
Robust Heterogeneous Federated Learning under Data Corruption

Xiuwen Fang, Mang Ye*, Xiyuan Yang
National Engineering Research Center for Multimedia Software, Institute of Artificial Intelligence,

Hubei Key Laboratory of Multimedia and Network Communication Engineering,
School of Computer Science, Hubei Luojia Laboratory, Wuhan University, Wuhan, China

https://github.com/FangXiuwen/AugHFL

Abstract

Model heterogeneous federated learning is a realistic
and challenging problem. However, due to the limitations
of data collection, storage, and transmission conditions, as
well as the existence of free-rider participants, the clients
may suffer from data corruption. This paper starts the first
attempt to investigate the problem of data corruption in the
model heterogeneous federated learning framework. We de-
sign a novel method named Augmented Heterogeneous Fed-
erated Learning (AugHFL), which consists of two stages: 1)
In the local update stage, a corruption-robust data augmen-
tation strategy is adopted to minimize the adverse effects of
local corruption while enabling the models to learn rich lo-
cal knowledge. 2) In the collaborative update stage, we de-
sign a robust re-weighted communication approach, which
implements communication between heterogeneous models
while mitigating corrupted knowledge transfer from others.
Extensive experiments demonstrate the effectiveness of our
method in coping with various corruption patterns in the
model heterogeneous federated learning setting.

1. Introduction
Modern society contains a large number of edge devices,

such as smartphones, mobile networks, IoT devices, etc.,
which can be regarded as local clients with limited private
data. The direct collection of private data from clients se-
riously compromises their privacy and security. Federated
learning [48, 37, 7] is a distributed machine learning frame-
work with secure encryption techniques. It is intended to
enable multiple institutions to collaboratively train machine
learning models while following the data-stay-local policy.
In addition to the attention of academia [63, 68, 36, 45, 32,
59, 59, 56], federated learning has also been extensively ex-
plored in industrial fields such as healthcare [10, 64, 27, 15],
finance [4], and data security [61], etc. Despite its remark-
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Figure 1. Illustration of heterogeneous federated learning with data
corruption, where the clients may possess different model struc-
tures and corrupted private datasets.

able success, the most prevalent federated learning algo-
rithms [16, 51, 49] rely heavily on the assumption that all
clients share an identical local model structure. For exam-
ple, FedAvg [48], FedProx [35], and Per-FedAvg [13] en-
able communication between clients by taking the weighted
average of the local model parameters.

In practical application scenarios, clients expect to inde-
pendently design their own models to meet different tasks
and specifications, which inevitably leads to the challenge
of model heterogeneity [69, 46, 66, 72] in federated learn-
ing, as shown in Fig. 1. However, clients are often reluc-
tant to share the details of their local model designs in con-
sideration of privacy protection. Additionally, hardware,
software, and communication capabilities [34] often differ
between clients, which can further exacerbate model het-
erogeneity. Consequently, designing heterogeneous feder-
ated learning strategies to achieve collaborative communi-
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cation between heterogeneous models has become the focus
of significant research. FedMD [31] performs communi-
cation between heterogeneous clients based on the average
class score output by the local models. FedDF [41] lever-
ages unlabeled data or artificially generated examples to ex-
tract knowledge from the clients. RHFL [14] learns the
knowledge distribution from other clients by aligning the
feedback outputs of client models on public irrelevant data.
However, the aforementioned methods all assume that each
client has a private dataset with clean images, which is dif-
ficult to satisfy in practical applications.

The widely used heterogeneous federated learning algo-
rithms show exceptional performance under ideal circum-
stances where the image samples are clean. However, clean
image samples require substantial costs in terms of data col-
lection, storage, and transmission. In real-world scenarios,
the quality of the collected data can be influenced by several
factors such as weather conditions, collection means, stor-
age methods, etc. Consequently, the algorithms inevitably
encounter corrupted data. Furthermore, there may be free-
riding participants [40] in the federated learning system,
who pretend to participate in the federated learning process,
benefiting from the information contributed by other clients
without actually providing any data. This phenomenon re-
sults in honest clients being reluctant to share their real
information, raising concerns about data privacy and user
fairness. As a means of safeguarding their privacy, hon-
est clients may intentionally offer corrupted data. This data
corruption strategy maintains the fairness of the federated
learning system at the expense of model performance.

Data corruption is inevitable in data collection, storage,
and transmission. Worse still, free-rider concerns exacer-
bate the potential for data corruption. As a consequence
of data corruption, clients iteratively learn and share wrong
knowledge, causing local models to update in incorrect di-
rections. Ultimately, the performance of the federated learn-
ing system suffers a severe degradation, hindering the prac-
tical deployment of the models. In single-model machine
learning, existing methods to mitigate the negative impact
of data corruption during model training can be classified
into three categories: data augmentation [2, 44, 53], noise
injection [38, 42, 43], and pre-training [23, 50, 3]. The
multi-model scenario of federated learning is more com-
plex, thereby rendering overcoming data corruption more
challenging. We expect to fully learn local knowledge
and resist multiple corruptions under the federated learn-
ing framework. Thus, how to mitigate model performance
degradation caused by data corruption inside the client dur-
ing the local update phase is an important challenge.

In addition, data corruption in model heterogeneous sce-
narios encounters a new problem, i.e., how to avoid learning
the corrupted knowledge from others while realizing hetero-
geneous models communication. In heterogeneous feder-

81.58 81.94

67.28

76.69

64.77 64.70

52.95

62.06

73.78 74.46

64.03

72.55

50

55

60

65

70

75

80

85

ResNet10 ResNet12 ShuffleNet Mobilenetv2

Vanilla test on clean data
Vanilla test on corrupted data
AugHFL test on corrupted data

Heterogeneous
Model

Figure 2. Evaluation of each client model on the clean and cor-
rupted test data. We observe that clean data are more susceptible to
correct prediction than corrupted data. Compared to vanilla mod-
els, AugHFL achieves significantly higher accuracy on corrupted
data and maintains performance on clean data.

ated learning scenarios, the local models of clients may have
different model architectures, thereby presenting inconsis-
tent decision boundaries. It is noteworthy that corrupted
samples are generally harder to classify correctly than clean
samples, as illustrated in Fig. 2. For the same corrupted im-
age, different model predictions have significant variance,
as depicted in Fig. 1. Thus, during the collaborative up-
date phase, the clients may learn erroneous predictions from
other models. However, existing centralized methods for
corruption can only handle internal corruption, but they can-
not prevent external corruption from low-robustness models
in the collaborative learning phase. Moreover, existing ho-
mogeneous FL methods for corruption are not suitable for
model heterogeneous scenarios, as they rely on the local
model training loss to measure the model reliability. The
model training loss can be affected by many factors, and it
is not fair or reliable to compare the training loss of hetero-
geneous models directly. Therefore, how to minimize cor-
rupted feedback from unreliable clients while implementing
heterogeneous model communication is a crucial challenge.

In this paper, we propose AugHFL to address the data
corruption problem in heterogeneous federated learning,
which consists of two stages: 1) For the negative impact
of local data corruption, we perform multiple random data
augmentation operations and then mix the augmented im-
ages. Simultaneously, a consistency constraint for diverse
augmentations of the same image is imposed on the clas-
sifiers. This technique improves the classification robust-
ness of the local models against corrupted data in the lo-
cal update phase. 2) For corrupted knowledge learned
from others, we design an adaptive re-weighted commu-
nication strategy called Public data Augmentation (Pub-
Aug). The main idea is to dynamically adjust the contri-
butions of clients according to their reliability in the collab-
orative update phase. We measure the predicted distribu-
tion consistency of the local model on the corrupted public
datasets and the original public dataset. Then, the robust-
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ness of models to uncertain corruption patterns is quantified
by the computed distribution consistency. The local models
that can effectively against multiple corruptions are consid-
ered reliable and thus their weights are increased, while the
weights of unreliable models decrease synchronously. The
main contributions of this work are as follows:

• We introduce AugHFL for a new and challenging
model heterogeneous federated learning problem with
data corruption. It simultaneously handles intra-client
and inter-client corruption, enhancing the robustness
against diverse corruptions.

• We propose PubAug, an adaptive re-weighted commu-
nication method. It adaptively adjusts the contribution
of clients based on their ability to cope with data cor-
ruption while enabling communication between het-
erogeneous models.

• Extensive experiments demonstrate that AugHFL out-
performs State-Of-The-Art (SOTA) methods in terms
of both performance and robustness, especially on
datasets with severe data corruption.

2. Related Work
Federated Learning. Federated learning, proposed by
McMahan et al. [48] in 2017, is a distributed learning
paradigm that enables multiple clients to jointly train local
models without compromising their privacy. In the classical
FedAvg algorithm, clients train local models on their pri-
vate datasets, the server averages model parameters across
all clients, and iterates the process for several rounds. To ad-
dress the problem of high parameter-transmission costs, Wu
et al. [65] proposed the SmartIdx algorithm, which includes
a kernel-based parameter selection strategy and a parameter
compression algorithm that reduces communication over-
head. Additionally, the FedProx algorithm proposed by Li
et al. [35] improves the stability and convergence of the
training process by adjusting client-training epochs.

Unlike traditional homogeneous federated learning,
model heterogeneous federated learning involves several
clients designing their own local models. Several current
approaches [55, 6, 47, 20] leverage knowledge distillation
techniques proposed by Hinton et al. [25] to communi-
cate between clients. For example, FedMD proposed by
Li et al. [31] enables heterogeneous models to communi-
cate by learning the average soft label across all clients.
Many methods [6, 72] utilize public data to extract, ag-
gregate, and transfer knowledge. Furthermore, other ap-
proaches [41, 26, 14] leverage unlabeled data to implement
knowledge distillation and transfer among clients.

However, these SOTA methods assume that training im-
ages are flawless and do not account for the data corruption
problem of clients. Consequently, these methods may face
difficulties in model convergence or suffer from poor per-
formance in the presence of data corruption.

Data Corruption Learning. Data corruption is a prevalent
type of disturbance [52], which can occur during data col-
lection, storage, and transmission in real-world scenarios,
and can also be caused by free-riders in federated learn-
ing systems. Dodge et al. [12] point out that models under
training are very sensitive to continue training on corrupted
datasets which means training models under data corruption
severely degrades model performance. The SOTA methods
mainly employ the following techniques to mitigate perfor-
mance degradation caused by data corruption.

1) Data augmentation [58, 71, 62] aims to enhance the
robustness and reduce generalization error by augmenting
corrupted data. MixUp [71] and Manifold Mixup [62] are
widely used augmentation algorithms that linearly combine
training data to augment the dataset. Teach Augment [58]
improves the generalizability of models by using an adver-
sarial model to prevent feature loss caused by excessive
data augmentation. 2) Noise injection [1, 18, 5, 39, 29]
prevents the model from overfitting to the corrupted data
by adding noise to one or more parts of training process.
Early noise injection methods [1] added noise to training
data and subsequent works extended this approach to ac-
tivation functions [18] and fully-connected layers of MLP
or CNN [5, 39], which improves model robustness against
data corruption. 3) Pre-training [23, 67] on diverse datasets
with large domain gaps also contributes to model robust-
ness. Comprehensive studies [23] have shown that pre-
trained models have stronger robustness and generalization.
Noisy Student Training [67] with the pre-training process
has also shown good robustness against various data corrup-
tion. Currently, there are also some works investigating the
problem of corruption in federated learning [33, 57], both
of which mainly use empirical risk or to set the aggregation
weight of each round. However, their proposals are only
applicable to the model homogeneous setting and cannot be
applied to scenarios with model heterogeneity.

Previous methods for data corruption mainly focus on
centralized training and model homogeneous federated
learning, without addressing the negative impact of data
corruption in model heterogeneous federated learning.

3. Proposed Method

3.1. Preliminaries

In this paper, we consider the C-class image classifica-
tion task and assume a federated learning system with K
clients and one server. The k-th client ck has a private
dataset Dk = {(xk

i , y
k
i )}

Nk
i=1 with |xk| = Nk and yki ∈

{0, 1}C . To protect basic privacy, the client ck never shares
the private dataset Dk with the server and other clients
ck′ ̸=k. In the context of model heterogeneity, each client
ck has an independently designed local model f(θk) with
a unique neural structure, and θk represents the model pa-
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Figure 3. Illustration of AugHFL, which enables knowledge communication between heterogeneous models by aligning the output distri-
butions of local models on public data. A robust data augmentation strategy is employed in the local update phase to handle local corrupted
knowledge (Sec. 3.2). An adaptive re-weighted communication method, PubAug, is designed in collaborative update phase to mitigate
corrupted knowledge learned from others (Sec. 3.3).

rameters. To explore the data corruption problem in hetero-
geneous federated learning, we consider that each client ck
possesses a corrupted private dataset D̃k = {(x̃k

i , y
k
i )}

Nk
i=1,

where x̃k
i is an image that can be either clean or corrupted.

For communication purposes, the server has an unlabeled
public dataset D0 = {x̃0

i }
N0
i=1 with |x̃0| = N0, which can

be directly accessed by all clients. And the samples in this
public dataset are potentially corrupted.

Federated learning generally consists of the local update
phase and the collaborative update phase. We denote the
rounds of local update and collaborative update by Tl and
Tc, respectively. It is necessary to enhance the stability and
robustness of classifiers against local corruption when local
updates. Besides, due to the difficulty of correctly classi-
fying corrupted data, heterogeneous models may have in-
consistent prediction outputs for the same corrupted im-
ages, which can be expressed as f(x̃, θk1

) ̸= f(x̃, θk2
).

Therefore, we need to prevent the client from learning cor-
rupted predictions from others during the collaborative up-
date phase. Each client ck is allocated an adaptive weight
Wk to minimize the exchange of corrupted feedback.

In this context, the objective is to obtain an optimal set of
model parameters {θ1, θ2, ..., θK} that minimizes the em-

pirical risk E(f), as follows:

argmin
θ
L(θ) =

∑K

k=1
Wk · L(θk), (1)

where L(θk) = E(x̃,y)∼Dk
[ℓ(f(x̃, θk), y)] is the empirical

loss of ck, and ℓ(·) is the loss function.

3.2. Local Learning with Data Corruption

In the local update phase, we strive to minimize the ad-
verse effects of data corruption while enabling the local
model to learn sufficient local knowledge. In machine learn-
ing, data augmentation [11, 70, 71, 60, 19, 8, 9] is a preva-
lent technique to enhance the model generalization perfor-
mance. The principle is to improve the model performance
on unseen data by generating richer and more diverse train-
ing samples. Additionally, data augmentation methods have
been demonstrated to make models more robust against data
corruption [17]. To enhance the robustness of the local
model against data corruption, we learn the solution strat-
egy from Hendrycks et al. [24].

We select a set of traditional data augmentation opera-
tions A, including autocontrast, equalize, posterize, rotate,
solarize, shear x, shear y, translate x, and translate y, to en-
sure inconsistency with the original corruption patterns in
the private datasets. In addition, the data augmentation op-
erations use varying augmentation magnitudes. Then, one
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to three augmentation operations a ∼ A are randomly se-
lected, and they are stacked to construct several augmenta-
tion operation sequences Seq with different depths. This
process can be formulated as:

Seq ∼ {a1, a12, a123},
a12 =a1 ⊕ a2, a123 = a1 ⊕ a2 ⊕ a3,

(2)

where a1, a2, a3 ∼ A, and a12, a123 denote the operation
combination sequences with depths of 2 and 3, respectively.
However, the resulting image Seq(x) obtained by cascad-
ing multiple data augmentation operations may be distorted
and drift away from the original image x. To alleviate this
image degradation, a set of weights (w1, ..., wS) is ran-
domly sampled from the Dirichlet(α, ..., α) distribution.
S represents the number of random augmentation opera-
tion sequences. The resulting images Seq(x) from different
augmentation sequences are mixed according to the corre-
sponding weights w, which can be expressed as:

xseq =
∑S

i=1
wi · Seqi(x). (3)

Random weighted mixing of S augmented images can cre-
ate more diversity than simple augmentation. To prevent
the mixed image from losing the semantic information of
the original image, we combine the mixed image with the
original image, thus obtaining the image after Aug:

xaug = η · x+ (1− η) · xseq, (4)

where η refers to the weight randomly sampled from the
Beta(α, α) distribution. In this way, various augmenta-
tion operations, augmentation magnitudes, augmentation
sequences, and multiple random mixing operations guaran-
tee the diversity of the augmented images.

To further improve model stability, an additional Jensen-
Shannon (JS) divergence consistency loss is utilized to con-
strain model updates. The main idea is to constrain the out-
put consistency of the classifier on different augmentations
of the same image. For each original image x, two differ-
ent augmented samples xaug1 , xaug2 are generated by the
above method. Subsequently, the loss function of the local
update phase can be specifically expressed as:

ℓlocal = ℓCE(f, y) + µ · ℓJS(f, f ′, f ′′). (5)

Here, µ controls the strength of JS consistency constraint
and ℓCE denotes the cross-entropy loss. f , f ′, f ′′ denote
the output distributions of the original image x and two aug-
mented images xaug1 , xaug2 on the local model θ respec-
tively. JS divergence is a symmetric and smooth version
based on Kullback–Leibler (KL) divergence, which ensures
output stability for samples from the same original image.

In the local update phase, the clients update the local
models with their private datasets, so that the local mod-
els can sufficiently learn the local information and pre-
vent from forgetting local knowledge after several rounds of

communication. However, the client may repeatedly learn
corrupted knowledge and optimize in the wrong direction,
which will eventually lead to non-convergence of the local
model. Thus, we utilize ℓlocal in Eq. (5) as the loss function
of the local update, and the local update process of client ck
can be formulated as:

θtlk ← θtl−1
k − λ∇θℓlocal(f(x̃

k; θtl−1
k ), yk), (6)

where λ denotes the local learning rate and tl ∈ [0, Tl] rep-
resents the tl-th local update epoch. The data augmentation
strategy enables the models to successfully cope with un-
seen corruptions during the local update phase.

3.3. Robust Corrupted Clients Communication

In the collaborative update phase, we follow HFL [14]
to implement knowledge communication between hetero-
geneous models in a model-agnostic manner. Concurrently,
the propagation of corrupted knowledge in the mutual learn-
ing process is minimized by our proposed PubAug.

The private datasets carry abundant exclusive informa-
tion which is safeguarded and not viable for exchange. The
unlabeled public dataset is relatively easy to obtain, which
is compiled from diverse sources and can be corrupted. The
output distributions of public data on local models reflect
the discriminative capabilities of the models. Consequently,
we leverage the output distributions of the public dataset
to execute communication among heterogeneous clients.
Specifically, the client ck expresses local knowledge infor-
mation through the output class distribution f(D0, θk) com-
puted by the local model θk on public dataset D0. We im-
plement collaborative learning with KL divergence, which
is a metric used to measure the distance between two prob-
ability distributions. The discrepancy between the output
class distribution of client cp and client cq is expressed as:

KL(p||q) =
∑N0

i=1
p(x̃0

i ) log
p(x̃0

i )

q(x̃0
i )
, (7)

where p(x̃0
i ) = f(x̃0

i , θp) and q(x̃0
i ) = f(x̃0

i , θq) indicate
the output class distributions of public data x̃0

i on client cp
and client cq , respectively. Furthermore, the communica-
tion of local knowledge information between clients can be
realized by narrowing the gap between their output class
distributions. Thus, we leverage KL divergence as the loss
function in the collaborative update phase, where minimiz-
ing KL divergence can be interpreted as a process of acquir-
ing knowledge from other clients. The loss of the client ck
in the tc-th collaborative round is

ℓk,tccol =
∑K

i=1,i̸=k
KL(fk,tc

0 ||f i,tc
0 ), (8)

where fk,tc
0 = f(D0, θ

tc
k ) is the prediction distribution of

the local model θk on public dataset, and f i,tc
0 is similar.

5024



In this way, each client ck learns from others by fitting the
output class distributions of other clients. Besides, clients
with more distinct differences in output class distributions
can acquire richer knowledge from each other.

To minimize corrupted knowledge learned from others,
we design PubAug to dynamically adjust the contribution of
clients to the federated learning system. Our weight calcu-
lation strategy takes inspiration from semi-supervised learn-
ing. Ideally, the output prediction distributions of the cor-
rupted sample and the original sample should be similar.
Therefore, for each client ck, we obtain two different cor-
rupted public datasets D0,k1

, D0,k2
by randomly corrupting

the original public dataset D0. Among them, the corruption
patterns and severity level of each sample are randomly se-
lected to provide a comprehensive measure of client relia-
bility. The corrupted public datasets D0,k1

, D0,k2
and the

original public dataset D0 are simultaneously fed into the
local model θk, resulting in three distinct prediction distri-
butions. We exploit the consistency of these prediction dis-
tributions to quantify the robustness of local models against
different corruption patterns. Consequently, the reliability
Rk of the client ck against corruption can be measured as:

Rk =
1

KL(fk
0,k1
||fk

0 ) +KL(fk
0,k2
||fk

0 )
, (9)

where fk
0,k1

, fk
0,k2

are the prediction distributions of cor-
rupted public datasets D0,k1

and D0,k2
on the local model

θk, respectively. The reliability of the local model is pro-
portional to the degree of consistency in prediction distri-
butions between the corrupted data and the original data.
Thus, the local models with high reliability computed by
Eq. (9) can be considered highly resistant to corruption.

In the collaborative update phase, we devise an adaptive
re-weighting scheme based on client reliability that effec-
tively mitigates the detrimental impact of corrupted clients
on the federated learning system. reduces the contribution
of corrupted clients to the federated learning system, while
learning more from reliable clients. By prioritizing reliable
clients, our approach optimizes the distribution of learning
effort in a manner that enhances the overall performance of
the system. Specifically, the collaborative update process of
client ck in the tc-th iteration can be formulated as:

θtck ← θtc−1
k − λ∇θ(Wk · ℓk,tc−1

col ),Wk =
Rk∑K
i=1 Ri

,

(10)
where tc ∈ [0, Tc] indicates the tc-th collaborative update
iteration. The weight Wk assigned to the client ck is dy-
namically adjusted according to its reliability Rk. Through
this adaptive re-weighting strategy, we are able to empha-
size the contribution of more reliable clients while reduc-
ing the noise introduced by corrupted clients during hetero-
geneous model communication. This approach optimizes

the learning process and refines the communication perfor-
mance of heterogeneous models under data corruption.

4. Experimental

4.1. Experimental Setup

Datasets and Models. According to latest works [14, 24],
our experiments are based on two datasets, Cifar-10-C [22]
and Cifar-100 [30], due to their significant influence in the
research of data corruption learning and image classifica-
tion tasks. Both Cifar-10 [30] and Cifar-100 contain 60,000
color images of size 32× 32, including 50,000 training im-
ages and 10,000 testing images. Furthermore, Cifar-10-C
is obtained by introducing common visual corruptions in
Cifar-10. We randomly divide Cifar-10-C to clients as their
private datasets and select a subset of Cifar-100 as the pub-
lic dataset on the server. To meet the requirements of the
heterogeneous model scenario, we assign four different lo-
cal models, ResNet10 [21], ResNet12 [21], ShuffleNet [73]
and Mobilenetv2 [54] to four clients respectively.
Corruption Patterns. To better simulate actual data cor-
ruption, our approach to constructing corruption patterns for
federated learning follows Hendrycks et al. [22]. Cifar-10-
C consists of 15 corruption types (from four major cate-
gories: Noise, Blur, Weather, and Digital) and each corrup-
tion pattern has five severity levels. Corrupted images are
generated by randomly sampling the corruption types and
severity levels from a uniform distribution. We randomly
set different corruption rates, corruption types, and sever-
ity levels for private datasets of different clients. Moreover,
there may be different corruption patterns between different
samples within a private dataset.
Baselines. We compare AugHFL with advanced methods
to prove its effectiveness in the heterogeneous model sce-
nario. Specifically, AugHFL is compared with FedMD [31],
FedDF [41], RHFL [14] and FCCL [26] under the same
setting. FedMD communicates based on the average class
scores output by client models on the public dataset. FedDF
is a distillation framework for robust federated model fu-
sion utilizing unlabeled or artificially generated data. RHFL
simultaneously handles the label noise and heterogeneous
model communication in a single framework. FCCL con-
structs a cross-correlation matrix for collaborative learning
and prevents catastrophic forgetting in local updates. Due
to the differences in experimental settings between differ-
ent algorithms, we implement the main ideas of these algo-
rithms in our framework for a fair comparison.
Implementation Details. Initially, the local model on each
client will be pre-trained for 40 epochs on its private dataset.
The size of private datasets and the public dataset is speci-
fied as Nk = 10, 000 and N0 = 5, 000 respectively. To en-
sure the effectiveness of federated learning, all clients per-
form Tc = 40 rounds of collaborative updates. The num-
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Table 1. Ablation experiment with corruption rate ξ = 0 on private dataset, θk represents the local model of the client ck.
Components Test on clean dataset Test on random corrupted dataset

HFL PubAug Aug JSD θ0 θ1 θ2 θ3 Avg θ0 θ1 θ2 θ3 Avg
82.63 82.57 68.58 78.14 77.98 68.03 66.21 56.04 63.23 63.38

✓ 81.18 81.29 71.46 80.50 78.61 65.75 65.78 58.08 64.20 63.45
✓ ✓ 82.06 82.09 70.86 80.15 78.79 66.51 67.91 57.25 67.84 64.88
✓ ✓ ✓ 75.01 77.47 61.59 74.33 72.10 62.60 66.48 46.97 62.98 59.76
✓ ✓ ✓ ✓ 79.86 81.45 70.67 79.47 77.86 73.78 74.46 64.03 72.55 71.21

Table 2. Ablation experiment with corruption rate ξ = 0.5 on private dataset, θk represents the local model of the client ck.
Components Test on clean dataset Test on random corrupted dataset

HFL PubAug Aug JSD θ0 θ1 θ2 θ3 Avg θ0 θ1 θ2 θ3 Avg
68.75 68.46 57.14 57.41 62.94 64.03 64.75 50.86 52.40 58.01

✓ 61.37 63.71 56.08 59.34 60.13 57.19 60.07 50.79 56.25 56.08
✓ ✓ 62.67 62.37 57.25 59.58 60.47 58.20 59.18 53.94 55.96 56.82
✓ ✓ ✓ 70.27 69.08 57.65 67.74 66.19 62.17 59.22 49.09 59.29 57.44
✓ ✓ ✓ ✓ 76.22 76.50 66.66 73.31 73.17 71.96 71.26 61.28 69.58 68.52

Table 3. Ablation experiment with corruption rate ξ = 1 on private dataset, θk represents the local model of the client ck.
Components Test on clean dataset Test on random corrupted dataset

HFL PubAug Aug JSD θ0 θ1 θ2 θ3 Avg θ0 θ1 θ2 θ3 Avg
65.58 67.01 56.00 57.11 61.43 62.47 63.88 52.57 53.49 58.10

✓ 62.02 62.24 58.51 59.84 60.65 59.22 59.88 55.00 56.74 57.71
✓ ✓ 60.41 62.40 57.67 59.46 59.99 56.76 59.10 53.96 55.96 56.45
✓ ✓ ✓ 68.90 67.65 55.99 66.59 64.78 62.55 61.26 48.82 58.46 57.77
✓ ✓ ✓ ✓ 76.98 77.82 65.79 74.03 73.66 73.65 74.04 61.50 70.92 70.03

ber of local learning epochs is adaptively set to Tl = N0

Nk

to balance local and shared knowledge. Furthermore, we
use the Adam [28] optimizer with an initial learning rate
of λ = 0.001 and the batch size of 256. The number of
augmentation operation sequences S is set as 3 and the hy-
perparameter µ is 12. Since this paper focuses on the data
corruption problem in federated learning, we consider three
cases with corruption rates ξ of 0, 0.5, and 1, meaning the
private dataset is clean, half corrupted, and fully corrupted.
The client ck randomly selects NK samples from Cifar-10-
C generated by random corruption. The effectiveness of our
method is tested on clean and randomly corrupted datasets.

4.2. Ablation Study

We train on private datasets with three corruption rates
ξ = 0, 0.5, 1, and evaluate the components on the com-
pletely clean and the completely random corrupted datasets.
Effectiveness of HFL. According to Tab. 1, we observe that
adding HFL improves the average accuracy of four local
models from 77.98% to 78.61% when both the training and
testing datasets are clean. This shows that federated com-
munication enables clients to learn from each other. How-
ever, in data corruption scenarios, the effect of adding HFL
decreased instead. We attribute this phenomenon to the fact
that, in the presence of data corruption, federated learning
causes clients to repeatedly exchange incorrect knowledge,
which degrades the model performance. Therefore, data
corruption severely hinders heterogeneous federated learn-
ing, which illustrates the necessity of exploring this issue.

Effectiveness of PubAug. We add the PubAug module to
reduce the negative impact of corrupted clients during the
collaborative update phase. The addition of PubAug brings
better performance improvements in scenarios where pri-
vate datasets are either clean or partially corrupt, as demon-
strated in Tables 1 and 2. However, when the dataset is fully
corrupted, we observe limited impact from PubAug. This is
due to the fact that when all clients have fully corrupted
data, their reliability levels are similar, making it difficult
for them to help each other mitigate data corruption. Con-
sequently, in addition to external data corruption, internal
data corruption also needs to be addressed.

Effectiveness of Aug. As shown in the Tabs. 2 and 3, we
can observe that Aug can effectively handle datasets with
data corruption rather than clean datasets. In the local up-
date phase, Aug alleviates the learning of corrupted knowl-
edge and revises the optimization directions of the models.

Effectiveness of JSD. Adding JSD on the basis of Aug has
significantly improved the model performance. Especially
when the corruption rate of the private dataset is 0.5, the
performance on the clean dataset and the random corrupted
dataset is improved by 8.4% and 11.51%, respectively. JSD
component imposes a consistency constraint on the output
distribution of the images obtained by Aug. This regular-
ization strategy enhances model stability and contributes di-
rectly to improved performance.
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Table 4. Compare with the SOTA methods with corruption rate ξ = 0 on private dataset, θk represents the local model of the client ck.
Test on clean dataset Test on random corrupted dataset

Model
θ0 θ1 θ2 θ3 Avg θ0 θ1 θ2 θ3 Avg

Baseline 82.63 82.57 68.58 78.14 77.98 68.03 66.21 56.04 63.23 63.38
FedMD[31] 82.86 83.06 73.02 80.74 79.92 68.70 68.28 61.01 67.53 66.38
FedDF[41] 82.40 82.40 73.55 78.48 79.21 65.54 67.00 59.39 63.36 63.82
RHFL[14] 82.30 82.83 71.72 77.55 78.60 66.32 62.28 57.65 62.94 62.30
FCCL[26] 83.26 83.07 73.69 81.53 80.39 69.55 67.78 60.57 68.25 66.54
AugHFL 79.86 81.45 70.67 79.47 77.86 73.78 74.46 64.03 72.55 71.21

Table 5. Compare with the SOTA methods with corruption rate ξ = 0.5 on private dataset, θk represents the local model of the client ck.
Test on clean dataset Test on random corrupted dataset

Model
θ0 θ1 θ2 θ3 Avg θ0 θ1 θ2 θ3 Avg

Baseline 68.75 68.46 57.14 57.41 62.94 64.03 64.75 50.86 52.40 58.01
FedMD[31] 64.25 65.30 55.97 58.58 61.03 59.66 61.28 51.66 54.56 56.79
FedDF[41] 61.72 63.51 57.29 57.89 60.10 58.09 59.57 53.15 54.35 56.29
RHFL[14] 58.05 59.47 51.13 55.07 55.93 62.42 63.46 56.78 59.81 60.62
FCCL[26] 63.75 62.62 58.43 59.78 61.15 59.91 59.03 53.71 56.24 57.22
AugHFL 76.22 76.50 66.66 73.31 73.17 71.96 71.26 61.28 69.58 68.52

Table 6. Compare with the SOTA methods with corruption rate ξ = 1 on private dataset, θk represents the local model of the client ck.
Test on clean dataset Test on random corrupted dataset

Model
θ0 θ1 θ2 θ3 Avg θ0 θ1 θ2 θ3 Avg

Baseline 65.58 67.01 56.00 57.11 61.43 62.47 63.88 52.57 53.49 58.10
FedMD[31] 62.11 63.74 56.57 58.12 60.14 59.11 60.58 52.51 55.39 56.90
FedDF[41] 61.66 63.11 58.39 58.06 60.31 58.87 59.45 55.44 55.31 57.27
RHFL[14] 62.55 64.21 57.57 58.14 60.62 58.14 59.79 54.75 55.77 57.11
FCCL[26] 62.60 63.64 58.60 59.71 61.14 59.36 59.55 55.82 56.92 57.91
AugHFL 76.98 77.82 65.79 74.03 73.66 73.65 74.04 61.50 70.92 70.03

4.3. Comparison with SOTA Methods

We provide a comprehensive comparison of AugHFL
with SOTA methods in several different scenarios, where
the models are trained on datasets with different corruption
rates, and their performance is tested on both clean and ran-
domly corrupted datasets, as shown in Tabs. 4 to 6. The
baseline refers to the method that clients train local models
on their private datasets without a federated learning pro-
cess. The experiments show that our method, AugHFL, sig-
nificantly outperforms other existing methods under most
settings, with many test accuracy even exceeding existing
methods by more than 12%. Notably, our method per-
forms similarly to SOTA methods in the ideal scenario of
completely clean training and testing data, though this is
unlikely in practical applications. The performance of all
SOTA methods degrades severely as the corruption rates in
training datasets increase from completely clean to com-
pletely corrupted. It can be observed that the average
accuracy of the two classic algorithms FedMD[31] and
FedDF[41] decreases by about 19% on clean datasets and
8% on corrupted datasets. The other two latest algorithms,
RHFL [14] and FCCl [26]have an average accuracy drop of
about 18% on clean datasets and 7% on corrupted datasets.
Meanwhile, as the corruption rate increases from 0 to 1,
AugHFL drops 4.2% accuracy on the clean dataset and

1.18% on the corrupted dataset, still achieving the highest
accuracy among these algorithms. The above demonstrates
the strong robustness of our proposed AugHFL against data
corruption and the validity of the method in the real world.

5. Conclusion
This paper studies a novel and challenging robust het-

erogeneous federated learning problem with data corrup-
tion. We introduce a comprehensive framework AugHFL,
to cope with this issue. First, we incorporate a robust data
augmentation strategy to minimize the impact of intra-client
data corruption. Second, we design PubAug, a mecha-
nism that adaptively adjusts the client contributions based
on their reliability, to address inter-client corruption dur-
ing the collaborative update phase. Extensive experiments
demonstrate the effectiveness of our method under different
corrupted scenarios..
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