
Unsupervised Open-Vocabulary Object Localization in Videos

Ke Fan1,∗, Zechen Bai2,∗, Tianjun Xiao2, Dominik Zietlow2, Max Horn2, Zixu Zhao2,
Carl-Johann Simon-Gabriel2, Mike Zheng Shou3, Francesco Locatello2,
Bernt Schiele2, Thomas Brox2, Zheng Zhang2,†, Yanwei Fu1,†, Tong He2

1Fudan University 2Amazon Web Services 3National University of Singapore
kfan21@m.fudan.edu.cn, {baizeche, tianjux, zhaozixu, zhaz, htong}@amazon.com

{zietld, hornmax, cjsg, locatelf, bschiel, brox}@amazon.de
mikeshou@nus.edu.sg, yanweifu@fudan.edu.cn

Input Frame Labeled Localization

water-
craft

water-
craft

water-
craft

whale whale

cat

cat
cat

cat

cat
leaves

grass

grass

leaves

grass

grass
leaves

grass

grass
leaves

grass
grass

leaves

pave-
ment

pave-
ment

sea

cloudcloud

sea

water
water

water

seasea

skyscraper

building

building

road

road

bus

bus

bus

leaves

tree

tree

tree

tree

bicycle

car

water-
craft

water-
craft

water-
craft

whale whale

cat

cat
cat

cat

cloud

bus

buscar

cat

cat

watercraft

whale

car

bus

Objects of interests Merged Objects

Figure 1. We propose an unsupervised approach to localize and name objects in real-world videos. The approach uses slot attention in
feature space to localize tubes (second column), assigns text to the slot features via a CLIP model that was modified to allow local feature
alignment (third column), and finally merges slots that overlap in text space (last column).

Abstract

In this paper, we show that recent advances in video rep-
resentation learning and pre-trained vision-language mod-
els allow for substantial improvements in self-supervised
video object localization. We propose a method that first
localizes objects in videos via a slot attention approach and
then assigns text to the obtained slots. The latter is achieved
by an unsupervised way to read localized semantic informa-
tion from the pre-trained CLIP model. The resulting video
object localization is entirely unsupervised apart from the
implicit annotation contained in CLIP, and it is effectively
the first unsupervised approach that yields good results on
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regular video benchmarks.

1. Introduction
Deep learning has demonstrated remarkable perfor-

mance in object-detection and -recognition, both on images
and videos. Most models are trained via supervised learn-
ing, which requires expensive manual annotation of train-
ing data. Such approaches also run the risk of overfitting
to specific distributional characteristics of the training data,
and may not generalize well beyond that. Self-supervised
learning methods are a promising approach to overcome this
problem. They can learn from vast amounts of unlabeled vi-
sual data and unlock the full potential of deep learning, for
example in video understanding.

Recently, a lot of progress was made in training seg-
mentation models without supervision. Caron et al. [2]
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demonstrated that vision transformers, combined with self-
supervised learning, can create a feature space in which pat-
terns of the same object class cluster. This feature space
was used in a series of papers to learn unsupervised seg-
mentation models [14, 26, 19]. In another line of research,
Locatello et al. [13] proposed an approach, where so-called
slots localize individual objects in the scene and represent
their visual patterns and properties. This type of approach
belongs to the field of object-centric learning (OCL). So far,
much of the OCL literature has focused on static images.
Only recently it became possible to obtain good results not
only on synthetic but also on real-world datasets [19]. Few
papers have tried to apply a slot-based OCL approach to
video data [11, 6]. These works scale to real-world data by
adding some form of weak annotation.

In contrast, this paper proposes an OCL pipeline for real-
world video data with two main goals: (1) partitioning the
videos into spatially, temporally, and semantically meaning-
ful groups without using any labeled training data; and (2)
labeling those groups using an off-the-shelf vision-language
model, such as CLIP [17]. Since CLIP was trained to align
text with global image features, it is initially unable to align
text with local features from individual objects. However,
CLIP can be fine-tuned on image-text data to make it align
the local patterns to text [15]. In this paper, we show that
paired image-text data is not necessary to allow for such
alignment. We propose a self-supervised objective to fine-
tune the last layer of the CLIP vision transformer, which
trains on image data only.
Overview. The overall framework is composed of three
parts, as depicted in Figure 2. The individual process-
ing stages are visualized in Figure 1. The first part yields
bottom-up object-centric video representations (slots) that
localize the regions in the video with a spatio-temporal
grouping model (Section 3). The second part adapts the off-
the-shelf image-text alignment model CLIP [17] to assign a
text to the video slots (Section 4). Finally, a merging pro-
cedure leverages overlapping information from the text and
the image to improve both localization and labeling (Sec-
tion 5). Our contributions are twofold:

• We provide the first approach that localizes objects
with spatio-temporal consistency in real-world videos,
without labelled training data.

• We assign text labels to video slots using a pre-trained
CLIP model without additional supervised fine-tuning.

2. Related Work
Object-centric localization. Our research contributes to
the field of object-centric learning, which involves extract-
ing individual objects from visual input using neural net-
works with inductive biases. Some approaches, such as us-
ing an information bottleneck with pixel-level reconstruc-

tion [21, 13, 24] or examining perceptual similarity through
self-supervised representation pretraining [7, 4], have been
previously explored. Our contribution is introducing tem-
poral coherence into the mix, which improves object emer-
gence and enhances the objectness signal by leveraging the
Common Fate principle. Furthermore, there have been re-
cent advances in object-centric learning for video applica-
tions [11, 6, 21, 1]. These approaches improve upon pre-
vious image-level methods by incorporating temporal mod-
ules into the network architecture. However, they either re-
quire additional annotation signals in the form of the first
frame and optical flow, or they rely on complex modules
to enable temporal tracking or matching of object slots in
neighboring frames. In comparison, our method does not
require any additional signals or specifically designed net-
work modules, yet still achieves competitive performance
on real-world videos.
CLIP for low-level vision tasks. Recent advances
in vision-language models have been driven by large-
scale Contrastive Language-Image Pre-Training (CLIP)
model [17]. While CLIP has shown promising results in
low-level vision tasks, its training setup has been criticized
for lacking localization ability [15, 12, 5, 25]. Some so-
lutions involve using gradient activation maps [20] or ex-
tra annotation to finetune CLIP [25]. Our contribution is
decoupling the tasks of object-centric learning and vision-
language, allowing us to finetune CLIP with only a moder-
ate unlabeled dataset for semantic feature extraction, with-
out the need for additional annotations. This approach
stands in contrast to previous works that require additional
training annotations for both localization and semantic la-
beling using a single vision-language module [25].

3. Video slot learning

Problem setup. Given a video V ∈ RT×H×W×3, the task
is to extract K video slots Svideo ∈ RK×Dslot that bind to
object features in the video, as well as a video alpha mask
α ∈ RK×T×H×W used to segment the video into K tubes.
Self-supervised video encoder. For a pre-defined p ×
p × 1 patch size, we tokenize the video V and flatten the
spatio-temporal dimension to a sequence of tokens tnV =
Tokenize(V ) ∈ RT×H′×W ′×D, where H ′ = ⌈H

p ⌉ and
W ′ = ⌈W

p ⌉. After adding spatio-temporal positional en-
coding, the tokens are processed by a video encoder EV
as D-dimensional video token features, F = EV(V ) ∈
RT×H′×W ′×D. The video encoder consists of a stack of
transformer blocks, an architecture that has been shown
effective for self-supervised vision representation learning
without annotation [2, 22, 8].
Learning video slots. We generalize DINOSAUR [19], a
state-of-the-art object-centric learning method for static im-
ages, to videos. DINOSAUR passes the tokens of an im-
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Figure 2. Proposed framework. Given an input video, we first localize objects by slot attention with a video encoder pretrained with
self-supervision. Next, we extract semantic features for each slot by a patch-based CLIP finetuned from its vanilla version. Then, slots are
named by matching slot semantic features to text features from a curated list of text prompts. Finally, the named slots are optimized to
alleviate over-segmentation caused by part-whole hierarchies.

age, e.g., a frame at time step t through a pre-trained im-
age encoder EI and obtains D-dimensional image features
ft = EI(tnVt) ∈ RH′×W ′×D. It then flattens the spatial
dimensions of ft and applies slot-attention [13] as follows:

Simg,t = SlotAttention(ft.reshape(H ′W ′, D)).

Simg,t effectively represents image slots, each correspond-
ing to a group of pixels that are supposed to cover an object.

To use DINOSAUR on videos, a straightforward ap-
proach would be to run it separately on each frame of the
video. However, this require to run slot-attention T times
and results in poor temporal consistency among slots in
multiple frames. Instead, we run slot-attention only once
on the entire spatio-temporal features F ∈ RT×H′×W ′×D

of the video. Specifically, we flatten the spatial and tem-
poral dimensions and extract video slots for all frames as
follows:

Svideo = SlotAttention(F.reshape(TH ′W ′, D)) ∈ RK×Dslot .

Svideo are video slots that capture video features. Since
patches from a same object tend to have similar features
across subsequent frames, the slot attention mechanism
tends to group them into a same slot, which ensures tem-
poral consistency by design.
Slot decoder and training loss. With Svideo, each slot
Si ∈ RDslot is first boardcasted to a 3D volume Vi ∈
RT×H×W×Dslot and added to a spatio-temporal positional
encoding pe, then a 2-layer Multi-Layer Perceptron (MLP)
is applied on each position individually:

yi, αi = MLP(Vi + pe)

where we have y = [y1, . . . , yK ] with yi ∈ RT×H′×W ′×D

as the feature reconstruction, and α = [α1, . . . , αK ]
with αi ∈ RT×H′×W ′

as the alpha mask for the
patch-to-slot assignment weight. Specifically, let α·,j =
[α1,j , . . . , αK,j ] be the alpha mask weight for the j-th patch,
then

∑K
i=1 αi,j = 1. We say that the j-th patch belongs to

the i∗-th slot if i∗ = argmaxi αi,j . Similar to previous
work [21, 19], during training, we use the following recon-
struction loss of video features F based on the slot-attention
output y and α:

L = MSE(y · α, F ).

4. Labeling video slots

Problem Setup. Given a video V ∈ RT×H×W×3, its alpha
mask α ∈ RK×T×H′×W ′

and a list of N potential labels
and corresponding features ftext ∈ RN×Dsem , the task is to
come up with a slot-to-label assignment matrix A ∈ RK×N

A naive baseline with CLIP. CLIP [17] is a vision-
language model pre-trained on an internet-scale dataset. For
each image-text pair, CLIP summarizes the text and vision
features in tokens CLS t and CLSv and aligns them using
contrastive learning. The tokens CLS are constructed us-
ing an N-stack transformer. Since CLIP can be used to la-
bel almost any full image, a straightforward approach for
slot labeling would be to wrap the video slots into bound-
ing boxes, crop the regions and send each of them to CLIP.
However, this method suffers from two problems. First, this
requires multiple runs of the CLIP visual encoder for one in-
put image. Second, when a slot is non-convex in shape, its
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corresponding bounding box would inevitably include con-
tent that does not belong to the slot and eventually bias the
features from CLIP. In the following, we describe a more
efficient and unbiased approach to slot labeling which re-
quires minor modifications on the pre-trained CLIP model
but no additional labels.
Efficient slot labeling with semantic features. As-
sume there is an image semantic encoder Esem that
operates on the same patch size p as in Section 3. We
encode the t-th frame It into a set of semantic patch
features {Pt} = Esem(It) ∈ RH′×W ′×Dsem . For each
video slot, we average the patch features in this slot as
the slot semantic feature {fslot} ∈ RK×Dsem . Given a
list of potential semantics and corresponding features
{ftext} ∈ RN×Dsem , we compute the cosine similarity
between fslot and ftext. Let A be the matrix for slot-text
similarity: Aij = cos(fslot,i, ftext,j). For each slot, we
find the index of the text with maximum feature cosine
similarity j∗ = argmaxj Aij and label the slot accordingly.
Local semantics from CLIP. Although the output of
CLIP’s visual encoder contains both the CLSv token as
well as image patch tokens, the contrastive loss used dur-
ing pre-training only enforces alignment between the text
token CLS t with CLSv , not with the other visual tokens.
And in practice, those other patch tokens do not align with
the text features CLS t, as observed by [15, 12], and con-
firmed by our own initial experiments. Therefore, the vi-
sual encoder from a vanilla CLIP cannot be used without
further modification as the semantic encoder Esem. To fix
this issue, [15, 12] adapt the CLIP visual encoder to local
semantic features by fine-tuning it on additional vision data
with image-text pairing, for example segmentation masks
[12].
Patch-based CLIP. In contrast, we adapt the pre-trained
CLIP visual encoder to a patch-based CLIP visual encoder
using only unlabeled images, as illustrated in Figure 3. The
idea is based on this observation: the semantic-informative
token CLSv is the output from a ViT’s last layer, thus we
can train a new function that re-projects the information
from the last layer’s input to new patch features.

Formally, given an input image I and the pre-trained
CLIP visual encoder Ev

CLIP, we consider both its output
token CLSv ∈ RDsem as well as the patch tokens P ′ ∈
RM×Dsem of the ViT that were used in the penultimate layer
to construct CLSv . We replace the last layer by a new
multi-head self-attention module Ev

MHSA and obtain new
patch tokens P̂ = Ev

MHSA(P
′).

This new module is trained with self-supervision, under
the assumption that a pre-trained CLIP has its CLSv close
to the corresponding text token CLS t. We use CLSv as a
proxy to the semantic representation space. We first com-
pute a cross-attention with queries being CLSv , while keys
and values are both P̂ :

Pre-trained CLIP ViT

Input
Image

Layers 0
to N -1

CLS

Layer N

CLS

Multi
Head
Self
Attention

CLS

CrossAttention

Batch
contrastive

loss

µ
Q

K, V

µ

Figure 3. Patch-based CLIP finetuning. We replace the last ViT
layer by a multi-head self-attention module to re-project semantic
information to the new patch tokens. We then use cross-attention
to encourage those patches that contain the main context to be sim-
ilar to the CLSv token. Maybe surprisingly, this suffices to get se-
mantically meaningful patch features. Importantly, we do not use
any labeled data during this fine-tuning step.

P̂v = Softmax(P̂ · CLST
v ) · P̂ . (1)

We then minimize the InfoNCE loss [16] between the ag-
gregated feature P̂v and CLSv across data samples.

ϕij =
P̂v,i

|P̂v,i|
· CLS j

|CLS j |
, (2)

LInfoNCE =
1

k

k∑
i

log(
eϕii∑k
j e

ϕij

). (3)

We use this scheme to adapt pre-trained CLIP patch features
to the image-text joint space while training only on unla-
beled image data. We do not use any visual annotation or
image-text pairs. Intuitively, our modification of CLIP sim-
ply allows us to read out the information that was already
contained in the CLIP model, but was not readily available.

5. Post-processing and joint optimization
The localization and text assignment procedures above

already provide a good basis, but they leave room for
improvements. In the following, we describe two post-
processing steps that improve clustering on the text and the
video data, respectively.
Optimizing labels with curated vocabulary. The
similarity-based algorithm described from Section 4 re-
quires a vocabulary of possible labels. In principle, the
patch-based CLIP is capable to embed and recognize any
word that appears in its large-scale training set. However, a
too large vocabulary can lead to sub-optimal results due to
synonyms and to less robust ranking performance against a
too-long list of text features.

In practice, a good vocabulary should include both tar-
get labels and common background labels. Target labels are
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the dataset specific foreground object categories of interest.
Common background labels are concepts that usually ap-
pear in the background and do not overlap with target labels.

Without prior knowledge, it is still possible that con-
tent of a slot may not correspond to any category, neither
in the target, nor in common background labels. As a re-
sult, such a slot would have features that are not similar to
any text features. We therefore leave slot i “unnamed” if
cos(fslot,i, ftext,j) < λ for all j, for some constant threshold
λ. In practice, we find λ can be simply set to 0.
Improving part-whole with name-assisted localization.
Using the slot labels (i.e., names), we can identify slots that
cover only part of an object and merge them into a new slot
with the same name.

Specifically, for each pair of slots Si and Sj , we consider
them as being part of the same object if they have the same
label and are spatial neighbors in at least one frame. This
merging process is repeated until there’s no pair of slots to
merge. Figure 4 illustrates this process. Although seem-
ingly simple, this step is crucial to harness the part-whole
issue. It builds both parts of our pipeline so far: the local-
ization and the semantic label information. This concludes
the description of our approach. The next section describes
our evaluation pipeline.

Labeled Video Slots

bus

buscar car

bus

Merged Video Slots

Figure 4. Joint optimization. The image on the left shows one
frame of video slots with target names, the image on the right
shows the result from merging. The two slots for the bus are
merged thus better localizing the object, while they don’t further
merge with the slot for car since they share different semantics.

Single Object Part of an Object Group of Objects

Figure 5. Three types of slots. We show examples of a slot con-
taining a single object, part of an object or a group of objects.
For simplicity we only colorize slots overlapping with objects, and
slots in one image are colored differently.

6. Datasets, implementations and baselines
Implementation details. (1) Vision backbone. We use the
original VideoMAE module with two modifications: 1) we

set each token to represent a p× p× 1 data patch instead of
p × p × 2, and 2) we use 3D trigonometric function com-
bination as the positional encoding. This modified Video-
MAE is pre-trained on Something-Something-v2 [9] with-
out supervision from human annotation. (2) Patch-based
CLIP We train the patch-based CLIP model on ImageNet-
1K [18] dataset without any class label. Specifically, we
train a multi-head self-attention network to replace the last
layer of the CLIP vision Transformer encoder.
Other baselines. For video slot learning, we compare
against a number of OCL pipelines that output slots for
each frame. Those baselines do not perform slot associa-
tion across frames and do not produce video slots (i.e., K
coherent tubes for a video). Nevertheless, their output can
be sent into the patch-based CLIP to be named. (1) Slot-
Attention [13] uses a convolutional neural network to en-
code an image and extracts K object-centric features using
slot attention. (2) SAVi [11] is an extension of Slot Atten-
tion to videos that initializes the slots with some form of
weak supervision, and then uses the slot from the previ-
ous frame to initialize the current frame. Since our method
is completely unsupervised, for a fair comparison, we do
not provide this weak annotation in our evaluation. (3) DI-
NOSAUR [19] is a pixel grouping method that manages to
group pixels on real-world data by freezing a pre-trained
network as the backbone and reconstructing the extracted
features. Out of the three baselines, only DINOSAUR uses
a pre-trained backbone (self-supervised with DINO [2] on
unlabeled ImageNet-1K).
Datasets. (1) ImageNet-VID (I-VID) is a common bench-
mark for video object detection which includes 30 object
categories of the ImageNet DET dataset. (2) YouTube-
VIS (Y-VIS) is a large-scale video instance segmentation
dataset, which also includes object bounding boxes.
Metrics. To evaluate the localization performance of our
method, we apply standard metrics in object localization
tasks. Similar to previous studies [19, 23], we report Cor-
Loc, which is the proportion of images where at least one
object was correctly localized, and DecRate, which mea-
sures the percentage of objects that are correctly detected
out of all the ground-truth objects. To further evaluate the
overall labeling performance, we use the traditional object
detection metric mean Average Precision (mAP), which ex-
amines the accuracy of both object localization and seman-
tic classification.

Besides, to understand how well our framework learns
video slots, we quantify whether a slot indeed captures a
single object. Empirically, we observe that there are sev-
eral other typical cases that deviate from that ideal behav-
ior. To quantitatively analyze the challenge posed by part-
whole hierarchies, we categorize slots that overlap with ob-
jects based on whether they contain a single object (SO),
part of an object (PO) or a group of objects (GO). We label
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Method
ImageNet-VID Youtube-VIS

CorLoc DecRate mAP50 CorLoc DecRate mAP50

Slot-Attention 11.64 7.83 0.51∗ 10.27 6.57 0.51∗

SAVi 16.23 10.55 1.23∗ 11.10 7.18 0.90∗

DINOSAUR 48.04 39.58 7.34∗ 44.80 34.63 8.15∗

Ours 60.90 53.75 29.23 63.74 55.05 35.19
Table 1. Comparison with other object-centric methods on object localization and slot labeling. Note that numbers with ∗ superscript
means that the method uses our slot labeling module when computing the data.

all those that do not overlap with any object or have only
minor overlap with an object as background (BG). See Fig-
ure 5 for a qualitative explanation and Appendix for details.
Please note that the classification of these categories is only
meant to give a qualitative and informative assessment of
the distribution of errors.

7. Experiments

The complete design space is large, it includes, for video
slot learning, 1) image (e.g., DINO) versus video backbone
(e.g., VideoMAE) and 2) spatio-temporal versus per-frame
grouping, and for video slot labeling, 3) vanilla CLIP ver-
sus patch-aligned adaptation and 4) joint optimization using
both text and image features. This paper does not attempt to
exhaust this space. However, we will provide evidence that
combining a video backbone with spatio-temporal grouping
gives the best video slot learning ability, that CLIP adapta-
tion is crucial, and that joint learning proves to be very ef-
fective. This conclusion is not at all unexpected. We now
proceed to examine our (incomplete) evaluations with a set
of questions.
Q1: How does our complete pipeline compare to the
baselines? We present a quantitative evaluation on two
datasets in Table 1. As pixel-reconstruction methods, slot-
attention and SAVi perform poorly on both real-world video
datasets across all metrics, confirming the ineffectiveness of
the pixel-space reconstruction loss. DINOSAUR, which re-
lies on feature reconstruction, performs better, particularly
in terms of CorLoc and DecRate. However, its mAP score
is only around 8, because it fails to align localization with
semantics. In contrast, our model outperforms all other ap-
proaches across all metrics on both datasets, thanks to its
ability to achieve spatio-temporal consistency and joint op-
timization with semantics.
Q2: Does the choice of vision backbone and grouping
algorithm matter for slot learning? As described in Sec-
tion 3, video slot learning depends on the choice of vision
backbone and grouping algorithm. Table 2 demonstrates
that a video-based backbone, such as VideoMAE, leads
to superior performance in spatio-temporal slot learning
across all metrics. Conversely, the spatial-only slot learn-
ing produces better results with an image-based backbone.
Therefore, the combination of video backbone and group-

Backbone Video Slot CorLoc DecRate mAP50

DINO
× 62.12 54.79 28.75
✓ 59.84 52.98 28.40

VideoMAE
× 57.16 50.25 25.77
✓ 60.90 53.75 29.23

Table 2. Ablations on vision backbones and video slots learning
algorithm on ImageNet-VID.

ing algorithm is crucial and must be selected accordingly.
Although spatial DINO outperforms our model in terms

of CorLoc and DecRate, we contend that these metrics per-
tain to image-based approaches. The higher mAP50 score
suggests that the temporal consistency ultimately improves
the correct labeling and overall detection performance. To
further illustrate the benefits of temporal consistency, we
provide additional qualitative visualizations in Figure 6.
Q3: How important is CLIP-based joint optimization?
To address the importance of image-text alignment, we con-
duct a quantitative comparison of joint optimization with
and without image-text alignment, as well as different de-
sign choices for alignment, using object localization and de-
tection metrics. Our findings, summarized in Table 3, re-
veal that image-text alignment plays a critical role in joint
optimization, with the choice of alignment method impact-
ing all evaluation metrics. Notably, when joint optimiza-
tion is applied, incorrect labeling using vanilla CLIP signifi-
cantly impacts CorLoc and DecRate, while alignment using
patch-based CLIP leads to significant improvements across
all three metrics: we can see from the first two rows only
mAP is different, and the one with patch-based CLIP is bet-
ter. These results stress the importance of carefully tuning
image-text alignment for optimal performance.

7.1. Part-whole problem with joint optimization

To estimate the effectiveness of slot localization in iden-
tifying objects, we assess SO, PO, GO, and BG on both
I-VID and Y-VIS datasets, and present the results in Ta-
ble 4. Since slots are a direct output of video slot learning,
they are more inclined to focus on parts of objects, account-
ing for 24.05% and 34.80% of the results (the PO column),
rather than the entire object, which only represents 8.87%
and 6.04%. We observe that slots rarely contain several ob-
jects (GO column), and instead, often capture background
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Figure 6. Consistent localization in video. We compare the localization performance from DINOSAUR and ours on two 8-frame video
samples. We visualize the spatially interpolated localization for patch-based slot assignment. DINOSAUR is an image-based baseline
thus its localization has no temporal consistency. In contrast, ours, as a spatio-temporal localization method, provides temporal consistent
localization, as the same region or object are consistently localized by the same slot (indicated by the same color) across frames.

Dataset Joint CLIP CorLoc DecRate mAP50

I-VID
×

Vanilla 42.99 34.40 0.43
Patch-based 42.99 34.40 5.20

✓
Vanilla 15.65 13.73 3.04

Patch-based 60.90 53.75 29.23

Y-VIS
×

Vanilla 39.36 30.31 0.77
Patch-based 39.36 30.31 5.96

✓
Vanilla 25.54 21.27 11.08

Patch-based 63.74 55.05 35.19

Table 3. Ablations on patch-based CLIP. We use the VideoMAE
backbone and spatio-temporal video slot to conduct this ablation.

classes (65% and 58%; BG column).
The reason for the relatively low proportion of SO can

be attributed to the fact that visual similarity and common-
fate inductive bias can only offer limited information when
describing an object as a whole. Since semantics is not in-
herently present in the visual modality, it is challenging to
capture the full meaning of an object with visual cues alone.

Our joint optimization approach demonstrates a signif-
icant increase in the ratio of SO slots. As illustrated in
Table 4, the percentage of SO slots rises to 49.33% and
40.75%, respectively, after the optimization with slot label-
ing. The reduction in PO and BG ratio indicates the source
of improvement. First, slots that were previously tracking a
significant part of the same object (PO) are merged to form a
larger new slot. Further, each BG slot either has no overlap
to any object, or only has minor overlap to one object. The
reduction in BG ratio indicates that some of the latter case
are correctly labeled and eventually merged. This serves
as an evidence that the joint optimization directly alleviate

Dataset Joint SO PO GO BG

I-VID
× 8.87% 24.05% 1.96% 65.13%
✓ 49.33% 20.42% 7.01% 23.24%

Y-VIS
× 6.04% 34.80% 0.77% 58.39%
✓ 40.75% 28.32% 5.64% 25.29%

Table 4. Statistics of video slots. We counted the percentage for
each type of slots. SO: Single Object. PO: Part of an Object.
GO: Group of Objects. BG: Slots for not annotated regions in the
dataset.

the part-whole issue. It should be noted that the propor-
tion of GO also slightly increases, indicating that the model
occasionally merge slots too aggressively for multiple in-
stances in the same semantic category. This phenomenon
again reflects the challenging associated with part-whole hi-
erarchies.

Regarding the accuracy of labeling, Table 3 presents the
mAP score, which takes into account both localization and
semantic labeling performance. With the aid of named lo-
calization and joint optimization, the model achieves a sub-
stantial increase in mAP score of around 24 (5.20 −→ 29.23)
and 30 (5.96 −→ 35.19), respectively. Although these results
fall short of the SOTA performance achieved by models us-
ing labels [3, 10], considering that our framework is entirely
unsupervised, the results are encouraging.

7.2. Qualitative case studies

Spatio-temporal video slots. Our model offers a signif-
icant advantage over ordinary image slots in the form of
spatio-temporal video slots. These slots consistently fo-
cus on the same part across frames, which ensures tempo-
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ral consistency and improves object-centric localization in
videos. Figure 6 provides visualizations that highlight the
differences between image-based and video-based object-
centric localization on two videos. While DINOSAUR can
localize objects at a certain level in each frame, its results
do not account for temporal consistency. This is evident as
one object may be localized by a different number of slots
among frames, and the background area may contain a to-
tally different slot segmentation. In contrast, our model pro-
duces consistent localization across frames for all slots, in-
cluding the background ones. This demonstrates that video
slots tend to track all content in a short video clip. More-
over, this tracking behavior also handles objects that move
in and out of frames. In the first sample, the biker disap-
pears after frame 5, and its yellow slot never appears again.
Similarly, the house in the background gradually appears
and occupies the purple slot from frame 3.
Patch-based CLIP. Two qualitative examples comparing
the labeling results from patch-based CLIP and vanilla
CLIP are shown in Figure 7. The results clearly demon-
strate that patch features from vanilla CLIP are inadequate
for direct labeling algorithm, whereas the patch-based CLIP
provides much better alignment and improved performance.

Vanilla CLIP: red 34% tree, blue 42% tree, yellow 11% bear.
Patch-based CLIP: red 15% water, blue 98% bear, yellow 99% tree.

Figure 7. Comparing patch-based CLIP and vanilla CLIP.
Vanilla CLIP cannot find the right name for the visual content in
each slot, while patch-based CLIP names each slot correctly.

Labeling any slot. Given an appropriate list of seman-
tics, our approach has the potential to name any slot. Fig-
ure 8 shows a single-frame example of the localization from
video slots and their corresponding names. The result con-
tains not only correct localization and labeling for the cen-
tral objects, but also with reasonable names for other slots.
Inevitably, there are slots that are not easy to name as their
semantic features are not similar to any text features. Rea-
sons of low similarity include 1) the precise name of the
visual content is not included in the semantic list, 2) the vi-
sual content is a composition of multiple semantics (e.g. the
red slot is a combination of leaves, road and fence), and 3)
the visual content is incomplete or ambiguous (e.g. the light
green slot only shows part of a building). Nevertheless, this
example demonstrates both the potential of our model for
open-set detection and segmentation, and at the same time
also the challenging nature of these downstream tasks under
an unsupervised setting.

Input Frame
grass

skyscraper

building

building

road

road

bus

bus

bus

leaves

tree

tree

tree

tree

bicycle

car

bus

buscar car

bus

Labeled Slots

Figure 8. Labeling any slot. The first image shows the input
frame. The second image shows the localization of that frame,
as well as names for all slots. Slots names with underscore are
those having a low cosine similarity.

8. Discussion
On Supervision Signal. Our video object localization is
entirely unsupervised apart from the implicit annotation
contained in CLIP. Besides self-supervised pretraining and
video slot learning, the patch-based CLIP finetuning is also
without human annotation. Further, it is worth noting that
either the pretrained or finetuned CLIP model do not gener-
ate any pseudo annotation to guide the learning process of
the framework. The patch-based CLIP model is only used
for label assignment at inference stage.
Future work. Handling long videos is undeniably an in-
triguing task, but its comprehensive treatment lies beyond
the scope of current work. However, we foresee potential
extensions of our method from an engineering perspective
in future research. For instance, the model can be read-
ily expanded from processing a fixed number of frames to
accommodating a larger and more flexible range of frames
with relatively minor adjustments, such as position embed-
ding interpolation or temporal frame sub-sampling.

9. Conclusion
In this paper, we proposed a novel unsupervised method

for object localization in videos that leverages the power
of slot attention combined with a pre-trained CLIP image-
text model. By fine-tuning the last layer of CLIP in a
self-supervised manner on unlabeled image data, we es-
tablished a means for applying the image-text mapping to
local patch tokens. Through a joint optimization process
with both visual and semantic information, we achieved, for
the first time, high-quality and spatio-temporally consistent
object localization outcomes on real-world video datasets.
While the current coarse localization provides an encourag-
ing starting point, we acknowledge that it still suffers from
low resolution of the patch tokens. Moreover, to complete
our object detection and tracking pipeline, we are yet to
move beyond semantic localization and accurately differ-
entiate between individual object instances. Nevertheless,
we are optimistic that our findings will pave the way for
label-free training on complex video analysis tasks

13754



References
[1] Zhipeng Bao, Pavel Tokmakov, Allan Jabri, Yu-Xiong Wang,

Adrien Gaidon, and Martial Hebert. Discovering objects that
can move. In CVPR, 2022.

[2] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou,
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