classes at test time.

Implementation details. We use Wide ResNet-28-2 [49] as

the backbone for CIFAR experiments and ResNet-18 [15]

for ImageNet experiments. As standard SSL models do not

have the notion of OOD detection, we adopt the method in

[18], where the OOD score of an input image x is computed

as 1−max softmax(f(x)) and f denotes the model. Thus,

the input image is considered as an outlier if the OOD score

is higher than a pre-defined threshold. For other open-set

SSL methods, we directly employ the authors’ implementa-

tions and follow their default hyper-parameters.

For SSB, we use two two-layer MLPs with ReLU [30]

non-linearity to separate representations for all settings.

The hidden dimension is 1024 for CIFAR settings and 4096

for ImageNet settings. For classifier training, we follow

[41] and set the threshold τ as 0.95. For outlier detec-

tor training, we set λu
det as 1 for all settings and follow

[38] for the weights of OC loss and entropy minimization.

The threshold θ is 0.01 for all experiments (see ablation in

Appendix C). Following [38], we train our model for 512

epochs with SGD [23] optimizer. The learning rate is set as

0.03 with a cosine decay. The batch size is 64. Additionally,

we defer the training of the outlier detector until epoch 475

to reduce the computational cost as we find empirically the

deferred training does not comprise the model performance.

The ablation on the deferred training is in Appendix C.

When combined with standard SSL methods (e.g. SSB

+ FlexMatch), we replace the classifier training losses in

Equation 1 with the corresponding losses of different meth-

ods while keeping the outlier detector the same. When com-

bined with open-set SSL methods (e.g. MTC + SSB), we

make three modifications. First, we separate the outlier de-

tector branch from the classifier branch using the proposed

MLP projection head. Second, we replace the outlier de-

tector training losses with our loss from Equation 6. Third,

we do not filter unlabeled data with the outlier detector for

classifier training.

Results. We compare SSB with both standard SSL and

open-set SSL methods. Fig. 3 and 4 summarize the inlier

test accuracy and outlier AUROC for CIFAR datasets and

ImageNet, respectively. Considering the goal of open-set

SSL is to achieve both good inlier classification accuracy
and outlier detection, SSB greatly outperforms standard

SSL methods in outlier detection, and open-set SSL meth-

ods in inlier classification. For example, on CIFAR-10 with

25 labels, the AUROC of our best method is 11.97% higher

than the best method excluding ours. Moreover, when com-

bined with standard SSL algorithms, our method demon-

strates consistent improvement in OOD detection, and in
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Figure 3: Classification and detection performance on CIFAR-10 and CIFAR-100 with varying numbers of inlier
classes and labeled data. We measure test accuracy for the inliers classification performance and AUROC for the outlier

detection performance. While standard SSL methods suffer in outlier detection and open-set SSL methods suffer in inlier

classification, SSB achieves good performance in both tasks. Noted that the reported outlier detection performance is the

average AUROC in detecting both seen and unseen outliers. Please see Appendix A for a detailed breakdown of the results

in tables and results on more benchmarks.

Figure 4: Classification performance versus the outlier
detection performance on ImageNet-30. SSB achieves

good performance in both inlier classification and OOD de-

tection. Please see Appendix A for a detailed breakdown of

the results in tables.

most cases, better test accuracy for inlier classification. This

suggests the flexibility of our method, which makes it possi-

ble to benefit from the most advanced approaches. Note that

the performance improvement of SSB can not be simply ex-

plained by the increased number of parameters introduced

in the projection heads. Please see Fig. 7 for a comparison

between SSB and other methods + MLP heads.

Additionally, SSB is more robust to the number of la-

beled data than others. We achieve reasonable performance

given a small number of labeled data while other methods

fail to generalize. For example, on CIFAR-10 with 6 in-

lier classes, OpenMatch has similar inlier accuracy as ours

at 50 labels. When the number of labeled data is halved,

their performance decreases to 54.88% while our method

still has a test accuracy of 91.74%. Please see Appendix B

for comparisons on more benchmarks.

4.2. Ablation Study

In this section, we analyze the design choices of SSB

and show their importance through ablation experiments. If

not specified, we use CIFAR-10 with 25 labeled data as our

default setting for ablation. The same data split is used for

fair comparison.

Importance of non-linear projection heads. As men-

tioned in Section 3, we use 2-layer MLPs to mitigate the

adverse effect between the inlier classifier and outlier de-

tector. Here we study the effect of the projection heads in

Table 1. As we can see, incorporating confidence filtering

yields a significant improvement in inlier classification per-

formance (resulting in a 12.23% to 13.18% increase). How-

ever, the OOD detection performance experiences a sub-

stantial decline when the projection heads are missing (AU-

ROC from 89.67% to 63.46%). This is because the classi-
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fier tends to mix the features of inliers and outliers with the

same pseudo-labels in a shared feature space, which con-

tradicts the goal of the outlier detector. The addition of the

projection heads not only restores the OOD detection per-

formance but also achieves superior results when combined

with confidence filtering. Adding the projection heads in

combination with confidence filtering not only restores the

OOD detection performance but achieves even better per-

formance, which indicates the importance of representation

separation. Note that it is important to have two indepen-

dent projection heads for the inlier classifier and outlier de-

tector. A shared projection head does not restore the OOD

detection performance as shown in Table 1. Moreover, we

show in Table 2 that both classification and detection per-

formance degrade when swapping the task-specific features

of a pre-trained model with the fixed encoder. In particular,

when re-training the detector (just a fully-connected layer)

on top of classification features, seen AUROC drops from

89.18% to 53.99%, which suggests our model learns more

task-specific features. Therefore, the utilization of the pro-

jection heads separates concerns between the classifier and

detector, which eases the difficulties of the task and allows

them to be trained jointly without adversely affecting each

other. The effect of the depth and the width of the projection

head is studied in Appendix C.

Proj.

head

Conf.

filter

Inlier Cls.

(Acc.)

Outlier Det.

(AUROC)

78.05 89.67

shared 76.75 91.92

separate 78.47 90.92

� 90.28 63.46

shared � 90.93 63.87

separate � 91.65 94.76

Table 1: Effect of the projection head and confidence-
based pseudo-labeling for classifier training. We use a

2-layer MLP as the projection head. All models are trained

with pseudo-negative mining on the same data split.

Improving data utilization with confidence-based
pseudo-labeling. Here we study the effect of different

classifier training strategies. We compare three unlabeled

data filtering methods for classifier training: (1) det. selects

pseudo-inliers with the outlier detector as in [38]; (2)

det. (tuned), where we choose the selection threshold in

detector-based filtering so that the recall of actual inlier

samples matches ours; (3) conf. uses unlabeled data

whose confidence is higher than a pre-defined threshold,

which is our method. As shown in Table 3, although det.
successfully removes many OOD data, it also eliminates

many inliers, resulting in a low utilization ratio of unla-

Encoder

Classifier Detector

Encoder

Classifier Detector

(a) Default (b) Swap

an empty line here

Nearest Neighbor
Inlier Cls.

(Acc.)

Outlier Det.

(AUROC)

default (a) 55.04 99.43
swap cls. & det. features (b) 53.70 77.89

Table 2: Classification and detection performance using
features of different heads. We fix the encoder and MLP

heads and evaluate the classification and detection perfor-

mance using nearest neighbors on labeled set. Our model

learns specialized features since swapping hc and hd leads

to inferior performance in both tasks.

beled data (0.29% unlabeled data are used in training).

In contrast, our method includes pseudo-labels with high

classifier confidence into the training, irrespective of

whether a sample is out-of-distribution, which leads to

a high utilization ratio of unlabeled data (94.22%), thus,

outperforming det. with a large margin. Moreover, our

method also outperforms det (tuned) whose data selection

threshold is tuned for better performance. This is because

we incorporate a significant amount of OOD data in the

training process (40.16% v.s. 16.90%). In fact, many

OOD data are natural data augmentation of inliers, which

can substantially improve closed-set classification if used

carefully. When removing pseudo-labeled OOD data using

an oracle during the training. The inlier classification

accuracy decreases by 3.37% on CIFAR-10 with 25 labels

(from 91.65% to 88.28%), which suggests pseudo-labeled

OOD data are helpful for inlier classification. In Fig. 5, we

visualize top-5 confident OOD samples predicted for three

inlier classes from conf. on CIFAR-100. We can see that

the selected samples are related to the inlier classes and

contain the corresponding semantics despite being outliers.

For example, OOD data selected for sea are images with

sea background (more examples in Appendix E).

Effect of pseudo-negative mining. Table 5 shows the ef-

fect of pseudo-negative mining. We compare our pseudo-

negative mining with standard pseudo-labeling which pre-

dicts artificial labels for unlabeled data and uses confi-

dent predictions with labeled data loss. While standard

pseudo-labeling does not help the OOD detection perfor-

mance further, pseudo-negative mining improves the seen

AUROC by 4.73% over the model without pseudo-negative

mining. Compared to standard pseudo-labeling, pseudo-

negative mining not only includes more unlabeled data into

the training, but also presents high precision for the selected
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Filter method det.
det.

(tuned)

conf.

(ours)

T
es

t Inlier Clf. (Acc.) 47.20 86.53 91.65
Outlier Det. (AUROC) 57.72 87.87 94.76

T
ra

in

Utilization ratio of:

- Unlabeled 0.29 58.09 94.22

- OOD data 0.04 16.90 40.16

Prec. of pseudo-inliers 95.17 86.53 58.30

Recall of inliers 0.47 93.86 92.14

Table 3: Effect of different OOD filtering methods for
classifier training. We compare three filtering methods:

conf. denotes the confidence-based pseudo-labeling; det.
uses the outlier detector to select pseudo-inliers for classi-

fier training; det. (tuned) is a tuned version of det. that

matches the recall of inliers with our method. We compare

the performance as well as the data utilization ratio, pre-

cision, and recall of the inliers from unlabeled data during

training. All models are trained with pseudo-negative min-

ing and the projection head on the same data split.

Figure 5: OOD samples can be used as data augmenta-
tion to improve the generalization performance. The fig-

ure shows three semantic classes from labeled data (wolf,

road, and sea), and top-5 confident OOD samples predicted

for those classes. The ground-truth semantic class of the

OOD sample is on the top of each image. We can see that

OOD data with high confidence present large visual simi-

larities to the corresponding semantic classes.

pseudo-outliers as shown in Fig. 6.

As mentioned in Section 3.4, we utilize unlabeled data

with low inlier scores as pseudo-outliers to enhance the data

diversity of outlier classes. An unlabeled sample is used as

a pseudo-outlier only if its confidence score is less than a

pre-defined threshold θ. Table 4 compares the results of

different thresholds. We can see that our method achieves

similar performance as long as θ takes a relatively small

value, which suggests the good robustness of our method

against this hyper-parameter. We provide more ablation on

loss weight and data augmentation in Appendix C.

Threshold θ
Inlier Cls.

(Acc.)

Outlier Det.

(seen AUROC)

0.2 91.87 92.96

0.1 92.03 93.16

0.05 91.97 94.21

0.01 91.65 94.76
0.005 91.52 94.75

0.001 91.70 94.15

Table 4: Effect of different thresholds θ for pseudo-
negative mining. Our method shows good robustness

against a wide range of thresholds. We use CIFAR-10 with

25 labeled data here.

Pseudo-

labeling

Inlier Cls.

(Acc.)

Outlier Det.

(AUROC)

None 91.52 90.03

Standard 91.63 89.69

Pseudo-neg. 91.65 94.76

Table 5: Effect of pseudo-negative mining for OOD de-
tection. All models are trained with confidence-based

pseudo-labeling and a 2-layer MLP projection head on the

same data split.

Figure 6: Compared to standard pseudo-labeling, pseudo-

negative mining has not only higher prediction precision,

but also higher data utilization rate.

Ablation on outlier detectors. Here, we compare the per-

formance of different outlier detection methods. Specif-

ically, we choose three schemes from recent works, in-

cluding the binary classifier from MTC [48], cross-modal

matching from T2T [20], and OVA classifiers from Open-

Match [38]. As shown in Table 6. While all methods show

reasonable performance, OVA classifiers exhibit the best

performance in both inlier classification and OOD detec-

tion. Hence, we use OVA classifiers as the outlier detector

in our final model.
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OOD Detector
Inlier Cls.

(Acc.)

Outlier Det.

(AUROC)

binary classifier [48] 70.93 76.12

cross-modal matching [20] 69.27 75.99

OVA classifiers [38] 71.00 82.62

Table 6: Comparison between different outlier detectors.
The experiment is conducted on CIFAR-100 with 55 inlier

classes and 25 labels per class.

Compatibility with other open-set SSL methods. We

evaluated the compatibility of our method with other open-

set SSL techniques in Table 7. Our results indicate that

our method is highly compatible, as all existing methods

showed improved performance in both inlier classification

and outlier detection when combined with our approach.

This demonstrates the flexibility of our method and suggests

that it can be easily integrated into existing frameworks as

a plug-and-play solution.

Inlier Cls.

(Acc.)

Outlier Det.

(AUROC)

MTC 60.24 69.88

MTC + Ours 60.42 74.98

T2T 64.78 52.93

T2T + Ours 66.98 69.50

OpenMatch 68.53 80.00

OpenM. + Ours 71.00 82.62

Table 7: Integrating our method with other open-set SSL
methods improves performance. The setting is CIFAR-

100 with 55 inlier classes and 25 labels per class.

Equal-parameter comparison. As mentioned in Section

4.1, the performance improvement of SSB can not be sim-

ply explained by the increased number of parameters in-

troduced in the projection heads. Here we compare SSB

with other methods + MLP heads so that they have the same

number of parameters as SSB. As shown in Fig. 7, adding

MLP heads improves the performance of other methods, but

SSB still greatly outperforms all of them, indicating that the

performance improvement of our method can not be merely

explained by the increase of the model capacity.

5. Conclusion and Limitations
In this paper, we study a realistic and challenging set-

ting, open-set SSL, where unlabeled data contains outliers

from categories that do not appear in the labeled data. We

first demonstrate that classifier-confidence-based pseudo-

Figure 7: Comparison between SSB and other methods
with the same model parameters. The performance im-

provement of SSB can not be simply explained by the in-

creased number of parameters.

labeling can effectively improve the unlabeled data utiliza-

tion ratio and leverage useful OOD data, which largely im-

proves the classification performance. We find that adding

non-linear transformations between the task-specific head

and the shared features provides sufficient decoupling of

the two heads, which prevents mutual interference and im-

proves performance in both tasks. Additionally, we pro-

pose pseudo-negative mining to improve OOD detection. It

uses pseudo-outliers to enhance the representation learning

of OOD data, which further improves the model’s ability

to distinguish between inliers and OOD samples. Overall,

we achieve state-of-the-art performance on several bench-

mark datasets, demonstrating the effectiveness of the pro-

posed method.

Nonetheless, SSB has potential limitations. Despite the

improved overall performance, the outlier detector suffers

from overfitting as the performance gap between detecting

seen outliers and unseen outliers is still very large. There-

fore, in the future, more regularizations need to be consid-

ered to improve the generalization. Another drawback is

that our method is not able to deal with long-tail distribu-

tions, which is also very realistic in practice. Presumably,

our method will have difficulty distinguishing inliers of tail

classes and OOD data due to the data scarcity at tail.
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