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Abstract

Smartphone photography is becoming increasingly pop-
ular, but fitting high-performing camera systems within the
given space limitations remains a challenge for manufactur-
ers. As a result, powerful mobile camera systems are in high
demand. Despite recent progress in computer vision, camera
system quality assessment remains a tedious and manual
process. In this paper, we present the Smartphone Camera
Quality Assessment Dataset (SQAD), which includes natu-
ral images captured by 29 devices. SQAD defines camera
system quality based on six widely accepted criteria: res-
olution, color accuracy, noise level, dynamic range, Point
Spread Function, and aliasing. Built on thorough exami-
nations in a controlled laboratory environment, SQAD pro-
vides objective metrics for quality assessment, overcoming
previous subjective opinion scores. Moreover, we intro-
duce the task of automatic camera quality assessment and
train deep learning-based models on the collected data to
perform a precise quality prediction for arbitrary photos.
The dataset, codes and pre-trained models are released at
https://github.com/aiff22/SQAD.

1. Introduction
Image quality, meaning the representation of details,

color, realism, etc., has shown to directly influence computer
vision algorithms in achieving a more comprehensive un-
derstanding of the natural world. Consequently, this evokes
the question of precisely quantifying and estimating the per-
ceived image quality by human viewers, as they are usually
the ultimate receivers [57]. Besides subjective methods that
study human perceptions given physical stimuli [28, 43],
objective assessment methods fall into three main categories
based on the amount of information available: no-reference,
reduced-reference, or full-reference.

No-reference (NF) methods for estimating image qual-
ity directly, without requiring undistorted counterparts, are
more convenient in realistic vision scenarios. Common qual-
ity metrics include image statistical differences, such as
BRISQUE [41], BLIINDS-II [48] parameterized by DCT

*Work done while at ETH Zurich

Figure 1: Sample images of the identical scene from our
benchmark captured using different devices. The training
and testing images are captured in hand-held mode in the
wild, while the optical patterns, e.g. PSF, are obtained under
controlled conditions with a fixed tripod 2 meters apart for
benchmarking purposes.

coefficients, NIQE [42] with spatial domain features, and
the successor IL-NIQE [62] based on multivariate Gaus-
sian models. Recently, learning-based approaches have
led to improved quality assessment methods [36, 13, 38].
However, gaps still exist between perceivable image qual-
ity and predicted quantitative results even with neural net-
works providing better solutions than traditional methods.
To address this, new algorithms [9, 29] are being proposed,
inspired by GANs [23] and perceptual-oriented optimiza-
tion [30, 60, 46], that aim to further reduce this gap.

An orthogonal direction in assessing image quality is
to consider the device used to take those pictures, which
requires not only the recorded imagery but the correspond-
ing camera devices and photometric settings. In this case,
manual impairments are not employed to imitate different
situations, and quality is measured directly in a more ac-
curate way. Optical patterns are widely applied, making
measurements more objective and meaningful [52, 11, 12].
They cover a wide range of distinct quality factors related to
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Figure 2: Smartphone Camera Sensor Quality Assessment Dataset (SQAD). We present 224 × 224 sized crops extracted
from our dataset consisting of images captured by 29 different mobile devices. Images are arranged in descending order of
resolution. Orange block scales vary due to differing image dimension settings on smartphones. Perceived sharpness relates
more to PSF than resolution. The image taken with Sony Ericsson T630 is in the supplement due to its small size.

the photon nature of light, properties of lenses, signal theory,
and more. International standards [5, 6] provide measuring
and reporting methods for still-picture cameras based on
designated patterns. Besides, several popular commercial
software applications [2, 1] provide camera quality tests,
including main quality factors such as sharpness, noise level,
dynamic range, chromatic aberration, etc. While various
methods have been proposed for image quality assessment
(IQA), they often have limitations and are not comprehen-
sive. Although IQA methods aim to predict quantitative
scores aligning with human perceptions measured by mean
opinion scores (MOS) [54], they often lack objectivity, quan-
tization, and physical reasoning due to diverse participant
expertise levels and inherent biases. Camera-based methods
are accurate and based on physical attributes, but they are
complex and time-consuming, and require cameras and their
parameters, making them less suitable for web images.

To address previous limitations, we are motivated to
provide a standard, measurable, and objective reference,
and we make the following contributions: Our proposed

SQAD benchmark combines device-based lab measurement
approaches with Deep Learning to accurately quantify smart-
phone camera quality from multiple perspectives using phys-
ically meaningful scores. We use a semi-manual evaluation
protocol for smartphone camera systems based on ISO stan-
dards, covering critical quality factors such as resolution,
color accuracy, noise level, dynamic range, aliasing, and
Point Spread Function (PSF). Our evaluations are conducted
in real-world conditions, reflecting practical scenarios where
access to individual camera components, i.e. optics and ISP,
is limited. As images serve as the ultimate observation of
camera quality, we therefore define the camera sensor1 to
encompass all relevant components. Our image collection
comprises natural scenes captured by a variety of devices,
spanning from the early years of smartphone development
to recent high-end phones. Furthermore, we introduce the
task of automatically assessing smartphone camera quality,
eliminating the need for manual measurements. An overview
of our dataset is presented in Fig. 2.

1In this work, the term camera sensor refers to both hardware and ISP.
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2. Related Work

We briefly recall closely related research topics in the
field of IQA and discuss widely used benchmark databases.

Image quality assessment. In full-reference IQA, meth-
ods evaluate the differences between a test image and a
high-quality reference and provide a score indicating their
similarity. Traditional metrics like PSNR and SSIM com-
pute pixel-wise differences or evaluate images by combining
luminance, contrast, and structure factors [58]. Advanced
Deep Learning methods extract learned features from the
reference and test images and compute distances in high
dimensional feature space. These deep representations are
highly correlated with perceptual image quality and yield
superior results, as seen in DeepSIM [21], WaDIQaM [10],
DeepQA [31], PieAPP [45], LPIPS [63] and DISTS [18].

In some practical scenarios, high-quality reference im-
ages may be unavailable, prompting the development of NF
methods that offer solutions. The advent of deep learn-
ing has significantly improved the field by introducing
databases [35, 29, 8], thereby fostering further developments
in this area [59, 64, 39, 16]. Some previous works also
focus on quality assessment of distorted images captured
in the wild [34, 53], which differ in appearance from syn-
thetic imagery. Su et al. [55] divide the problem into three
stages involving semantic feature extraction, perception rule
learning, and quality prediction to develop a self-adaptive
hypernetwork that performs well on both synthetic and re-
alistic distortions. UNIQUE [65] samples image pairs and
employs a fidelity loss to train a unified model for both
synthetic and realistic distortions. MetaIQA [66] adopts
meta-learning to learn prior knowledge shared by diversi-
fied distortions, thereby generalizing better to a vast amount
of synthetic and authentic distortions. Chiu et al. [14] link
image quality assessment to captioning, vision question an-
swering, and object recognition. More recently, the win-
ner [61] of the NTIRE 2022 challenge [24] (NF-IQA track)
employs a transposed attention mechanism to modulate deep
features extracted from a ViT [19] backbone, while Swin
Transformer [37] layers enhance the interactions of local
information before the final quality score prediction.

Datasets. To facilitate IQA tasks, numerous databases
have been proposed in the past to model various types of
synthetic distortions, such as LIVE [50, 51], CSIQ [33], and
TID13 [44]. However, in recent years, KADID-10k [35]
has emerged as a larger dataset with more diverse contents,
where distorted images are categorized into five levels of
distortion. With the significant progress achieved in the
field of low-level vision through the use of generative tech-
niques, there has been a noticeable gap between the percep-
tual quality and quantitative evaluations [30, 63]. In light of
this, the PIPAL [29] dataset has been developed to include
GAN-generated distortions, providing an opportunity for in-

Table 1: IQA databases by size, judgment and distortions.

Dataset # Images Judgement types Distortion types

LIVE [50, 51] 779 DMOS synthetic (5)
CSIQ [33] 886 DMOS synthetic (6)
TID13 [44] 3,025 MOS synthetic (24)
KADID-10k [35] 10,125 MOS synthetic (25)
PIPAL [29] 29,250 MOS syn. (40) & GAN dist.
BID [15] 585 MOS authentic
LIVEW [22] 1,162 MOS authentic
KonIQ-10k [27] 10,073 MOS authentic
SPAQ [20] 11,125 MOS auth. & meta-info

SQAD (ours) 3,017 Lab. results auth. & quality attr.

depth exploration of perceptual image errors. In addition to
hand-crafted and algorithm-based distortions, several image
databases contain authentic distortions, such as BID [15],
LIVEW [22], and KonIQ-10k [27], which are sampled from
multimedia database YFCC100m [56]. SPAQ [20], influ-
enced by the smartphone photography trend, collects a large
number of smartphone images with image attributes and
scene category labels. Despite the richness of synthetic
database distortions and authentic database image contents,
quantitative image quality results rely on subjective human
opinions. Although KonIQ-10k [27] and SPAQ [20] include
several image attributes, they are based on image statistics
and subjective ratings, respectively.

In contrast to other image databases that rely on subjec-
tive human opinions, our SQAD benchmark uses laboratory
measurements to obtain objective scores with greater phys-
ical accuracy. Compared to SIDD [7] that only estimates
noise ground truth from noisy images with five devices, we
measure six various criteria using 29 smartphones. Addition-
ally, we propose the novel task of smartphone camera quality
assessment, with a diverse image collection and objective
ground truth labeling. Furthermore, while previous works
mostly emphasize the perceptual aspect, our benchmark pro-
vides a technical perspective on image quality, enabling an
objective comparison between different smartphone devices.
Tab. 1 briefly summarizes the differences between the men-
tioned IQA databases.

3. Smartphone Camera Quality Assessment
Introducing our Smartphone Camera Quality Assessment

Dataset (SQAD), we begin by providing detailed information
about the dataset and its acquisition process in Section 3.1.
Then, in Section 3.2, we delve into the technical background
of the quality aspects considered.

3.1. Dataset Overview and Benchmarking

Our data collection consists of 29 devices and a total of
3017 images depicting diverse indoor and outdoor scenes
captured in the wild without introduced patterns for deep
learning purpose. In Tab. 2, we provide an overview of the
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Table 2: Overview of SQAD. We present a breakdown of SQAD training split and include a Canon EOS70D as a high-quality
reference device. More details in supplement Tab. 5.

Manufacturer Samsung Sony HTC HUAWEI Google LG Nokia OPPO Realme ASUS Canon Total

# Devices 7 7 3 2 2 2 2 1 1 1 1 29
# Images 786 709 358 169 177 239 238 88 90 114 49 3017

Figure 3: Patterns used for benchmarking in the laboratory.
(a) Wedge patterns. (b) ColorCheckerTM [4]. (d) Flat pattern.
(e) 36-patch pattern with gray background. (f) Edge pattern.

individual devices included in our dataset. The images were
taken during different times of the day, including morning,
noon, afternoon, and sunset, and under various weather con-
ditions, such as sunny or cloudy. The indoor images include
e.g. close-ups of multiple objects and various interior set-
tings. In some scenes, we included the ColorCheckerTM [4]
pattern to compensate for the lack of vivid colors, such as
in lawn scenes. Sample images captured in the morning
from the considered smartphones are presented in Fig. 2. We
utilize sRGB images for our benchmarking and additional
experiments, as RAW image capturing is only available on
a small fraction of recent high-end devices. Our aim is to
provide a comprehensive overview of smartphone develop-
ment in recent years. Using RAW images would reduce the
diversity of our benchmark, as it would exclude most devices
prior to 2015. To ensure consistency, we use the default cam-
era settings, i.e. ISO values and aperture, for each device
when capturing images.

For the benchmarking process, we mount the devices
securely on a tripod to reduce camera shake and ensure a
consistent distance between the device and pattern during
image acquisition for GT measurements. The patterns are po-
sitioned at the center of the frame with similar pattern-frame
ratio. In Fig. 3, we present an overview of the patterns used
for benchmarking. We sourced the patterns from ISO stan-
dards [5] for assessing resolution and Point Spread Function
(PSF), reputable commercial companies [2, 4] for evaluating
color accuracy and dynamic range, and our self-designed
patterns for measuring noise and aliasing. Our experiments

are conducted in a dark room to measure noise and dynamic
range, and in illuminated environments for the remaining
factors. To account for the nonlinear exposure-pixel rela-
tionship in sRGB space, we apply gamma correction to each
captured image. We transform the images into the color
luminance channel for analysis, with the exception of color
accuracy.

3.2. Quality Factors for Benchmarking

We include 6 key image quality factors in our bench-
marking protocol, namely resolution, color accuracy, noise,
dynamic range, Point Spread Function, and aliasing.

Resolution. Resolution is a critical quality factor that de-
scribes a camera’s ability to render detail with well-defined
contrast and texture [5]. It is typically expressed as a single-
valued metric and is determined by factors such as the cam-
era lens, addressable photoelements, and electrical circuits.
The ISO 12233 standard for still picture imaging offers sev-
eral test charts for measuring visual resolution, such as the
Edge SFR or Siemens star. For our study, we chose the
wedge pattern due to its perceived directness in estimating
the resolution capability of the devices under investigation.
In Fig. 3a, we provide an overview of all the applied wedges,
which cover a broad range of resolutions for digital cameras.
The wedge chart contains hyperbolic or logarithmic bar pat-
terns [2], and the resolution is determined by the position
where the lines become visually indistinguishable from one
another. We initialize one peak value point for each line and
trace them until the maximum (min. peak prominence = 2)
cannot be found, as shown in Fig. 4b.

Color Accuracy. Color accuracy (CA) refers to a cam-
era’s ability to capture colors and shades accurately. How-
ever, CA is not always synonymous with color pleasantness
as perceived by humans [47], making it a somewhat am-
biguous quality factor. To measure CA, we use the classic
ColorCheckerTM[4] as a reference (see Fig. 3b) and compute
the sum of color-differences for all 24 patches (first three
rows) within the perceptually uniform CIELAB space. The
color-difference formula we use is from CIEDE2000 [49] 2.
Prior to computing the color difference, we apply a different
gamma correction using the last row to linearize the image.
The estimated gamma value is determined by the slope of
the logarithmic pixel response relative to the patch density.

2For more details, please refer to the supplementary material.
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(a) Dynamic range measurements for the OPPO A92S.

(b) Tracing peak points for wedges in resolution measurement.

(c) Over-sampled edges of different cameras in sub-pixel PSF cal-
culation.

(d) Comparison of aliasing detection.

Figure 4: (a) The constraint point in left top sub-figure represents upper and lower limits: brightness < 98% max. RGB and
slope > 7.5% max. response slope on the dark side. Note, scene SNR in right bottom sub-figure is truncated to 150 dB if too
high on the bright side. (b) Peak points tracing for Samsung Galaxy S10, green dots are initial points and intermediate results
are red. The orange rectangle highlights the termination. (c) FWHM values for these four cameras are 17.8, 39.5, 64.8 and
87.8, respectively. (d) We provide picture-heatmap pairs for detected aliasing regions and an example for undetected case.

Noise Level. Image noise is an unwanted variation of an
imaging system’s response caused by the photon nature of
light and the thermal energy of heat. This randomness makes
noise level a critical factor in overall camera sensor quality.
The noise level can be influenced by pixel size, ISO speed
setting, exposure time, signal processing components, and
more [25]. Measuring the noise level is standardized by
ISO 15739 [6], which specifies measuring and reporting the
noise versus signal level. Typically, with commonly-used
flat patch patterns, noise is approximated as the root mean
square (RMS) value measured in pixels, which is equiv-
alent to the standard deviation of the flat patch signal S:
RMS noise = σ(S), since Noise Power = (RMS Noise)2.
In our study, we estimate the noise level using a self-designed
flat pattern, shown in Fig. 3d, and directly report RMS val-
ues over the center region of the captured image as the final
noise level estimate. This approach simplifies the calcula-
tion of signal-to-noise ratio (SNR) vs. input density with
multi-patch patterns used in ISO 15739 [6]. The numbers
added to the image corners aim to limit autofocus errors
since smooth regions lead to blurred measurements. To en-
sure color uniformity while reducing systematic RMS errors,
we display the designed pattern using an OLED screen with a
peak and minimal brightness of 605 and 0 nits. Additionally,
we solely utilize the center region of the recorded pattern to
avoid erroneous estimates due to uneven edge areas.

Dynamic Range. Dynamic range (DR) is a critical pa-
rameter that measures the luminance range where a camera

can produce acceptable SNR and contrast. It is typically
expressed as the ratio between the maximum and minimum
measurable signal values. An ideal digital camera should
capture images with both dark shadows and bright highlights,
similar to what the human eye perceives. However, while
the DR of real-world scenes can surpass 1,000,000:1 (120
dB), the human eye can detect up to 46.5 f-stops (280 dB),
vastly outperforming any consumer camera with a limit of
around 100 dB for most devices. To quantify the DR, we
first introduce the definitions for SNR and noise, as defined
by [6]. The SNR is given by SNR = gL

σ , where g = dpixel
dL ,

and σ is the noise measured in pixels, and L is the luminance
derived from patch density d, with L = 10−d. To express
the DR in terms of scene-referenced SNR, as inspired by
[2], we modify the transmissive 36-patch chart, which is
more accurate than the reflective ISO chart, and adjust its
arrangement to fit a rectangular screen better while keeping
the density unchanged. Please refer to a more detailed view
of the computation in the supplement.

To replicate the transmissive chart illuminated by a back-
light, an OLED screen is used to display the custom pat-
tern, ensuring that appropriate dark regions are present. Ide-
ally, the measured range for DR should be from the sensor-
saturated patch (less than 98% of maximum RGB) to where
SNR = 1 (0dB). However, due to flare light severely im-
pacting DR measurement and the lack of a gap between each
patch in our pattern, slope-based SNR [3] is applied to limit
the measured SNRscene from dark regions. An exemplary
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output for the OPPO A92S smartphone is shown in Fig. 4a.

Point Spread Function. In terms of image quality, the
Point Spread Function (PSF) is a crucial factor that char-
acterizes the impulse response of an imaging system. The
Fourier transform of PSF is the Modulation Transfer Func-
tion (MTF) or Spatial Frequency Response (SFR), which
describes the contrast change by the camera as a function
of spatial frequency. Although SFR is related to PSF, the
latter provides a more comprehensive description of image
quality. The International Organization for Standardization
(ISO) provides a slanted edge-based method for measuring
SFR, as specified in [5]. However, for our purposes, we only
need to obtain PSF. After capturing an image, we detect and
fit the long slanted edge within a chosen height of 400 pixels.
Along two sides of the edge, we oversample the pixel inten-
sities at a small distance of 20 pixels and project them onto
a one-dimensional line perpendicular to the edge to create
the intensity profile called the Edge Spread Function (ESF).
The derivative of the ESF is the Line Spread Function (LSF),
which is the line integral of PSF. In practical applications,
the difference between LSF and PSF is negligible, so they
can be used interchangeably [40]. We report the quantita-
tive result in terms of full-width-at-half-maximum (FWHM),
which is commonly used to describe the width of a function.
A smaller FWHM indicates a better PSF and a sharper edge
in the processed image, as shown in Fig. 4c.

Aliasing. Aliasing occurs when signals contain frequen-
cies above the Nyquist criteria and are sampled, resulting
in errors. This behavior is typically induced by Bayer color
filtering characteristics and often manifests as a color moiré
pattern in images. However, unlike other quality factors,
there is no established standard for measuring color moiré.
To address this, we use the (R-B) parameter [2], which has
proven useful in previous experiments. Our measurements
rely on self-designed line and mesh patterns, as shown in
Fig. 3 (c). The picture is divided into 30 blocks, each con-
taining 8 stripes with logarithmically increasing spatial fre-
quency. By calculating (R-B), we create a heatmap for both
patterns. We then detect the largest five bright regions af-
ter binarizing the heatmap and determine the position of
color moiré based on the region centroid with the maximum
mean value. The smaller the period Ts, the later color moiré
appears (i.e., the higher the frequency f ), indicating better
performance in the aliasing aspect. Four examples of the
aliasing measurement are shown in Fig. 4d, and complete
detection results are provided in the supplementary material.

4. Exploration of the Dataset
4.1. Preliminaries

We start our experiments with an exploration of the col-
lected data. The first question we would like to answer is
whether deep learning-based models can pick up the general

image quality signal from the SQAD dataset and learn to
differentiate images captured with different camera devices.
For this, we consider the task of smartphone camera classifi-
cation and analyze several CNN/Transformer-based methods.
We mainly conduct our experimentation using ResNet50 [26]
and the method proposed by Yang et al. [61], the winner of
the NTIRE 2022 NF-IQA challenge [24]. To further take
advantage of our dataset, we introduce the task of automatic
camera quality assessment for smartphone devices, where
the models are trained to predict the 6 key image quality
factors introduced in the previous sections.

Training details. Besides established neural architectures,
e.g. ResNet50 [26], we select MANIQA [61] as baseline
due to its design for NR-IQA. In our experiments, we follow
the training settings described in [61] and use Adam opti-
mizer to minimize our loss functions, cross-entropy loss for
classification and the MSE loss for quality factor regression.
We deviate from described training settings when using the
ResNet [26] baseline and train for 200 epochs with a batch
size of 64 and a learning rate of 1× 10−3, along with a step
scheduler having step size and decay factor set to 50 and 0.5.
Furthermore, we randomly extract crops of size 224× 224
and add vertical and horizontal flipping as augmentations.
Cropping ultimately results in an increased dataset size, with
the number of training samples exceeding 300k. We neglect
data augmentations which greatly impact perceptual image
quality, such as blurring, color jittering, or inversion. The
training-validation-test ratio is approximately 10:1:1.

Evaluation protocol. For evaluating our trained networks,
we apply additional ensemble techniques. As in other pre-
vious works [32, 16, 61], we crop the test image multiple
times (16×) randomly. To filter out outliers, such as patches
that only contain flat regions like the sky, the final quality
factors and class predictions are computed by taking the
medians of all patch predictions. Following prior works, we
measure the predicted performance of the baseline models
trained on SQAD by Spearman’s rank-order correlation coef-
ficient (SROCC) and Pearson’s linear correlation coefficient
(PLCC). Both metrics are in range [−1, 1] where positive
values denote positive correlation.

4.2. Experiments

Smartphone Camera Classification. The task of device
classification involves predicting the device/sensor used to
capture a photo. Although this task may initially seem redun-
dant due to the availability of camera information in EXIF
data, EXIF data is usually removed during post-processing
or online sharing, which highlights the importance of de-
vice classification. Additionally, we aim to investigate the
inherent quality signal in our data collection, which makes
device classification a valuable task to explore. We adopt the
ResNet-50 [26] and MANIQA [61] networks as our baseline
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Table 3: Smartphone Classification and Quality Factor Regression. We compare ResNet50 [26] and MANIQA [61] on the
SQAD test set. (a) We train for camera device classification and report Top-1 and Top-5 accuracy on the test split. (b) We train
for quality factor regression and report SROCC/PLCC (↑). We use single-crop and multi-crop (16×) predictions.

(a) Smartphone Classification.

Method Top-1 (%) Top-5 (%)

ResNet50 [26] 73.33 93.95

MANIQA [61] 93.14 99.23

(b) Smartphone Camera Quality Factor Regression.

Resolution Color Accuracy Noise Dynamic Range PSF Aliasing

SROCC PLCC SROCC PLCC SROCC PLCC SROCC PLCC SROCC PLCC SROCC PLCC

.8959 .8802 .8241 .8409 .7758 .8953 .6771 .6373 .6652 .8197 .5987 .8121

.9431 .9426 .9578 .9613 .9023 .9727 .8441 .8398 .8465 .9256 .7398 .8473

.9292 .9462 .9474 .9593 .9337 .9785 .8781 .9187 .9430 .9829 .9175 .9812

.9716 .9842 .9857 .9903 .9809 .9981 .9777 .9862 .9902 .9966 .9826 .9970

methods by changing the final layer to output a probability
distribution over the 29 camera devices. Tab. 3a presents
classification results of our baseline models that are pre-
trained on the ImageNet [17] dataset and then trained on our
dataset. Our evaluation results reveal that MANIQA [61]
consistently achieves high Top-1 and Top-5 accuracies on
our test split, outperforming the ResNet50 [26] baseline.
Furthermore, this confirms that image quality is strongly
dependent on the sensor used, and each sensor has a distinc-
tive quality signature that sets it apart. As a result, device
classification is crucial, and our findings demonstrate this
clearly.

Smartphone Camera Quality Factor Regression. Our
objective for the task of quality factor regression is to au-
tomate the process of determining considered factors from
images of real-world scenes captured with respective devices,
thereby eliminating the need for manual measurement. In
Tab. 3b, we report the results of training ResNet50 [26] and
MANIQA [61] instances to regress a single quality factor.
We denote the input mini-batch by {xi, si}Ni=0 where si is
the normalized target quality factor. The model output is
a scalar ŝi representing predicted quality score. Thus, we
formulate the MSE loss as LMSE = 1

N

∑N
i (si − fθ(xi))

2.
Both baselines are successful at regressing quality factors,
showing consistently high correlation scores. Still, some
quality factors, e.g., dynamic range, PSF, and aliasing,
emerge as more difficult to predict. Furthermore, using mul-
tiple crops during inference offers enhanced performance,
underlying the importance of multiple patch evaluations.
Normalizing the quality factors to a range of s ∈ [0, 1] in-
stead of directly regressing them to their ground truth values
(as shown in Tab. 5 in the supplement) provides several
advantages. Firstly, it helps the model converge more ef-
fectively. Secondly, it highlights the ranking aspect of our
dataset and accounts for any potential errors that may have
arisen during benchmarking.

Ablations. Inadequate crop size can result in inferior per-
formance while the image content is highly influenced by its
size. Therefore, we explore training with larger crop sizes

and extracting patches from various image locations to ob-
tain better and more robust predictions. Furthermore, we
investigated the relationship between the number of crops
extracted from test samples and the number of test samples
available per camera device. This investigation is motivated
by a potential deployment scenario where practitioners may
need to provide multiple images for quality factor regression.
More precisely, we study whether we not only improve the
correlation scores, but also the trustworthiness of our predic-
tions. Fig. 5 visualizes conducted ablation studies using the
ResNet50 [26]. We perform our analysis 5 times with vary-
ing random seeds and report mean and standard deviation.
As anticipated, using small image crops leads to suboptimal
performance. However, we found that increasing the number
of extracted patches from the test samples not only improves
performance but also reduces the deviations in correlation
metrics. Additionally, we found that utilizing multiple test
samples captured from the same device also exhibits similar
behavior. Certain quality aspects, such as DR, are challeng-
ing to predict due to various factors, e.g. exposure settings
during image capture or discontinuities of the test pattern
intensity leading to different cameras producing identical
DR values. This results in potential errors and inaccuracies
not accounted for in our current dataset.

Due to the large variety of smartphones available in the
market, it is impractical to measure the quality of each one
individually. Therefore, we conduct a more comprehensive
study on cross-camera quality prediction, which involves a
more rigorous analysis of the relationship between camera
quality and various factors. In this experiment, we exclude
5 cameras from the training set and attempt to predict their
resolution targets in the test split. To ensure a diverse range
of resolutions in the testing phase, we manually select 5 set
combinations. In Tab. 4, ResNet50 trained from scratch and
Support Vector Regression (SVR) using trained ResNet50
features before the last activation layer are compared to
examine the behavior of different regressors. The overall
performance, obtained by concatenating results from all sets,
achieves SROCC/PLCC scores > 0.60, demonstrating the
dataset’s usefulness and potential for further improvement.
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Table 4: Results of cross-camera regression for resolution. We report multi-crop correlation metrics (↑) for resolution when
excluding different sets of 5 devices from training. Metrics relate each set. The overall score is a concatenation of 25 cameras.

Method Set: [IDs] 26, 28, 08, 18, 11 06, 03, 13, 16, 29 25, 20, 10, 01, 05 23, 09, 04, 19, 27 07, 12, 15, 17, 21 Overall

SROCC PLCC SROCC PLCC SROCC PLCC SROCC PLCC SROCC PLCC SROCC PLCC

ResNet50 [26] .5747 .8161 .5590 .4244 .6700 .6837 .4017 .6539 .8481 .6160 .6212 .6075
SVR .5929 .8004 .5541 .6655 .7036 .6781 .3726 .6502 .7913 .6110 .6415 .5141
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Figure 5: Ablation studies on the crop size, number of crops and number of test samples. We report mean and std of (a)
SROCC and (b) PLCC results using ResNet50 [26]. We investigate how crop size affects quality factor regression, examine
the importance of using multiple crops, and evaluate prediction reliability by increasing the number of test samples per device.

Table 5: Regression results on web images for MANIQA [61].
We report SROCC and PLCC on multi-crop predictions.

Resolution CA Noise DR PSF Aliasing

.7794 .7518 .6531 .6726 .5545 .5242 .4333 .5328 .6308 .6699 .6086 .5985

Generalization. Given that most images accessed from
web undergo degradation through various methods, we con-
duct experiments on two degradation approaches: compres-
sion and resizing, which aims to evaluate the generalization
ability of learned models. With the ResNet50 backbone,
resizing all test images yields a top-1 accuracy of 49.4% and
15.7% for ratios r ∈ [0.7, 0.5], respectively. The expected
drop in performance can be limited via a more robust model,
i.e. stronger data augmentations. More detailed evaluations
regarding regression tasks can be found in the supplementary
material. Besides, we also include the regression baselines
for out-of-distribution data, i.e. web images, in Tab. 5. The
additional set consists of around 9 images per device ob-
tained from online sources. Despite heavily resized and
compressed images, the model exhibits promising general-
ization with a top-1 classification accuracy of 48.7%.

5. Conclusion

This paper introduces the first dataset for evaluating cam-
era sensor quality of mobile devices. Our SQAD benchmark
includes 3017 photos captured by 29 distinct devices and
validated for quality. Our dataset provides precise mea-
surements of physically-based quality factors obtained in a
laboratory setting. The images depict natural scenes and are
captured by a diverse range of smartphones, from low-end

to high-end devices. We take the next logical step from ordi-
nary assessment of perceptual image quality and introduce a
novel task of camera sensor quality estimation, which, to the
best of our knowledge, has not yet been explored in the liter-
ature. Next, we conduct an extensive study employing our
dataset to diverse problems indicating its potential, including
camera classification and quality aspects prediction.

The experiments demonstrated that deep learning-based
models can easily identify the origin of each unseen photo,
reaching a Top-1 accuracy of more than 93%. This shows
that the photos captured by each camera sensor have a unique
“image quality” imprint that can be used to detect the sensor
model used to produce a particular image. When increasing
the complexity of the task and trying to predict distinct image
quality aspects separately, the obtained results are also quite
convincing SROCC/PLCC scores being consistently higher
than 0.74 and 0.83, respectively. Besides, the numbers ob-
tained using (sensor-based) cross-fold validation indicate
that one can potentially use deep learning-based solutions
for image quality assessment of arbitrary and unseen camera
sensors by applying models pre-trained on the SQAD dataset
to a relatively small number of photos captured with them.
One can also expect to see improved numbers when the
number of mobile devices/sensor models used for training
increases, thus we plan to add more devices to this dataset
in the future. Finally, it should be mentioned that the di-
rect correlation between human-perceived quality and sensor
quality factors poses a challenging limitation, which is out
of the scope of this work. We will also continue exploring
this aspect in future research. We hope that the presented
dataset and analyses pave the way for future development of
effective AI-based camera quality assessment approaches.
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