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Abstract

Visible-infrared person re-identification (VI-ReID) fo-
cuses on matching the pedestrian images of the same iden-
tity captured by different modality cameras. The part-based
methods achieve great success by extracting fine-grained
features from feature maps. But most existing part-based
methods employ horizontal division to obtain part features
suffering from misalignment caused by irregular pedestrian
movements. Moreover, most current methods use Euclidean
or cosine distance of the output features to measure the
similarity without considering the pedestrian relationships.
Misaligned part features and naive inference methods both
limit the performance of existing works. We propose a Se-
mantic Alignment and Affinity Inference framework (SAAI),
which aims to align latent semantic part features with the
learnable prototypes and improve inference with affinity in-
formation. Specifically, we first propose semantic-aligned
feature learning that employs the similarity between pixel-
wise features and learnable prototypes to aggregate the la-
tent semantic part features. Then, we devise an affinity in-
ference module to optimize the inference with pedestrian re-
lationships. Comprehensive experimental results conducted
on the SYSU-MM01 and RegDB datasets demonstrate the
favorable performance of our SAAI framework. Our code
will be released at https://github.com/xiaoye-hhh/SAAI.

1. Introduction

Person re-identification (ReID) is the task of retrieving
pedestrian images shot by different cameras. Most existing
person ReID methods [12, 16, 17, 40] focus on matching
the images shot by visible cameras, essentially addressing a
single-modality pedestrian matching assignment. However,
the generally visible surveillance cameras cannot capture
pedestrian information well under poor illumination con-
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Figure 1. Framework Differences. (a) Most existing part-based
methods extract horizontal part features from feature maps and
employ naive inference (e.g., Euclidean and cosine distance) to
match images. Differently, our method extracts latent semantic
part features and utilizes affinity information. (b) The part features
extracted by our method have better semantic information. (c) Our
affinity inference utilizes pedestrian relationships to optimize the
distance calculation. Lines represent image relationships. Thicker
lines indicate higher affinity. The green and red circles denote
positive and negative gallery images, respectively.

ditions. In response to this challenge, modern surveillance
cameras can automatically switch to infrared mode for cap-
turing images under low-light conditions. This technolog-
ical advancement increases interest in researching visible-
infrared person re-identification (VI-ReID).

VI-ReID suffers from substantial modality discrepancy
and other factors (e.g., viewpoints, backgrounds, and move-
ments). The factors leading to a sizeable intra-class dis-
crepancy make matching difficult. Figure 1 (a) exhibits that
existing methods [13, 23, 24, 35] extract horizontal part fea-
tures to alleviate this problem. Figure 1 (b) illustrates that
pedestrian parts (e.g., arms) are not located in a fixed po-
sition due to movements. Therefore, the simple horizontal
partition by fixed height can cause part features to become
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semantic misalignments, which limits the performance.
Moreover, Figure 1 (a) exhibits that most existing meth-

ods employ naive inference methods to calculate the sim-
ilarity between query and gallery images. As shown in
Figure 1 (c), these methods ignore the affinity information
among gallery images by treating them as a single entity.
The gallery images belong to the same modality without
modality discrepancy, which can provide helpful affinity
information to improve matching. Accordingly, SIM [14]
proposes to use the similarity among the gallery images and
calculate the Jaccard distance to boost matching. However,
when calculating Jaccard distance, the element relationship
is binary, inadequately utilizing affinity information.

We propose a Semantic Alignment and Affinity Infer-
ence framework (SAAI), which aligns latent semantic part
features and better utilizes auxiliary affinity information.
The SAAI framework consists of a semantic-aligned feature
learning (SAFL) and an affinity inference module (AIM).

Specifically, SAFL first splits feature maps into pixel-
wise features. Then, this method aggregates pixel-wise fea-
tures with similar content by the similarity. This method
concatenates the extracted latent semantic part features onto
global features to provide local information. Finally, we
use a dual-branch BNNeck to normalize features of both
modalities, reducing the modality discrepancy. We devise
a part diversity constraint to increase the diversity of latent
semantic part features without additional annotations. Fur-
thermore, we introduce a center separation loss to steer the
network toward discerning pedestrian relationships.

Moreover, we propose the AIM to calculate the distance
with the additional information from the affinity matrix.
This module first calculates the query-gallery affinity ma-
trix like most existing methods. Then, AIM calculates the
gallery-gallery affinity matrix as references. Finally, AIM
uses query-gallery and gallery-gallery affinity matrices to
revise the distance measurement. AIM can optimize infer-
ence with affinity information among images. We propose a
noise suppression algorithm to reduce the impact of inaccu-
rate affinity values. Moreover, we devise a mean expansion
method to increase the matching stability.

Our main contributions are summarized below:
• We propose an end-to-end Semantic Alignment and

Affinity Inference framework (SAAI) for VI-ReID to
explore the joint application of semantic-aligned fea-
ture learning and the affinity inference method.

• We propose a semantic-aligned feature learning
(SAFL) to align the latent semantic part features. In
addition, we devise an affinity inference module (AIM)
to utilize pedestrian relationships for matching.

• Comprehensive experimental results demonstrate the
effectiveness of the proposed framework. It achieves
superior performance compared to state-of-the-art
methods across various test settings.

2. Related Work
Single-Modality Person ReID. It is the task of retrieving
pedestrian images captured by different visible cameras.
According to different feature construction methods, cur-
rent methods can be broadly categorized into two groups:
hand-crafted feature construction methods [6, 9, 22, 39] and
deep learning methods [4, 5, 18, 19, 21, 27, 28].

These methods achieve remarkable results in the single-
modality person ReID. However, these methods only pay
attention to visible images without considering the inherent
modality differences between visible and infrared images.
This limitation hampers the efficacy of these methods when
applied to cross-modality pedestrian matching. Similar to
our method, PAT [21] also adopts prototypes. However,
PAT focuses on encoding pixel contexts and prototype rela-
tionships to alleviate occlusion issues. It is not suitable for
cross-modality matching. Differently, our method extracts
potential semantic part features shared by two modalities
with shared prototypes to reduce the modality gap.
Visible-Infrared Person ReID. It pays attention to retriev-
ing the pedestrian images shot by both visible and infrared
modality cameras. Existing methods can be classified into
two primary groups based on their diverse feature process-
ing methods: generative and non-generative.

The generative methods focus on reducing differences
in modality styles. Most methods use Generative Adver-
sarial Networks (GANs) [8] to realize modality translation.
Hi-CMD [2] and cmGAN [3] apply GANs to transfer dif-
ferent modality features into a shared space. In addition,
AlignGAN [30] utilizes GANs to align the cross-modality
features at both pixel and feature levels. FMCNet [37] em-
ploys GANs to realize feature-level modality compensation.
These methods can reduce differences between visible and
infrared styles. However, generative methods usually re-
quire extra computation and suffer from adjoint noise.

Differently, non-generative methods mainly focus on
feature learning, extracting distinguishable features to
bridge the cross-modality gap. Some works [10, 33, 36] rely
solely on global features. They calculate the mean values of
feature maps as output features for matching. These fea-
tures lack local information, resulting in poor performance.
To alleviate this problem, some methods typically use part
features to enhance the features [13, 23, 24, 35]. MID [13]
and MAUM [23] directly extract horizontal parts features as
output features to increase the distinctiveness. DDAG [35]
and cm-SSFT [24] further propose the attention mechanism
to aggregate each horizontal part feature. With the atten-
tion mechanism, these two methods can dynamically eval-
uate the importance of different part features, which helps
to capture more discriminative information. However, due
to the varying and complex pedestrian movements, the hori-
zontal part features can become misaligned, which can neg-
atively impact the accuracy of these methods.
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Figure 2. The framework of the proposed Semantic Alignment and Affinity Inference (SAAI). It describes the situation of querying visible
images with infrared images. (1) The semantic-aligned feature learning (SAFL) first splits the feature maps Fr/Fv into pixel-wise features
Tr/Tv. Then, SAFL calculates the similarities between Tr/Tv and learnable prototypes P. SAFL clusters latent semantic part features
with the similarity information. (2) The Affinity Inference Module (AIM) calculates the query-gallery affinity matrix Aqg and the gallery-
gallery affinity matrix Agg. Then, AIM removes the noise values of Aqg to obtain Âqg. In addition, AIM removes noise values of Agg and
expands it with mean values to obtain Ãgg. Finally, AIM calculates the final distance with the affinity matrixes.

Differently, we design a semantic-aligned feature learn-
ing that dynamically extracts part features, mitigating the
impact of irregular pedestrian movements.
Inference Methods for VI-ReID. Most existing methods
[7, 13, 23, 33, 34, 36] use simple distance metrics for in-
ference. Specifically, they calculate the Euclidean or co-
sine distance of the output features to measure the similar-
ity. The Euclidean distance quantifies the spatial separation
between two points in Euclidean space. The cosine distance
gauges the similarity between two vectors based on the an-
gle between them. These methods are intuitive and simple.
But they treat each gallery image as a separate identity, ig-
noring the potential affinity information among the gallery
images. This property can limit the matching performance,
particularly in scenarios with multiple images of the same
identity with variations in pose, viewpoint, or other factors.

In contrast, SIM [14] utilizes pedestrian relationships for
inference. SIM calculates the Jaccard distance. However,
the Jaccard distance only considers the presence or absence
of elements in the gallery images and ignores the specific
similarity score, which can limit the effectiveness of the ap-
proach. Therefore, we propose a novel affinity inference
module that maps the affinity matrix into new features to
assist the distance measurement. Compared to SIM, our
method can more fully utilize information.

3. Methodology

In this section, we begin by defining the problem and
presenting the overall framework. Subsequently, we elabo-

rate on the design details of the Semantic-Aligned Feature
Learning (SAFL) and Affinity Inference Module (AIM).
Lastly, we provide the overall loss for SAAI.

3.1. Formulation and Overview

Problem Formulation. We use Q = {qi|i = 1, 2, ..., Nq}
and G = {gj |j = 1, 2, ..., Ng} to represent the query set
with Nq images and the gallery set with Ng images, respec-
tively. The images in the query and gallery sets belong to
different modalities. VI-ReID aims to establish correspon-
dences between the query and the gallery images.
Overview. Figure 2 illustrates the proposed SAAI frame-
work, which primarily comprises two modules. (1) The
semantic-aligned feature learning is devised to extract the
latent semantic part features by the similarity between
pixel-wise features and learnable prototypes. The intuition
is that a meaningful part should consist of features with sim-
ilar content forming the part consistency. (2) The affinity
inference module is proposed to utilize pedestrian relation-
ships to optimize the inference. When a query image q ex-
hibits a high similarity to a gallery image g, it is suitable to
diminish the distance between q and other images resem-
bling g. Our method simulates the above process with the
affinity matrix to revise the distance calculation.

3.2. Semantic-Aligned Feature Learning

To alleviate the problem of part feature misalignment
caused by pedestrian movements, we propose the semantic-
aligned feature learning. It uses learnable prototypes to ex-
tract latent semantic part features from feature maps Fr ∈
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Rh×w×c and Fv ∈ Rh×w×c, where h, w, c denote the
height, weight, and dimension of feature maps.

Specifically, when extracting latent semantic part fea-
tures from feature maps, we should give higher weights to
the pixel-wise features similar to target parts. This method
can form part consistency, which ensures part features are
consistent and reliable. But we do not have reference fea-
tures of each part. Therefore, we propose to utilize learnable
prototypes P = [P1,P2, ...,Pp] ∈ Rp×c as references of
latent semantic part features, where Pi represents the i-th
learnable prototype and p denotes the total number of such
learnable prototypes. We utilize the learnable prototypes to
learn appropriate latent semantic part features as references.
Each learnable prototype aims to cluster unique latent se-
mantic part features from the feature maps.

In order to achieve semantic alignment of part features
between two modalities, we employ shared prototypes P for
both the visible and infrared modalities. The shared proto-
types enable the aggregation of latent semantic part features
with the same semantic information across both modalities
into the same parts. This design can achieve the modal-
ity alignment at the latent semantic part level, reducing the
modality discrepancy. When extracting latent semantic part
features, the pixel-wise features of the two modalities will
be compared to the shared learnable prototypes to determine
their weighted contribution to each latent semantic part fea-
ture. For the convenience of description, we take visible
features as an example to describe details.

We first divide the feature map Fv into pixel-wise fea-
tures Tv = [T1

v ,T
2
v , ...,T

n
v ] ∈ Rn×c, where Ti

v represents
the i-th pixel-wise feature and n = h × w represents the
quantity of pixel-wise features. We add learnable position
embeddings to each pixel-wise feature according to the po-
sition to provide spatial information. The spatial informa-
tion can enhance the spatial stability of our latent semantic
part features. Subsequently, this module calculates the sim-
ilarity matrix Sv ∈ Rp×n between P and Tv as:

Sv = σ(P⊙TT
v ), (1)

where ⊙ represents the matrix multiplication and σ(·) de-
notes the Sigmoid activation function. The Sigmoid activa-
tion function is designed to enhance numerical stability.

Taking learnable prototypes P as references, we obtain
the similarity matrix Sv to describe the affinity between Tv
and P. A high similarity score between the pixel-wise fea-
ture and a learnable prototype indicates that the pixel-wise
feature probably belongs to that latent semantic part. There-
fore, we can utilize Sv as weight to aggregate pixel-wise
features to form latent semantic part feature pi

v as:

pi
v =

1

n

n∑
j=1

(Sij
v ⊗Tj

v) (i = 1, 2, ..., p), (2)

where ⊗ denotes element-wise multiplication, and Sij
v indi-

cates the similarity score between Pi and Tj
v.

The latent semantic part features pv contain local infor-
mation of pedestrians. We just concatenate pv with global
features to obtain augmented features F̂v ∈ R(p+1)c as:

F̂v =
[
p1

v ,p
2
v , ...,p

p
v , avg(Fv)

]
, (3)

where [·] denotes concatenating the features, avg(·) denotes
average pooling, and avg(Fv) indicates the global feature.
F̂v contains both local and global information. Similarly,
we can construct F̂r from feature maps Fr in the same way.
Both F̂v and F̂r are extracted by the shared learnable pro-
totypes P. Hence, F̂v and F̂r can achieve alignment at the
latent semantic part level. To mitigate the modality gap, we
devise a dual-branch BNNeck to normalize the F̂v and F̂r,
respectively. The outputs are F̃v and F̃r.

We utilize a classification loss Lid to steer the model to
learn identity information. Further details are provided in
the supplementary materials. In addition, we devise a part
diversity loss Lpd to increase the latent semantic part diver-
sity. Moreover, we propose a center separation loss Lcs to
train the network to distinguish different pedestrians.
Part Diversity Loss. Extracting various features is the key
to semantic-aligned feature learning. We should train each
prototype to extract different part features. However, we do
not have the human part annotations to train. We propose a
simplified alternative strategy. We encourage the learnable
prototypes to focus on different areas of pedestrians. Follow
this idea, we propose part diversity loss Lpd as:

Lpd = − 2

p(p− 1)

p−1∑
i=1

p∑
j=i+1

||PiT
T −PjT

T||2 (4)

where Pi and Pj denote i-th and j-th learnable prototypes,
and T denotes Tr and Tv for convenience of description.
Center Separation Loss. We propose a center separation
loss Lcs to guide the network to identify the pedestrian re-
lationships. Lcs aims to bring the samples with the same
identity closer to each other while pushing the instance cen-
ters belonging to different identities apart. In order to re-
duce the network overfitting problem and increase the fea-
ture diversity, we only gather samples to the range ρ1 of
their respective center. The Lcs can be represented as:

Lcs =
1

N

N∑
i=1

[−ρ1 + ||F̂i − cyi ||2]+

+
2

M(M − 1)

M−1∑
j=1

M∑
k=j+1

[ρ2 − ||cyj − cyk
||2]+,

(5)

where N denotes the batch size, F̂i denotes the i-th feature,
yi represents the i-th label, cyi represents the center of yi,
M represents number of centers, ρ1 is the margin between
samples to centers, and ρ2 is the margin among centers.
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3.3. Affinity Inference Module

The effectiveness of matching pedestrian images based
on Euclidean or cosine distance is limited. These methods
overlook the affinity information and treat gallery images as
distinct entities during the inference process. Therefore, we
propose the affinity inference module (AIM), which utilizes
pedestrian relationships to revise distances.

The intuition behind AIM is that we can leverage gallery
images with high affinity to the query image to revise dis-
tances. AIM can capture the potential affinity informa-
tion among the gallery images and incorporate it into the
distance calculation, optimizing the matching performance.
Algorithm 1 outlines the primary steps of the AIM.

Algorithm 1 Framework of AIM
Input: query features Fq, gallery features Fg, hyper-

parameters k1 and k2
Output: dAIM

1: Calculate the query-gallery affinity matrix Aqg
2: Calculate the gallery-gallery affinity matrix Agg
3: Remove the noise values in Aqg and Agg according to

k1 to obtain Âqg and Âgg

4: Expand Âgg according to k2 to obtain Ãgg
5: Calculate the base distance d as Eq. (8)
6: Calculate the amended distance d∗ as Eq. (9)
7: Calculate the final distance dAIM as Eq. (10)
8: return dAIM

Calculating Affinity Matrix. The framework transfers the
query image q and gallery image g into to features Fq and
Fg, respectively. AIM first calculates the query-gallery
affinity matrix Aqg ∈ RNq×Ng by cosine similarity between
Fq and Fg. Similarly, AIM can also calculate the gallery-
gallery affinity matrix Agg ∈ RNg×Ng from all gallery im-
age pairs. Unlike most existing methods that directly use
Aqg to match pedestrian images, our method utilizes Aqg
and Agg to revise distances before matching.
Removing Noise Values. Aqg and Agg contain rich affinity
information. However, there are noise values in matrices.
Lcs encourages images of the same identity to be clustered
together while dispersing centers corresponding to distinct
identities. Instances with different labels are separated, and
the affinity information between them is too weak to use.
These noise values can mislead our following distance cal-
culation, resulting in inaccurate results.

To address this issue, we propose an effective noise sup-
pression strategy. These noise values are numerically small.
Based on this property, we can remove noise values by
clearing small values in the affinity matrix. For the con-
venience of description, we take Aqg as an example. We
first identify the k1-th largest value v in each row of Aqg

and set any value less than v to 0 as:

Âij
qg =

{
Aij

qg if Aij
qg ≥ vi

0 otherwise,
(6)

where Âij
qg denotes the output removing the noise value,

Aij
qg denotes the element of Aqg on row i and column j, and

vi denote the k1-th largest value in row i of Aqg. Similarly,
AIM can remove noise values of Agg to obtain Âgg.
Expanding Representation. Replacing the current value
with the average value of the most similar neighbors can
provide a more stable representation of the affinity informa-
tion. Âgg contains the affinity information among gallery
images, which can be used to expand the representation.
Specifically, given a gallery image gi, we can find the k2
gallery images Ii that are most similar to gi. Then, we
can expand the original affinity information with the aver-
age affinity score of the k2 gallery images as:

Ãi
gg =

1

k2

∑
l∈Ii

Âl
gg, (7)

where Ãi
gg denotes the i-th row of the output, Âl

gg denotes
the affinity score of the l-th most similar neighbours.
Final Distance. Aqg presents the cosine similarity between
query and gallery images. We can covert the cosine similar-
ity to base distance d with Aqg as:

d = 1−Aqg. (8)

In addition, AIM utilizes Âqg and Ãgg to assist the dis-
tance measurement. If the query qi image is similar to a
gallery image gj , this module reduces the distance between
qi and gallery images being similar to gj . The reduced
distances depend on the affinity between these images and
qi/gj . The amended distance d∗ can be calculated as:

d∗ = ÂqgÃgg. (9)

Finally, We can subtract d∗ from d to revise the dis-
tances. The final distance dAIM can be calculated as:

dAIM = d − d∗. (10)

3.4. Training and Inference

SAAI is trained by minimizing:

L = Lid + Lcs + λLpd, (11)

where λ is a hype-parameter to balance the loss items. AIM
only works in the inference stage, which utilizes affinity in-
formation to assist in distance measurement.
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Table 1. Comparison with the state-of-the-art methods on SYSU-MM01. The comparison indicators are CMC (%) and mAP (%).

Method
All-Search Indoor-Search

Single-Shot Multi-Shot Single-Shot Multi-Shot
Rank-1 mAP Rank-1 mAP Rank-1 mAP Rank-1 mAP

Zero-Padding [33] 14.80 15.95 19.13 10.89 20.58 26.92 24.43 18.86
cmGAN [3] 26.97 27.80 31.49 22.27 31.63 42.19 37.00 32.76
JSIA-ReID [31] 38.10 36.90 45.10 29.50 43.80 52.90 52.70 42.70
AlignGAN [30] 42.40 40.70 51.50 33.90 45.90 54.30 57.10 45.30
AGW [36] 47.50 47.65 - - 54.17 62.97 - -
LbA [26] 55.41 54.14 - - 58.46 66.33 - -
NFS [1] 56.91 55.45 63.51 48.56 62.79 69.79 70.03 61.45
MID [13] 60.27 59.40 - - 64.86 70.12 - -
cm-SSFT [24] 61.60 63.20 63.40 62.00 70.50 72.60 73.00 72.40
CM-NAS [7] 61.99 60.02 68.68 53.45 67.01 72.95 76.48 65.11
MCLNet [10] 65.40 61.98 - - 72.56 76.58 - -
FMCNet [37] 66.34 62.51 73.44 56.06 68.15 74.09 78.86 63.82
SMCL [32] 67.39 61.78 72.15 54.93 68.84 75.56 79.57 66.57
MPANet [34] 70.58 68.24 75.58 62.91 76.74 80.95 84.22 75.11
MAUM [23] 71.68 68.79 - - 76.97 81.94 - -
CMT [15] 71.88 68.57 80.23 63.13 76.90 79.91 84.87 74.11
CIFT [20] 74.08 74.79 79.74 75.56 81.82 85.61 88.32 86.42
MSCLNet [38] 76.99 71.64 - - 78.49 81.17 - -
SAAI(ours) 75.90 77.03 82.86 82.39 83.20 88.01 90.73 91.30

4. Experiments
In this section, we first introduce datasets and experi-

ment implementation. Then, we conduct experiments on
two public datasets. Finally, we analyze SAAI carefully.

4.1. Datasets and Settings

SYSU-MM01 [33] is the pioneering large-scale benchmark
dataset in the VI-ReID domain. It has a total of 287,628
visible and 15,792 infrared images. It records 491 pedes-
trians with four visible cameras and two infrared cameras.
The capture environment encompasses both indoor and out-
door settings. It has multiple evaluation modes based on
different configurations. The modes are categorized into all-
search and indoor-search settings based on whether includ-
ing outdoor-captured images. Besides, based on the varying
number of images within the gallery, the modes can be fur-
ther subdivided into single-shot and multi-shot scenarios.
RegDB [25] contains 8,240 images of 412 pedestrians. All
images are collected by a visible camera and an infrared
camera. Ten infrared images and ten visible images were
taken for each pedestrian. RegDB is randomly split into two
non-overlapping sets based on the pedestrian identities: one
set is utilized for training purposes, while the other serves
as the testing set. It contains two evaluation settings: Visi-
ble2Infrared and Infrared2Visible. The first setting denotes
retrieving infrared images according to visible ones, and the
second setting entails the reverse operation.
Metrics. The experiments adhere to the standard evaluation

settings, encompassing two fundamental assessment met-
rics: the Cumulative Matching Characteristic (CMC) and
the Mean Average Precision (mAP).
Implementation Details. The SAAI framework is real-
ized using the PyTorch framework and executed on a sin-
gle RTX3090 GPU. We employ the ResNet-50 [11] as the
backbone. For each batch, we randomly sample 16 identi-
ties and each identity contains 8 images. The input images
are initially resized to a consistent dimension of 288× 144.
Then, we apply a series of augmentation techniques, includ-
ing random cropping, random erasing, random horizontal
flipping, and random grayscale. The network is optimized
by Adam with a linear warmup strategy. The initial learning
rate is set to 3.5 × 10−4 and is decreased by factors of 0.1
and 0.01 at 80 and 120 epochs, respectively. The training
procedure spans a total of 160 epochs.

λ in Eq. (11) is set to 0.5. The margin parameters ρ1
and ρ2 are set to 0.01 and 0.7, respectively. The number of
learnable prototypes p is set to 7. For SYSU-MM01, k1/k2
are set to 4/1 under the single-shot setting and 20/6 under
the multi-shot setting. For RegDB, k1/k2 are set to 8/2.

4.2. Comparison with State-of-the-art Methods

We evaluate our SAAI framework on SYSU-MM01 and
RegDB. We compare the proposed SAAI with numerous
state-of-the-art (SOTA) methods, including four generative
methods [3, 30, 31, 37] and fourteen non-generative meth-
ods [1, 7, 13, 15, 20, 23, 24, 26, 32, 33, 34, 36, 37, 38].

11275



Table 2. Comparison with the state-of-the-art methods on RegDB.
The comparison indicators are CMC (%) and mAP (%).

Method Visible2Infrared Infrared2Visible
Rank-1 mAP Rank-1 mAP

Zero-Padding [33] 17.75 18.90 16.63 17.82
JSIA-ReID [31] 48.50 49.30 48.10 48.90
AlignGAN [30] 57.90 53.60 56.30 53.40
AGW [36] 70.05 66.37 70.49 65.90
cm-SSFT [24] 72.30 72.90 71.00 71.70
LbA [26] 74.17 67.64 72.43 65.46
MCLNet [10] 80.31 73.07 75.93 69.49
NFS [1] 80.54 72.10 77.95 69.79
MPANet [34] 83.70 80.90 82.80 80.70
SMCL [32] 83.93 79.83 83.05 78.57
MSCLNet [38] 84.17 80.99 83.86 78.31
CM-NAS [7] 84.54 80.32 82.57 78.31
MID [13] 87.45 84.85 84.29 81.41
MAUM [23] 87.87 85.09 86.95 84.34
FMCNet [37] 89.12 84.43 88.38 83.86
CIFT [20] 91.96 92.00 90.30 90.78
CMT [15] 95.17 87.30 91.97 84.46
SAAI(ours) 91.07 91.45 92.09 92.01

Comparison on SYSU-MM01. As shown in Table 1, our
model outperforms SOTAs in mAP under all test settings.
Our model achieves 77.03% in mAP, improving the mAP
by 2.24% over the best SOTA (CIFT) under the all-search
and single-shot setting. In addition, our model also achieves
considerable results in Rank-1. Under the indoor-search and
single-shot setting, our model achieves 83.20% in Rank-1,
outperforming the best SOTA (CIFT) by 1.38%.
Comparisons on RegDB. We evaluate our model in a
smaller dataset as Table 2. Under the infrared2visible set-
ting, our model achieves a Rank-1 of 92.09% and an mAP
of 92.01%. When switching to the visible2infrared setting,
our method is slightly inferior to SOTAs. The reason could
be attributed to the limited size of RegDB, which may result
in incomplete training of the learnable prototypes.

4.3. Ablation Study

We adopt the ResNet-50 with horizontal part features as
the backbone of the baseline. The baseline is trained by Lid.
We keep other settings consistent with our method.

Table 3 shows the performance improvements achieved
by SAFL and AIM. SAFL enhances Rank-1 and mAP by
8.24% and 10.10%, respectively. AIM improves Rank-1
and mAP by 1.09% and 6.19%, respectively. When com-
bined, SAFL and AIM further boost the overall perfor-
mance, proving the effectiveness of SAFL and AIM.

Table 4 illustrates the impact of Ldp and Lcs. Ldp results
in a Rank-1 improvement of 0.43% and an mAP improve-
ment of 0.39%. On the other hand, Lcs boosts the Rank-1
by 2.90% and the mAP by 3.97%. Moreover, the combined

Table 3. Analysis of the proposed SAFL and AIM on SYSU-
MM01 under the all-search and single-shot mode.

Base SAFL AIM Rank-1 mAP
✓ ✗ ✗ 66.79 61.59
✓ ✓ ✗ 75.03 71.69
✓ ✗ ✓ 67.88 67.78
✓ ✓ ✓ 75.90 77.03

Table 4. Analysis of the proposed Ldp and Lcs on SYSU-MM01
under the all-search and single-shot.

Lid Ldp Lcs Rank-1 mAP
✓ ✗ ✗ 71.81 72.15
✓ ✓ ✗ 72.24 72.54
✓ ✗ ✓ 74.71 76.12
✓ ✓ ✓ 75.90 77.03

usage of Ldp and Lcs further enhances the overall perfor-
mance, proving of the effectiveness of these losses.

As an inference module, AIM can be added to other
methods. To further prove the effectiveness of AIM, we
add AIM to three methods, including one generative method
[30] and two non-generative methods [34, 36]. As shown in
Table 5, AIM works well in both generative method and
non-generative methods. AIM improves both Rank-1 and
mAP of these methods. These results further prove the ef-
fectiveness of the affinity inference module.

Table 5. Analysis of AIM on other methods on SYSU-MM01 un-
der the multi-shot setting. We retrain the models.

Method all-search indoor-search
Rank-1 mAP Rank-1 mAP

AlignGAN∗ [30] 48.31 34.47 57.75 45.62
AlignGAN∗+AIM 51.63 50.65 58.32 61.94
AGW∗ [36] 52.47 41.48 60.59 54.31
AGW∗+AIM 55.01 55.18 63.84 67.51
MPANet∗ [34] 77.14 62.92 84.64 75.41
MPANet∗+AIM 78.52 78.27 85.96 87.31

4.4. Model Analysis

Parameters Analysis. We first evaluate the effect of λ in
Eq. (11) on SYSU-MM01 dataset under the all-search and
single-shot mode. In Figure 3, we show results of Rank-1
and mAP of different λ. The most suitable parameter set-
ting is 0.5. Then, we evaluate the number of learnable pro-
totypes p. As shown in Figure 4, before p reaches 7, the
performance increases with the increase of p. A larger p
allows the model to pay attention to more parts. However,
once p exceeds the required value. It leads to competition
among learnable prototypes, affecting the ability to discover
latent semantic parts and reducing performance.
Visualization Analysis. We utilize t-SNE [29] to visualize
the feature distribution of baseline and SAAI. As shown in
Figure 5 (a), there are large modality discrepancies in the
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Figure 3. The sensitive graph of the weight λ in Eq. (11).
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Figure 4. The impact of the number of learnable prototypes p.

(a) (b)

Figure 5. The results of the features distribution on SYSU-MM01.
Colors represent identities. Circles represent visible features. Tri-
angles represent infrared features. (a) displays the horizontal part
features. (b) displays the features extracted by SAAI.

features extracted by the baseline. In contrast, as shown in
Figure 5 (b), the discrepancy among the features extracted
by SAAI is much smaller. The images are closely clustered
by identities. This proves the effectiveness SAAI.

We visualize the attention maps of baseline and SAAI.
As shown in Figure 6, SAAI focus more accurately on the
main body parts than the baseline. The results show the ca-
pacity of SAFL to effectively extract latent semantic parts,
resulting in improved feature localization and alignment.

Table 6. Evaluation of removing and expanding steps on SYSU-
MM01. AIM− has no removing and expanding.

AIM− Removing Expanding Rank-1 mAP
✓ ✗ ✗ 79.58 67.69
✓ ✓ ✗ 82.72 79.67
✓ ✗ ✓ 80.58 74.27
✓ ✓ ✓ 82.86 82.39

(c)

(b)

(a)

Figure 6. The visual comparison of attention maps. (a) displays
raw images. (b) and (c) show results of baseline and SAAI.

Analysis of AIM. As shown in Table 6, the removing step
is pivotal in mitigating the impact of noise values in ma-
trices, leading to the improvements in both Rank-1 and
mAP, respectively. Additionally, the expanding step con-
tributes to a more stable representation and can also boost
the matching performance. When removing and expanding
steps are combined, this module achieves the best perfor-
mance. These results strongly demonstrate the effectiveness
of removing and expanding steps in AIM.

5. Conclusion
We propose the Semantic Alignment and Affinity Infer-

ence framework (SAAI) for visible-infrared person ReID.
We first devise a semantic-aligned feature learning process
that aligns latent semantic parts by considering the similar-
ity between pixel-level features and learnable prototypes.
This method effectively reduces the impact of pedestrian
movements and enhances the distinctiveness of the feature
representation. Furthermore, we present an affinity infer-
ence module that leverages pedestrian relationships to re-
vise distance calculations. Through extensive experiments
conducted on the SYSU-MM01 and RegDB datasets, our
framework exhibits substantial efficacy for VI-ReID.
Limitation and future work. Our framework only lever-
ages pedestrian relationships during the inference stage.
Nevertheless, affinity information remains untapped during
the training phase, which hinders the advancement of the
training process. Our future work is combining our affinity
inference method with network training.
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