This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.

Simulating Fluids in Real-World Still Images

Siming Fan'}

Jingtan Piao'*; Chen Qian',

2,34 23X
9

Hongsheng Li Kwan-Yee Lin

!SenseTime Research, 2Shanghai Al Laboratory, *The Chinese University of Hong Kong, “CPII
{fansiming, qianchen}@sensetime .com, 1155116308@1ink.cuhk.edu.hk,

hsli@ee.cuhk.edu.hk,

Ours

Input:Image

s

Holynski

) Zoom In
Input: Mask and Arrows

junyilin@cuhk.edu.hk

Zoom In Zoom In
Smman

Output: Animated Video

Figure 1. Given a still image and a coarse hint (mask and arrows) of motion as input (left), our model estimates fluid motion to generate an
animating video (right). Holynski [1 1] is a state-of-the-art method. Please refer to the supplemental materials for video playing.

Abstract

In this work, we tackle the problem of real-world fluid
animation from a still image. The key of our system is
a surface-based layered representation, where the scene
is decoupled into a surface fluid layer and an impervi-
ous background layer with corresponding transparencies to
characterize the composition of the two layers. The ani-
mated video can be produced by warping only the surface
fluid layer according to the estimation of fluid motions and
recombining it with the background. In addition, we in-
troduce surface-only fluid simulation, a 2.5D fluid calcula-
tion, as a replacement for motion estimation. Specifically,
we leverage triangular mesh based on a monocular depth
estimator to represent fluid surface layer and simulate the
motion with the inspiration of classic physics theory of hy-
brid Lagrangian-Eulerian method, along with a learnable
network so as to adapt to complex real-world image tex-
tures. Extensive experiments indicate our method’s com-
petitive performance for common fluid scenes and better ro-
bustness and reasonability under complex transparent fluid
scenarios. Moreover, as proposed surface-based layer rep-
resentation and surface-only fluid simulation naturally dis-
entangle the scene, interactive editing such as adding ob-
jects and texture replacing could be easily achieved with

*Equal contribution and joint first authorship.
®Corresponding authors.

realistic results. Code, and dataset are publicly available.

1. Introduction

Given an image of a scene containing liquid such as
streams and waterfalls, humans can imagine how the lig-
uid in the still image would move. The problem of ani-
mating fluid from a single image has become a blooming
topic recently studied by a series of work [0, 11,27,9, 21].
Their general pipeline can be summarized as: (1) estimat-
ing optical flow that indicates the movement of liquid and
(2) synthesizing future frame image based on the motion
estimation. Although these methods achieve impressive vi-
sual effects on simple fluid regions, how to handle com-
plex contents with challenging transparency, collisions, and
thin structures in real-world scenes is still a challenging and
open problem.

The key to the limitation of previous work is that the
generation process of videos is modeled in a global man-
ner. Specifically, the subsequent frames are generated based
on warping existing textures on input images [3] or neural
features [6]. Such operations regard the scene as a whole
and warp all the contents in the scene together. For some
complex transparent fluid cases, as shown in Figure 2(b),
we can see through the water to observe the background
rocks beneath the liquid. Textures on those static objects

Project page: https://slr-sfs.github.io/

15922

are also improperly deformed and result in unnatural anima-
tions. To decompose the influence of motion on fluids and
surrounding static objects, we propose a two-layer represen-
tation for scenes with fluids, namely Surface-based Layered
Representation (SLR), which models the motion of the sur-
face fluid and the rest background separately. To achieve
such decomposition from the still image during inference,
we propose a temporal-based training scheme, which facil-
itates the network to learn the decomposition with multiple
supervisions over spatial and temporal dimensions of run-
ning fluid videos.

Another major difficulty in animating a single fluid im-
age is predicting the motion flow of the fluid. There exist
two types of methods. The first category is the interactive
motion prediction methods. They require sparse hints (ie,
labelling the velocity direction and relative amplitude) on
random pixels of the liquid region as additional inputs. The
feature clustering model [27] or convolutional network [11]
is then used to generate a dense motion field. As the pre-
cision depends on the level of motion details a user can
provide, such methods are time-costing in complex fluid
scenes. The second category is automatic methods [6].
These works regard the task as a domain transformation
problem, and use image-to-image translation techniques to
predict the motion represented by 2-channel optical flows.
Ambiguous velocity (e.g., a flat river surface can flow ei-
ther to the left or to the right, as shown in Figure 2(a)) and
tremendous changes of velocity in a period of time caused
by the collisions with objects (as shown in Figure 2(c)) may
pose great challenges to the above methods. To tackle the
challenges, we introduce a simplified Navier-Stokes sim-
ulation into the motion estimation process, called Surface-
only Fluid Simulation (SFS). Specifically, the initial motion
prediction of the liquid region is firstly calculated through
sparse user inputs and interpolation inside the whole region.
In parallel, a 3D mesh is built based on a monocular depth
estimator. Then, the N-S equation is solved on the mesh
surfaces and based on the initial motion to obtain a simu-
lated motion field in a short period of time. Finally, since
the real thickness of the fluid is neglected during the simu-
lation, a refinement step is expected to compensate for the
motion offset at height. Thus, a DNN-based motion transla-
tor is applied subsequently to obtain the refined motion field
that adapts naturally to the input image. With SFS, we can
enforce precise controls on the movement of fluid.

In summary, our work has three major contributions. (a)
We propose a new and learnable representation, surface-
based layered representation, which decomposes the fluid
surface and the static objects in the scene to better synthe-
size the fluid animating videos from a single fluid image.
(b) We design a surface-only fluid simulation to model the
evolution of the image fluids with better visual effects. (c)
Based on the proposed surface-based layered representation

(a)Ambiguous
Motion

Animat with o
Ours SLR(Frame t

(b)Transparency

(c)Collision

Zoom In(Rock) Motion with Data Prior Real Motion

Figure 2. Motivation. (a) Given a still input image, the motion
may be ambiguous. (b) Animating via previous SOTA method [1 1]
causes background rocks beneath the liquid improperly deformed.
(c) Motion prediction methods such as [11, 27] cannot well capture
motion changes caused by the collisions with objects.

and surface-only fluid simulation, image editing with flu-
ids is achieved with realistic and vivid results. In addition,
We can easily extend our fluid animation system to down-
stream editing tasks, thanks to the SLR and SFS designs in
our framework. For example, we can augment objects in the
fluid region or background region, and simulate the interac-
tions between the fluids and objects. We can also replace
textures to different layers to create different scenes.

2. Related Work
2.1. Video Generation

In early studies, researchers focus on generating new
video context by changing the attributes of recorded
frames [32, 33]. Traditional methods of video motion gen-
eration with movable substances are based on stochastic
process analysis [34] and color transfer [32]. Given a ref-
erence video indicating the temporal changes of a scene,
texture movement and sequential images can be generated
using a patch aligned method and energy-based optimizing
[33]. Similar methods are applied to single image input [3].
However, obvious artifacts exist, and the smoothness of the
video is not guaranteed. These drawbacks make the usage
of such methods limited to typical types of scene samples.

In recent years, since the development of deep neural
networks in image generation field [15], plenty of innova-
tive efforts have been made to improve the synthesis qual-
ity of images [7, 16, 8, 35, 25]. Techniques such as GANs
[8], perceptual loss [17], partial convolution [25] and cycle-
consistency [35] have been widely used as standard com-
ponents. Built upon the success of image generation, sev-
eral attempts have created the precedents of neural video
generation. A few methods are developed to force the net-
work to learn intermediate scene representation for predict-
ing the future frames or interpolating key frames, once the
input sequences and camera trajectory are given (note: as
we focus on single image input, we skip the review of

15923

such multi-frames input trend). Given a single image as
input, latent generative methods like [24] proposes an au-
toregressive model to generate infinite pixels forming se-
quential outputs. InfinityGAN [23] disentangles global ap-
pearances, local structures and textures with a structure syn-
thesizer and texture synthesizer to generate images with
spatial size and level of details not attainable before. [31]
tries to use Fourier transforms in time variance showing the
phase variations to represent the flow and generate mov-
ing videos. [20] spends efforts in digging into the semantic
meanings in images and generates videos correspondingly
to achieve a natural result. [6] decouples motion and ap-
pearance through learning intermediate flow fields and color
transfer map. However, these methods are either focus-
ing on spatial-wise consistency [20], or paying attention to
coarse-level time-variance scene changes [31, 6]. None of
them discusses or can handle the particularity of fluid with
fine detail motions.

2.2. Fluid Simulation

Physical Fluid Simulation. Traditional methods originated
from computer graphics to achieve accurate approximations
on various types of fluids. Hybrid Lagrangian-Eulerian
Methods [2, 36, 10] have successfully simulated the mo-
tion of incompressible fluids in a pre-defined 2D or 3D box
environment, which solves pressure projection on Eulerian
grid and advect on Lagrangian particles. To improve con-
vergence ability and flexibility on complex shapes, material
point method (MPM) [1] has been popular and more sub-
sequent methods [18, 19] have been proposed to stabilize
the convergence when iterating velocities. However, these
methods are time-consuming in large scenes. To reduce the
cost of simulating a large-range of fluid, methods have been
proposed to simulate only a small range of fluid [4], or the
surface of the fluid [5, 13] to produce a faster approxima-
tion by avoiding high computational cost in 3D volumetric
solvers. Although these works achieve amazing simulation
effects, they are still limited to synthetic scenarios due to
scene-specific modelling.

Animating Fluids with Data Prior. Given a still image as
animation target and a set of real-world water video can-
didates as animation bank, [31, 29] propose to retrieve a
video or a group of videos from the bank that has simi-
lar content with the target image as the references. Then
they transfer motion and appearance of references to each
region of interest on target image to form the water anima-
tion video. These methods open the door of real-world fluid
animation with data prior in-the-wild. However, the seam-
less alignment of animated results with source input image
can not be well guaranteed and requiring lots of manual ef-
forts. With the development of deep learning, recent works
[11, 27] propose to automatically predict each frame of mo-
tion and appearance via learning from reconstruction loss

with real world videos for training. [1 1] first simplifies mo-
tion estimation part as a single frame motion prediction via
motion Eulerian integration and then proposes a deep fea-
ture warping technique to narrow down the size of blank
areas caused by warping. Finally, it adaptively blends for-
ward and backward features through a learnable parameter
Z to generate animated fluid video. Based on [11], [27]
proposes to regress fluid motion conditioned to user’s sparse
guidance and generate paired training data through motion
speed clustering. The work further proposes to use multi-
scale representation to capture different fluid speed in dif-
ferent resolution. Although these methods take a step fur-
ther to real-world scenes with impressive results, it is hard
for them to handle complex context relations over fluids due
to the single representation to the entire scene that regards
different objects and textures as equal.

Unlike previous work, our system marries the ad-
vantages of both physical simulation and learning-based
pipelines. For textures, to avoid interplay between fluids
and surroundings, we force the network to decouple the
scene into a new two-layer representation SLR, that in-
cludes a static background and time-varies surface fluid lay-
ers>. Meanwhile, the network can hallucinate reasonable
and photo-realistic textures in vacated regions thanks to the
large-scale data prior. For motion, to skirt scene-specific
modelling while keeping physic reasonability, we propose a
three-step motion prediction. We first use sparse labels from
the human interface to generate the initial rough motion and
then calculate reasonable evolution in a short period by in-
troducing a 2.5D surface simulation, SFS. Later, a smooth
motion translator is used to refine the motion trend to bet-
ter fit real-world examples with data prior. Moreover, as a
consequence, we can generate natural fluid animations with
the network training on plenty of real-world examples and
flexibly edit the main liquid region and boundary condition
to create various visual effects.

3. Method

Given a real-world image that contains liquid, our goal
is to generate a video clip that animates vivid flowing of the
fluid. To achieve this goal, a system is required to (1) repre-
sent complex context relations between fluids and surround-
ing environments; and (2) to estimate motion fields from
single image input with reasonability and efficiency. We
propose a novel system with two main designs that satisfy
the above requirements. For texture, in contrast with previ-
ous methods that regard all elements in the scene as an en-
tirety, our system learns a surface-based layered representa-
tion (SLR) (Sec. 3.1) that decomposes the scene into surface
fluid layer and impervious background layer. Since the tex-

2This idea shares a similar spirit with [26] in separating a scene into
both static and dynamic parts. Whereas, our SLR could handle transparent
fluids, and only require a single image as input.

15924

ture characteristics of surface fluid and rest background are
assigned to different layers, such a design could overcome
the negative influence of motion flows between fluids and
surroundings (e.g., improper texture warping, as shown in
Figure 2(b)). As for motion estimation, the system provides
a three-step motion estimation alternative by introducing a
surface-only fluid simulation (SFS) into the motion field
prediction (Sec. 3.2). The motion prediction steps combine
advantage of both physical- and learning-based motion es-
timation pipelines, thus ensuring physical reasonability and
meanwhile skirting the scene-specific modelling problem.
Each component is detailed in following subsections.

3.1. Learning of Decomposition of Images

In this subsection, we first introduce Surface-based Lay-

ered Representation (SLR). Then, we show how to obtain
animated videos through SLR. Finally, we present how to
learn SLR with a neural network (illustrated in Figure 3),
and challenges we meet during optimizing the network
since there is no oracle ground-truth supervision for fluid
scene decomposition.
Surface-based Layered Representation. Given a still
image I(Tp) as input, a series of RGB frames I =
{I(Ty),...,I(T,)} are outputs to synthesize time-space
variations of the scene with running fluids. As we aim
to handle complex context of fluid scene through disen-
tangling fluid motion and still objects beneath/interacting
with surface fluid, we propose to learn a novel intermediate
representation whose output is an impervious background
layer image® I, a temporal sequence of surface fluid layer
images Iy = {I;(Tv),...,I;(T,)} and transparency fac-
tors oy, oy = {ay(Typ),...,ar(T,)}, where a, € [0, 1].
Transparency factors indicate the contribution of colors on
each layer to the final image at each time. In practice,
we utilize a convolution network to output the simplifi-
cation of the representation: Fyp : (I(Tp),I(T,),M) —
(I, I (T0), I (T7), o, e (T0), cp(T})), where the net-
work only outputs the estimated first and last frames of I
as well as ary. M is the estimated motion fields of Tg to T
from the single input (7). We will detail the synthesis of
M in Sec. 3.2.

We expect the background to be identical across all
times, while the fluid surface deforms with realistic mo-
tions. To this end, Fy is enforced to automatically map the
original texture of non-liquid and static regions as well as
the reasonable texture of under-liquid surface regions to the
background layer (detailed in later subsection). As for fluid
surface learning, recurrent estimation for all frames (RNN)
is a possible alternative that can be tailored from video gen-

3The word “impervious” is not rigorous, as background layer is not
only formed from static object but also non-surface fluid which contains
air molecules in real environment. However, we assume the fluid is incom-
pressible, and thus a little bit abuse the word “impervious background” to
indicate the non-surface fluid regions.

eration [30]. However, such an intuitive design might cause
frame distortion as time goes on due to the accumulated er-
rors and hard convergence (also demonstrated in [11]). In
contrast, We use the linear combination of the first and last
frames to construct the images at intermediate frames. This
choice not only transforms the problem into interpolation
rather than extrapolation, which is easier to converge, but
also is able to generate an endless cyclic video rather than a
video of a fixed interval. In detail, we tailor the symmetric
softmax splatting, which is a pixel-warping strategy utilized
in [11, 28], to our framework. We extend the splatting op-
eration from a single image feature splatting into two levels
— fluid surface feature splatting and fluid alpha splatting as
follows :

Exe/\f a(Tl7 X)

X Dy (Tj; %)-exp(Z (Tyx))
Di(15%) = =555 T ey Tyi5) 0
Oé,f (T“)A(/) _ er/\’ a(T’“X) (TJ7) exp(f(Tj;)A())j (2)

Dsex (T %) -exp(Zs (T5; %))

where j € {0,n} is the start index or last index of se-
quences, indicating forward splatting the frame O or back-
ward splatting the frame n, which means the value j is :

. [o,
i=9

Dy (T;;%') is the fused fluid feature value of target frame
at pixel X, and a (T;; %) is the transparency value of tar-
get frame at p1xe1 x. Dy (T;; %) represents value of Dy (T;)
at pixel X, oy (7}; %) and o' (T}; %) are similar. During in-
ference, we set D¢(T,) = Dy(To) and o (Ty,) = a (7o)
since only single image is available. X" is the set of pix-
els satisfying My_;(%x) = x' or Myi—n(X) = X', My
is displacement map generated from M through euler inte-
gration [11, 28], and « (T};; %) is a temporal coefficient to
fuse features from forward warping and backward warping
to ensure endless looping:

L if 3 = Moo (2), @
1— L, i3 = My n(@).

if 3/ = Mo_.(2), 3
if 3 = Mo__n ().

a(T; %) =

Then a fluid feature decoder is applied to D (T;) to gener-
ate surface fluid image I;(7;) and a alpha refinement net-
work is applied to « f(T) to generate transparency alpha
a¢(T;) to avoid vacant alpha particles.

Animating Fluids with SLR. Once we obtain the final sur-
face fluid layer I7(7;) and transparency cs(T;), the recon-
structed final image I(7;) can be acquired by adding the
impervious background layer I, back to the surface fluid
layer I¢(T;) with oy Here we use separate « channels for
background and fluid transparency predictions. This de-
sign helps to stabilize the training of decomposition. The
core reason is that when a single fluid transparency oy is
warped according to the motion flow, it leaves a blank re-
gion on the boundary, and makes the gradients hard to be

15925

[b ay, Background RGBA

I4(Ty) ay(T;) Fuid ReBa .
a"f (T3) Fused Fluid Alpha % —
D¢(T) Fluid Feature Map ‘Mean Video

A : GT FrAame To

* Losses

D)(T) Fused Fluid Feature Map | |1~~~ ===~

: Losses Losses :

[(T1) Output Frame 7} Image | [' _ "89ressor L
M Motion
7 [(T7) Splatting Weight

Background
Extractor

Fluid Feature Encoder

..........

Fluid Feature
Decoder

Figure 3. Training and testing pipelines. The background layer and background alpha are predicted only at the first frame. Both fluid
features and fluid alpha are predicted at the first and last frames, and then symmetricly splatted and blended using the softmax splatting at
frame 7. A decoder is used to decode fluid features into images and refined alpha. For frame 75, motion is calculated following pipeline
Figure 4, and for frame 75, motion is calculated through Euler integration. During inference, 7, is replaced by T to create a cyclic video.

Alpha Regressor

Dy(Ty)

Z§(Tn 1(Tn)

backpropagated. Although with the two-channel implemen-
tation, there still is a o, on that vacated regions to fascinate
the network refining the texture. In formula we have

ap(Ti)1y(Ti) + cwly
ar(T;) + ap

I(T;) =)
For corresponding network architectures to achieve the
above targets, as shown in Fig 3, the encoder is used to ex-
tract background texture and « channel as well as surface
fluid layers’ features and its . The decoder is used to refine
the fused fluid layer that combines the layers from the first
and last frames to obtain the complete surface fluid layer,
and the final animated image is reconstructed by composit-
ing background and surface fluid layers.
Optimizing the SLR. The training process is divided into
three parts, in which, we separately train (1) the surface
fluid branch containing the encoder that predicts the fluid
feature layer from image input and the decoder that recon-
structs the warped fluid layer, (2) the background branch
that predicts the background layer from the image input, and
(3) jointly train them together with « learning and surface
fluid/ background branches finetuning. For each training
step, the paired training data < (I(Tp), I(T},)), I(T;) > are
randomly picked among 60-frames sequence without con-
straint on interval. We use dense optical flow estimation
network [14] to extract reasonable movement of each video
as pseudo motion ground-truth, and to ensure smoothness,
we average the flow with window size of 30 frames. Due

to space limits, we detail the training of each stage in the
supplementary materials.

3.2. Motion Field Estimation

In the previous section, we have described the core ne-
cessities to learn an SLR but skipped the synthesis process
of one of its input, motion fields M. In this section, we
discuss how to obtain M.

During training, the motion of each frame can be gener-
ated from a conventional optical flow estimator [14]. Dur-
ing inference, as the input is a single image, we expect
to synthesize a reasonable motion map from the observed
scene. We propose a motion estimation process that sep-
arates the motion prediction into three parts taking advan-
tage of both physical-based and learning-based pipelines for
fluid simulation. First, interactive labelling of the sparse ve-
locity of several pixels on the image is required to guide the
generated motion directions of I(Ty), along with a fusion
with weights calculated based on Gaussian filtering of the
distance maps from the labeled pixel to build a dense ve-
locity initial map. Second, a surface-only fluid simulation
is calculated based on initial motion and estimated scene
depth to simulate a following convincing evolution of the
liquid. Note that this step only calculates for the first frame.
Last, a DNN-based pixel-to-pixel motion translator is uti-
lized to refine the flow to create a more realistic and natural
motion map. This translator could be considered as gen-
erating a compensation for a detailed motion map that is

15926

1. Input Image 2. Label Mask and Velocity Hint

—

4. Mono-Depth Estimation 5. Build 3D Mesh

uone|nwIS 1o} uonezijeniuj(e)

3. Generate Dense Velocity

BuizisayjuAg pue
uonejnuis(q)

° g
10. Add object in Fluid Layer 11. Add object in Background layer

9. Editing AR objects

i
'
<

Buizisayjuhg
a|qeyp3 :jeuondo(d)

13. Mesh-Based Simulation
and Refinement

N
12. Mark Intersection Vertex "Solid”

14. Edited Synthesized Result

Figure 4. Motion calculation pipeline. (a) is initialization of fluid
region, rock region, motion, and Mesh. (a,b) combine to form
our 2.5D simulation and animation pipeline, where (4-5) is not
included if using 2D simulation method. (a,c) combine to form
our editable simulation and synthesis pipeline, where the user can
edit 3D objects and create corresponding motion.

harmonic with fluid textures. The pipeline is illustrated in
Figure 4.

Initial Motion from Interactive Sparse Labeling. To ob-
tain determined as well as editable motion direction, we
choose an interactive alternative to generate initial flow for
image I(Ty) following [27]. With no more than 10 discrete
notations on images, and a fixed segmentation of the liquid
region, we use nearest-neighbors-averaging to assign all the
pixels that are inside the liquid region an initial velocity.
Surface-only Fluid Simulation. After the initial state is
estimated, we tailor the traditional graphics pipeline with
discretization and linear equation to simulate the follow-
up evolution of the liquid. Intuitively, we can directly ap-
ply simulation on 2D grids that align with image pixels by
initializing each pixel as an Eulerian grid and several La-
grangian particles near each pixel. However, since such per-
spective projection of the 3D scene may cause severe distor-
tion when direct manipulating the motion in 2D, as shown
in Figure 7, we thus turn to use a mono-depth estimator [22
to estimate the 3D surface of the liquid. After the 3D sur-
face is constructed inside the region of the liquid, a mesh
surface-based velocity is calculated, with the restriction of
projected velocity :

% m - [fox ﬁy] {1(/)2 19z

Where fz, fy, cx, cy is camera intrinsic parameters, u, v is

) dz
—x/z &

2] g ©
dt

Input Image

GT Motion

~
(a)Surface (b)Not a Surface
Figure 5. Examples for Different Fluid Scenes. (a) The surface
thickness of the waterfall and river are gauzy. (b) The fountain
cannot be considered a surface. (c) Fluid with vortex contains

complex motion.

(c)Complex Initialization

the velocity on the projected image and z,y, z the 3D po-
sition in the scene. Since we have modelled the liquid as
a surface, we replace traditional Laplacian operator with
Laplacian-Beltrami operator on the mesh and use Mixed-
Euler-Lagrange approach [36] implemented in Taichi [12]
to simulate consequent motion of each vertex. Detailed for-
mula derivation can be seen in the supplementary. The par-
ticle binding on the surface is randomly sampled according
to the surface area. When a particle is moved outside the
mesh surface, we use the nearest projection to force the po-
sition to fall onto the mesh. For the boundary of the mesh,
we calculate the velocity of the boundary triangle, judging
whether the velocity on the edge boundary is inward or out-
ward. For outward edges, the particle is abandoned after
moving out of the liquid region. For inward region, a par-
ticle source is built to maintain the overall number of parti-
cles to be roughly stable. With the texture of surface fluid
layer binding to each vertex, we can warp fluid layer with
a soft rasterizer to simulate flows. In this way, given arbi-
trary flow initial state, a stable velocity can be calculated to
approximate real-world flow after a period of simulation.
Smooth Motion Translator. With the help of above 2.5D
fluid simulation, we can generate a time-variant velocity
among the sequence. However, the simulated velocity is
still a rough trend since it only works on fluid surface with-
out considering thickness variation of fluids. Thus, the SFS
can work well in cases like Figure 5(a). It fails in cases
with distinct depth measurement differences, as shown in
the Figure 5(b) due to the lack of height information dur-
ing calculation. Also, It is fragile to cases with complex
initial state as shown Figure 5(c) due to error-prone/time-
consuming interactive initial motion labeling for such cases.
Thus, we need extra scheme to compensate or rectify for
detailed motion that is harmonic with the fluid textures. To
this end, we use a convolution-based network to transfer
the simulated motion into a more detailed and reasonable
one, which is pixel-aligned with image textures. The net-
work is trained as a traditional style-transfer task, with a L2
loss between output velocity and ground truth. An external
patch discriminator is used to refine the pattern of the ve-
locity distribution. All the settings are similar to the image
translation task pipeline [15].

15927

4. Experiments

In this section, we present experiments and detailed anal-
ysis to demonstrate the contributions of our method both
quantitatively and qualitatively. For all the cases shown in
this paper, please refer to our demo video and project
page for better dynamic visual effects.

4.1. Quality of Fluid Video Synthesis

Implementation Details. To learn SLR, we train our net-
work on a series of videos containing a large region of fluid
movement and still background [! 1]. For training of motion
refinement network, we use the same settings in [27]. All
networks are trained at a resolution of 256 x 256.
Datasets and Evaluation Metrics. In addition to valida-
tion set in [1 1], we collect extra 126 scenes to form a new
test set, which we called Complex Liquid Animation in-
the-Wild (CLAW) test set, for evaluating the performance
on both dense fluids (such as rivers and oceans) and sparse
or transparent fluids (such as streams or splashes). Note
that, in this subsection, the motion for all the methods to be
compared is guided by the optical flow of the whole video to
distinguish the performance of the synthesizing techniques.
We use PSNR to show the whole average error, SSIM to
show the errors in the region with plenty of textures and
LPIPS, a perceptual based loss, to show visual quality dif-
ference. For more details, please refer to supplementary.

Dataset Methods All Region Fluid Region
LPIPS| PSNRT SSIM?|LPIPS| PSNRT SSIM?
Holynski Reproduced Holynski 0.0798 25.03 0.7787] 0.0657 25.88 0.8007
Common |Modified Holynski(Baseline) | 0.0793 24.75 0.7758] 0.0656 25.72 0.8000
Val Set Ours 0.0834 25.14 0.7795| 0.0657 26.10 0.8030
Our Reproduced Holynski 0.2067 2026 0.5955|0.2029 20.36 0.5961
CLAW |Modified Holynski(Baseline)| 0.2078 19.97 0.5923| 0.2041 20.10 0.5934
Testset Ours 0.2040 20.79 0.6080| 0.1975 20.80 0.6077

Table 1. Quantitative comparison. (a) Results on Holynski’s
common val set [11], evaluating first to 60-th frames.“Fluid Re-
gion” means static region is replaced by input image during metric
calculation for focusing on the statistic of fluid. This could be done
by replacing the non-fluid region with the corresponding textures
of input images. (b) Results on CLAW test set.

Quantitative Comparisons with baseline. Table 1 shows
the results between our method and state-of-the-art method
[11], which is a single layer learning-based system, a typi-
cal method that animates the scene in a global manner. We
re-implement [| 1] in Pytorch (Reproduced Holynski), since
the source code is not public available. For other compari-
son baselines, Modified Holynski is built upon Reproduced
Holynski but with the modification of replacing convolu-
tion to partial convolution in the fluid decoder. The third
model (Ours) is our SLR model*. Three observations can

4For Ours, we use (Ours (stage 1) in Table 1 in our supplementary
material.) as surface fluid model initialization. Since our training contains
three stages, and we train 100 epochs at the first stage to get the model
(Ours (stage 1)), then decay learning rate and fine-tune 50 epochs for fluid
at the last stage in practice, we also apply the same training strategy for the
first two baselines to ensure fair comparisons.

be included from Table 1: (1) PSNR and SSIM metrics of
“Modified Holynski” drop a little compared to “Reproduced
Holynski” in both statistics on all- and fluid region. We infer
that, although partial convolution could better capture con-
text than conventional one to impaint reasonable texture in
vacated regions in theory, simply replacing partial convolu-
tion into single-layer framework cannot essentially improve
the image quality due to the wrong context raised from im-
proper warping of both background and fluid. While, with
SLR, the partial convolution can strengthen its advantage on
context capturing for more proper fluid context textures pro-
vided in surface fluid layer. (2) The LPIPS of Ours model
drops a little compared to the Modified Holynski model in
the “All Region” of Holynski common validation set, but
has nearly the same LPIPS in the “Fluid Region”. For the
other two metrics, our model leads to an uptick. Since most
regions of Holynski’s validation set are static, the blending
of the fluid and background in the non-fluid region could
lead to slight performance drops in terms of LPIPS. How-
ever, it could be eased by replacing the non-fluid region
with the corresponding textures of input images, thus we
care more about the performance in the “Fluid Region” in-
stead of the “All Region”. Such a phenomenon tells us that
the two-layer decomposition design in Ours model does not
harm the reconstruction ability on final images. To better
unfold the analysis, we further conduct the close-up evalua-
tions on Holynski’s val set. Concretely, we crop the fluid
region by motion threshold and only evaluate these visi-
ble fluid background regions. The LPIPS, PSNR, SSIM
of Holynski’s method are 0.230, 19.01, 0.565, and Ours are
0.227,19.64,0.581. This setting leads to larger perfor-
mance margins with the baseline, which demonstrate the
advantage of our system. (3) When evaluating only in the
fluid region, we can see model Ours reaches a compara-
ble result with the “Modified Holynski” model in Holynski
validation set [| 1], but improves significantly in CLAW test
set. The major reason behind this observation is that when it
comes to complex scenes as included in our CLAW test set,
our proposed two-layer representation suppresses the influ-
ence between surrounding and surface fluids. Thus we can
achieve better results than single-layer baselines that regard
all elements in the scene as an entirety during warping.

Comparisons with SOTA methods. In this paragraph, we
provide comparisons with more state-of-the-art methods —
Endo et.al [6], Tavi et.al [9], and Mahapatra et.al [27].
The first two methods are centered on animating general
scenes, where Endo er.al [6] is designed for landscape, and
Tavi et.al [9] focuses on animating periodic patterns in still
images. These two methods could be applied to fluid sce-
narios. In contrast, Mahapatra et.al [27] is specialized for
fluid scenarios, where a multi-scale representation is intro-
duced to capture different fluid speeds in different resolu-
tions. Concretely, as Endo’s code is publicly available, we

15928

compare our system with it both quantitatively and qualita-
tively. For other methods, we compare them qualitatively
in Fig 6. Specifically, the result of Mahapatra is from of-
ficial project page, and result of Tavi is from official app.
Endo’s method can only control motion with a latent code.
Thus, we test ten different latent codes and select the best
one to compare. We observe that these three methods suffer
from animation distortions with different levels — (1) from
the zoom-in perspective, all baselines improperly move the
still stones with the fluids. Specifically, Tavi’s results have
significant ghosting artifacts, which might be caused by its
one-fold periodic motion and alpha-blending designs. (2)
From the full image perspective, Endo’s method has dif-
ficulty in estimating fluid motion. The river’s motion is
incorrectly predicted to be from right to left, and the wa-
terfall flows upwards to the right. The quantitative re-
sults (Tab 1) provide the demonstration from another as-
pect. This phenomenon is foreseeable, as Endo’s frame-
work considers motion in a global manner. In contrast, our
two-layer method animates plausible fluid without affecting
still stones. Please refer to the supplementary material for
more comparisons and straightforward video effects.

O,s Mhapatra 26] 288x5120.4s (0.4s
70;

Ours 288x512 0.4s
784,068

Ours HD 0.4s 04s 08s

Zoom In Zoom In
Figure 6. Qualitatively Comparisons. (e-f) are tested in 288 X
512, others are tested in W=1280. LPIPS/PSNR/SSIM of the
whole video are colored in orange.

TEndo[6] HD 0.4s 04s 0.8s

Holynski validation set CLAW test set

Methods All Region Fluid Region All Region Fluid Region

LPIPS | PSNR 1 SSIM 1 |LPIPS PSNR SSIM|LPIPS PSNR SSIM|LPIPS PSNR SSIM

Endo[6] HD| 0.357 1627 0.351 | 0.120 22.31 0.741]0.357 15.92 0.296| 0.347 16.38 0.331
Ours HD | 0.142 2343 0.715 | 0.118 23.78 0.728] 0.196 20.99 0.611| 0.190 20.99 0.610

Table 2. Quantitative comparisons with Endo’s method.

User Study. We conduct a user study to compare visual
effects between single layer baseline (Modified Holynski)
and our two layers method(Ours in Table 1) on the full set
of CLAW testset. For each scene, we animate 60 frames and
output a two-second video. Animated videos are shown side
by side without providing ground truth videos as reference
to guide the participator focusing on the reasonability and
photo-realistic. We ask the participants to select which one
is better or neither is better, mainly according to three di-
mensions (photo-realistic, stereoscopic, and high-fidelity).
As shown in Table 3, the participators can make a dis-
tinction between the two methods over most samples, leav-

\

Input Image Edited Motion

No Simulation No Simulation Refined Edited Motion

Simulated 2D Motion Refined Simulated 20 Motion

Simulated 2.5D Motion ~Refr
cene A: Fluid-Rock Inter:

Simulated 2.5D Motion Refined Simulated 2 50 Motion
cene B: Perspective Distortion

Figure 7. Different simulations. Orange arrows point out motion
direction. All simulation methods use 75% weak incompression
simulation instead of fully incompression for better visual effect.
(row 1)Input image, sparse motion generated by sparse user hint
required by each method. (row 2-4)ablation study of Mahapatra’s
method [27], 2D simulation and 2.5D SFS.

ing 27.2% samples difficult to tell. Our method achieves
better scores than the single-layer method [1 1] with 52.3%
sample voting. This indicates the effectiveness of the pro-
posed SLR in other aspects.

Single layer Ours Neither
E-O-N | 125(20.5%) 319(52.3%) 165(27.2%)

Table 3. User study. The subjective scores are voted on all sam-
ples of our CLAW testset, which includes 122 videos with various
real-world fluids scenarios(e.g., river, stream and waterfall) and
complex context surrounding (e.g., semi-/transparent liquid, colli-
sions and thin structures).

4.2. Different Motion Prediction

Figure 7 shows different motion prediction pipelines.
Pipeline 1: An interactive sparse labelling of the motion
and then extending all the velocities to the whole moving re-
gion, which results in a constant flow that remains large gap
with realistic motion. We can see that the motion appears
reasonable global with a network refinement. However, for
local regions around static rocks, the flow of liquid is im-
properly stiff and has no interactions with the rock. While in
real-world scenes, there should be vortex and sprays caused
by collisions. Pipeline 2: Built upon pipeline 1, while be-
fore the motion refinement stage, we additionally initialize
grids with fluid, rock or air masks as well as placing parti-
cles around each grid, then advocate particles by edited mo-
tion for once. Later, a NS equation with the incompressible
fluid assumption is solved on 2d grid to obtain the motion of
the next frame, which we call ”Simulated 2D Motion” in the
figure. Considering pipeline 2 is simulating on a 2D image
plane, a refinement step (using a smooth motion translator)
is applied to compensate for the motion offset at height and
fine details. Pipeline 3: instead of simulating on a 2D im-
age plane, the N-S equation is solved in 2.5D. Specifically,
we regress the depth with a pretrained monocular depth es-
timator and consequently build a 3D mesh over the fluid.
Then, we solve the N-S equation on the mesh surface. With

15929

Zoom In
Simulated Motion

3) Zoom In
1(T;) Simulated Motion

Figure 8. Interactive Editing. (Bottom) Initial all moving region
as 'Fluid’ statue. (Top) Initial *Solid’ statue at overlap area of
mesh and new object.

the help of simulation, we can see in the left scene of the
figure that the effect of turbulence around the rock can be
animated, and the trend maintains the refined output. From
the right scene in the figure, we can observe that the abso-
lute value of the velocity is unnatural in Pipeline 2, which
regards all particles on an identical plane. However, since
the liquid surface leans in the picture, there should be a fore-
shortening effect on the projection. In contrast, pipeline3
samples particles on the surface and such simulation enable
near-plane motion to carry more speed.

Quantitative Comparisons. Tab 4 shows the ablations of
motion refinement in terms of endpoint error metric (lower
is better). We evaluate all scenes in both two datasets with
user input limited to five sparse hints. The results prove mo-
tion refinement is essential for achieving a better ability to
represent GT motion. Refer to supplementary for quantita-
tive metrics of the three motion prediction pipelines.

Methods Dataset
Holynski Val Set | CLAW Test Set
DenseMotion 0.299 0.596
RefinedMotion 0.269 0.582

Table 4. Quantitative Motion Refinement Ablation.
5. Byproducts

Interactive Editing. We can augment fluid scene while
keeping realistic fluid animation. For example, we can place
an imaginary stone in a river that is originally slack water,
and the flow could be updated to the new one with the ef-
fect of a vortex around the stone, as can be viewed in Sim-
ulation w/ Fluid-Rock Interaction of Figure 8. To achieve
this, we only need to calculate interface of inserted stone
mesh and fluid surface mesh. Then, we classify the part
of stone above/beneath the river surface according to the
depth. Later, fluid motion is updated with boundary condi-
tions during simulation. Refer to supplementary for details.

Layer Replacement Editing. We can change texture at-
tributes of both surface fluid and background by simply
replacing either fluid layer or background layer with an-
other reference texture. For example, as shown in Fig-
ure 9, the fluid layer can be replaced by/regrouped with a
starry sky video with an endless loop to form dreamlike
fluid effects that might remind the user of a Chinese clas-

Ours Alpha

Fluid Replacement Editing
by Motion Threshold w/o SLR

Ours Editing
Fluid Replacement

3 ks
Ours Editing
BG Replacement

Figure 9. Layer Replacement Editing. First row show our SLR
output and new background. The second row shows results of
our background layer replacement effects, fluid layer replacement
effects , and replacement effects using motion instead of alpha Ar-
rows specify the motion direction and speed.

sical poetry—as if the Silver River fell from azure sky. For
a downstream task like such texture attribute replacement,
accurately segmentation of all fluid regions is necessary to
reach plausible visual effects. However, it is hard to be ac-
complished by brute force segmentation with either motion
prediction (Fluid Replacement Editing by Motion Thresh-
old w/o SLR in the figure) or manually labelling. Since real-
world fluid scenes contain complex context relations such as
semi-transparency, different motion behaviour among fluid
regions in one scene and so on. On the contrary, since
our proposed surface-based layer representation (SLR) nat-
urally disentangles scene into surface fluid and background,
we can achieve such editing easily.

6. Conclusion

We propose a system for fluid animation from a still
image. Specifically, for fluid texture, a neural network is
designed to decompose the still image into surface liquids
and background, which form a novel two-layered represen-
tation, SLR, to represent fluid scene. Compared to previous
work, SLR can help better simulating the transparent flu-
ids as well as other fluids scenes with complex surrounding.
For motion estimation, we introduce surface-only fluid sim-
ulation (SFS), which provides a wider range of editing abil-
ities on the fluid image. The system ensures physical rea-
sonability and meanwhile skirting the scene-specific mod-
elling problem. However, as our method works in a semi-
supervised manner, without supervision from ideal decom-
position or graphic-based rendering, the outputs may have
some artifacts on boundaries. We expect more research
on better disentangling and representing fluid surface with
backgrounds, as well as more precise motion prediction.
Acknowledgements. This project is funded in part
by National Key R&D Program of China Project
2022ZD0161100, by the Centre for Perceptual and Interac-
tive Intelligence (CPII) Ltd under the Innovation and Tech-
nology Commission (ITC)’s InnoHK, by General Research
Fund of Hong Kong RGC Project 14204021. Hongsheng Li
is a PI of CPII under the InnoHK.

15930

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

(11]

[12]

[13]

(14]

[15]

(16]

(17]

Scott G Bardenhagen and Edward M Kober. The general-
ized interpolation material point method. CMES, 5:477-496,
2004. 3

Robert Bridson. Fluid simulation for computer graphics. AK
Peters/CRC Press, 2015. 3

Yung-Yu Chuang, Dan B Goldman, Ke Colin Zheng, Brian
Curless, David H Salesin, and Richard Szeliski. Animating
pictures with stochastic motion textures. ACM TOG, 24:853—
860, 2005. 1,2

Vincenzo Citro, Paolo Luchini, Filippo Giannetti, and
Franco Auteri. Efficient stabilization and acceleration of nu-
merical simulation of fluid flows by residual recombination.
J. Comput. Phys., 344:234-246,2017. 3

Fang Da, David Hahn, Christopher Batty, Chris Wojtan, and
Eitan Grinspun. Surface-only liquids. ACM TOG, 35:1-12,
2016. 3

Yuki Endo, Yoshihiro Kanamori, and Shigeru Kuriyama. An-
imating landscape: self-supervised learning of decoupled
motion and appearance for single-image video synthesis.
ACM TOG, 38:175:1-175:19, 2019. 1, 2, 3, 7

L. A. Gatys, A. S. Ecker, and M. Bethge. Image style transfer
using convolutional neural networks. In CVPR, 2016. 2

L.J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, Warde-
Farley, S. Ozair, A. Courville, and Y. Bengio. Generative
adversarial networks. NeurlPS, 3:2672-2680, 2014. 2

Tavi Halperin, Hanit Hakim, Orestis Vantzos, Gershon
Hochman, Netai Benaim, Lior Sassy, Michael Kupchik, Ofir
Bibi, and Ohad Fried. Endless loops: detecting and animat-
ing periodic patterns in still images. ACM TOG, 40:1-12,
2021. 1,7

Francis H Harlow. The particle-in-cell computing method for
fluid dynamics. Methods Comput. Phys., 3:319-343, 1964.
3

Aleksander Holynski, Brian L Curless, Steven M Seitz, and
Richard Szeliski. Animating pictures with eulerian motion
fields. In CVPR,2021. 1,2,3,4,7,8

Yuanming Hu, Tzu-Mao Li, Luke Anderson, Jonathan
Ragan-Kelley, and Frédo Durand. Taichi: a language
for high-performance computation on spatially sparse data
structures. ACM TOG, 38:201, 2019. 6

Libo Huang, Ziyin Qu, Xun Tan, Xinxin Zhang, Dominik L
Michels, and Chenfanfu Jiang. Ships, splashes, and waves
on a vast ocean. ACM TOG, 40:1-15, 2021. 3

Eddy Ilg, Nikolaus Mayer, Tonmoy Saikia, Margret Keuper,
Alexey Dosovitskiy, and Thomas Brox. Flownet 2.0: Evolu-
tion of optical flow estimation with deep networks. In CVPR,
2017. 5

Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A
Efros. Image-to-image translation with conditional adver-
sarial networks. In CVPR, 2017. 2, 6

Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual
losses for real-time style transfer and super-resolution. In
ECCV, 2016. 2

Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual
losses for real-time style transfer and super-resolution. In
ECCV, 2016. 2

(18]

(19]

[20]

(21]

(22]

(23]

(24]

[25]

(26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]
(34]

(35]

(36]

15931

ByungMoon Kim, Yingjie Liu, Ignacio Llamas, and
Jaroslaw R Rossignac. Flowfixer: Using bfecc for fluid sim-
ulation. Technical report, Georgia Institute of Technology,
2005. 3

Theodore Kim, Nils Thiirey, Doug James, and Markus
Gross. Wavelet turbulence for fluid simulation. ACM TOG,
27:1-6, 2008. 3

Pierre-Yves Laffont, Zhile Ren, Xiaofeng Tao, Chao Qian,
and James Hays. Transient attributes for high-level under-
standing and editing of outdoor scenes. ACM TOG, 33:1-11,
2014. 3

Thi-Ngoc-Hanh Le, Chih-Kuo Yeh, Ying-Chi Lin, and Tong-
Yee Lee. Animating still natural images using warping.
TOMM, 2022. 1

Zhengqi Li and Noah Snavely. Megadepth: Learning single-
view depth prediction from internet photos. In CVPR, 2018.
6

Chieh Hubert Lin, Hsin-Ying Lee, Yen-Chi Cheng, Sergey
Tulyakov, and Ming-Hsuan Yang. Infinitygan: To-
wards infinite-resolution image synthesis. arXiv preprint,
arXiv:2104.03963, 2021. 3

Andrew Liu, Richard Tucker, Varun Jampani, Ameesh
Makadia, Noah Snavely, and Angjoo Kanazawa. Infinite
nature: Perpetual view generation of natural scenes from a
single image. In ICCV, 2021. 3

Guilin Liu, Fitsum A Reda, Kevin J Shih, Ting-Chun Wang,
Andrew Tao, and Bryan Catanzaro. Image inpainting for ir-
regular holes using partial convolutions. In ECCV, 2018. 2
Erika Lu, Forrester Cole, Tali Dekel, Andrew Zisserman,
William T Freeman, and Michael Rubinstein. Omnimatte:
associating objects and their effects in video. In CVPR, 2021.
3

Aniruddha Mahapatra and Kuldeep Kulkarni. Controllable
animation of fluid elements in still images. arXiv preprint,
arXiv:2112.03051, 2021. 1,2,3,6,7, 8

Simon Niklaus and Feng Liu. Softmax splatting for video
frame interpolation. In CVPR, 2020. 4

Makoto Okabe, Yoshinori Dobashi, and Ken Anjyo. Ani-
mating pictures of water scenes using video retrieval. Vis.
Comput., 34:347-358, 2018. 3

Junting Pan, Chengyu Wang, Xu Jia, Jing Shao, Lu Sheng,
Junjie Yan, and Xiaogang Wang. Video generation from sin-
gle semantic label map. In CVPR, 2019. 4

Ekta Prashnani, Maneli Noorkami, Daniel Vaquero, and
Pradeep Sen. A phase-based approach for animating images
using video examples. In Comput Graph Forum, 2017. 3
Erik Reinhard, Michael Adhikhmin, Bruce Gooch, and Peter
Shirley. Color transfer between images. Comput. Graph.
Appl., 21:34-41, 2001. 2

Arno Schodl, Richard Szeliski, David H Salesin, and Irfan
Essa. Video textures. In SIGGRAPH, 2000. 2

Meng Sun, Allan D. Jepson, and Eugene Fiume. Video input
driven animation (VIDA). In ICCV, 2003. 2

Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A
Efros. Unpaired image-to-image translation using cycle-
consistent adversarial networks. In ICCV, 2017. 2
Yongning Zhu and Robert Bridson. Animating sand as a
fluid. ACM TOG, 24:965-972, 2005. 3, 6

