
SimFIR: A Simple Framework for Fisheye Image Rectification with
Self-supervised Representation Learning

Hao Feng1,2 Wendi Wang1 Jiajun Deng3 Wengang Zhou1,4,* Li Li1 Houqiang Li1,4,*
1 CAS Key Laboratory of Technology in GIPAS, EEIS Department, University of Science and Technology of China

2 Zhangjiang Laboratory, Shanghai, China 3 The University of Sydney
4 Institute of Artificial Intelligence, Hefei Comprehensive National Science Center

{haof,wendiwang}@mail.ustc.edu.cn, jiajun.deng@sydney.edu.au, {zhwg,lil1,lihq}@ustc.edu.cn

Abstract

In fisheye images, rich distinct distortion patterns are
regularly distributed in the image plane. These distortion
patterns are independent of the visual content and pro-
vide informative cues for rectification. To make the best
of such rectification cues, we introduce SimFIR, a simple
framework for fisheye image rectification based on self-
supervised representation learning. Technically, we first
split a fisheye image into multiple patches and extract their
representations with a Vision Transformer (ViT). To learn
fine-grained distortion representations, we then associate
different image patches with their specific distortion pat-
terns based on the fisheye model, and further subtly design
an innovative unified distortion-aware pretext task for their
learning. The transfer performance on the downstream rec-
tification task is remarkably boosted, which verifies the ef-
fectiveness of the learned representations. Extensive exper-
iments are conducted, and the quantitative and qualitative
results demonstrate the superiority of our method over the
state-of-the-art algorithms as well as its strong generaliza-
tion ability on real-world fisheye images.

1. Introduction
Fisheye lenses have been widely used in systems for

video surveillance [41, 40, 22], autonomous driving [25, 23]
and robotic applications [11, 12], thanks to their extremely
wide field of view (FoV). However, images captured by the
fisheye lenses are inevitably distorted, which are not di-
rectly applicable for the downstream analysis, such as ob-
ject detection [43, 24], pose estimation [62, 1, 45] and scene
segmentation [33, 13, 5]. Over the past few years, fisheye
image rectification has become an emerging research topic.

In the literature, some classical methods [4, 30, 27,
32, 44, 26, 17] estimate epipolar geometry with images
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Figure 1: An illustration of fisheye distortions. The distor-
tions in fisheye images are radially distributed and centrally
symmetrical. The distortion degree increases with distance
from the optical axis/image center.

from different viewpoints. However, multiview images
are not always accessible, which limits the real applica-
tions of these methods. To overcome this limitation, other
classical methods are based on the detection of plumb
lines [53, 55, 7, 14, 61, 2]. Nevertheless, taking the de-
tected plumb lines as the basis of fisheye image rectification
inevitably causes error accumulation. Recently, deep learn-
ing based solutions [46, 6, 60, 38, 36, 58, 37, 39, 57] have
become a promising alternative to the traditional methods.
There are two directions among deep learning based meth-
ods. One direction [46, 6, 60, 57] attempts to predict the dis-
tortion parameters to infer pixel-wise displacement for rec-
tification. The other direction [38, 58, 37, 39] directly pre-
dicts the rectified images with specifically designed archi-
tectures. Although these methods are reported with state-
of-the-art results, the intrinsic distortion characteristics of
fisheye images are largely ignored, described next.

Generally, as illustrated in Fig. 1, the distortions in fish-
eye images are radially distributed and centrally symmetri-
cal. The distortion degree increases with distance from the
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image center along the radial axis. It should be noted that
here we follow the existing state-of-the-art rectification al-
gorithms [46, 6, 60, 38, 36, 58, 37, 39, 57] to only consider
the ideal fisheye images, in which the distortion center lo-
cate at the image center. Furthermore, when dividing a fish-
eye image into patches, the distortion patterns and degrees
vary among patches at different distances from the image
center. To improve fisheye image rectification, it is ben-
eficial to model these fine-grained distortion patterns that
provide cues for the rectification.

Formally, we present SimFIR, a new framework for fish-
eye image rectification based on self-supervised represen-
tation learning [59]. SimFIR introduces an effective way
for encoding the fine-grained distortion patterns in fisheye
images, by learning the associations between the local im-
age region and their distinct distortion pattern. Specifically,
we first split a fisheye image into multiple patches and label
them with a position map (see Fig. 1) based on their specific
distortion degrees. Then, these image patches are embedded
as input tokens of Vision Transformer (ViT) [15] to abstract
patch representations. Given these patch representations,
we introduce a unified distortion-aware pretext task to opti-
mize the network. On the one hand, we perform contrastive
learning with InfoNCE loss [42] to narrow the representa-
tion of patches with the same distortion pattern while en-
larging the feature distance with others. On the other hand,
we devise a classification supervision to predict the patch-
wise quantified distortion degree, aiming to differentiate the
distinct local distortion patterns. After pre-training, the net-
work is capable of extracting the fine-grained distortion rep-
resentations, regardless of the image textures. Thereafter,
the learned distortion representations are transferred to the
downstream rectification task.

Besides, we introduce a new pipeline for fisheye im-
age rectification, which unwarps fisheye images with a
dense flow field, i.e., the warping flow, aiming to pro-
cess images of arbitrary resolution without complex post-
processing [36]. Then, to facilitate training, we construct
a well-annotated synthesized dataset that covers various
scenes and distortion levels. To validate the learned rep-
resentations, we conduct extensive experiments by pre-
training the network with our self-supervised paradigm and
then transferring it to the downstream rectification task. The
results demonstrate the effectiveness of our method as well
as its superiority over existing state-of-the-art algorithms.
In addition, we show the strong generalization ability of our
method on processing real-world fisheye images.

In summary, we make three-fold contributions:

• We present SimFIR, a novel self-supervised based
framework, to improve fisheye image rectification by
extracting its fine-grained distortion patterns.

• We introduce a new pipeline for fisheye image recti-

fication that unwarps images with backward warping
flow, aiming to process images with any resolutions.

• We conduct extensive experiments to verify the merits
of our method and report the state-of-the-art perfor-
mance with our proposed method.

2. Related Work
Fisheye image rectification has been widely explored in

the computer vision community. In the following, we sepa-
rately discuss the methods of each group.

Rectification Based on Multi-view Calibration. Some
traditional methods [4, 27, 32, 44, 29, 51, 49] calibrate fish-
eye images by finding the corresponding feature points from
multi perspectives. Typically, FMC [4] proposes to estimate
the epipolar geometry of two views with different distor-
tion factors. AMS [32] explores the minimal solution that
calibrates radial distortion with only eight-point correspon-
dences in two images. However, such methods require spe-
cial chessboards and multiple images are not always acces-
sible, unfriendly to their practical applications.

Rectification Based on Curve Line Detection. The
overcome these limitations, line-based camera calibration
methods [53, 55, 7, 14, 3, 61, 8] propose to utilize the prior
that straight lines in the 3D world must project to straight
lines in the image plane. Typically, SC [48] first detects the
longest distorted lines within an image by applying Hough
transformation [16] and then estimates the distortion param-
eters from these lines. However, the curve detection is not
robust and challenging, limiting their performance.

Rectification Based on Parameter Estimation. By pre-
dicting the distortion parameters of fisheye models, some
methods compute the per-pixel coordinate displacement to
perform rectification. RLDC [46] first employs a convolu-
tional neural network to predict the distortion parameters.
DeepCalib [6] predicts the distortion parameters and the fo-
cal length with a network. Given a single image, Blind [36]
devises a unified framework to correct different types of ge-
ometric distortion by the estimation of the distortion param-
eter and forward warping flow [56]. LCSL [57] imposes an
explicit geometry constraint onto the processes of the fish-
eye lens calibration and rectification.

Rectification Based on Image Estimation. Methods
following this direction commonly attempt to directly pre-
dict the rectified images. DR-GAN [38] exploits a gen-
erative adversarial network (GAN) [34] for rectified im-
age synthesis, and proposes a low-to-high perceptual loss
to capture the mapping relation between different struc-
tural images. FE-GAN [9] learns pixel-level distortion flow
from sets of fisheye distorted images and distortion-free
ones with the cross-rotation and intra-warping consistency.
SIR [18] devises a self-supervised learning idea for recti-
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(a) Stage 1:  Self-supervised pre-training for fine-gained distortion learning

(b) Stage 2:  Fine-tuning for distortion rectification
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Figure 2: Framework of our method for fisheye image rectification. It consists of two stages: (a) self-supervised pre-training
that learns the fine-grained distortion representation of fisheye image Id with a unified distortion-aware pretext task; (b) fine-
tuning for rectification which uses the learned representation to reconstruct the rectified image Ir with a flow field. “BRM”
and “FPM” denote the proposed boundary refinement module and flow prediction module, respectively.

fication by exploiting intra-model and inter-model consis-
tency. DDM [39] proposes a distortion distribution map
that intuitively indicates the global distortion features of a
distorted image. Recently, MLC [37] introduces a multi-
level curriculum to train the rectification model hierarchi-
cally. PCN [58] develops an encoder-decoder architecture
to generate multi-scale rectified images progressively.

3. Fisheye Model and Dataset
We first introduce the distortion model for fisheye im-

ages. Since obtaining ground truth is difficult for real fish-
eye images, we follow the common practices in the liter-
ature [60, 57, 6, 39, 37, 58] to exploit synthetic data for
training. The polynomial model [30] of a fisheye image is
formulated as follows,

θc =

Nk∑
i=1

λiθ
2i−1
d , Nk = 1, 2, 3, 4, · · · , (1)

where θc denotes the angle of incident light, θd is the an-
gle of the light after passing through the lens, λi is the ith

distortion parameter, and Nk is the number of distortion pa-
rameters. According to the projection model for general
pinhole cameras, we have rc = f · tanθc ≈ f · θc, where f
is the focal length of a camera, rc is the L2 distance between

the image center and an arbitrary point P in a distortion-free
image. Hence, the distortion model can be rewritten as,

rc = f

Nk∑
i=1

λiθ
2i−1
d , Nk = 1, 2, 3, 4, · · · . (2)

Furthermore, based on the equidistant projection relation
rd = f · θd, where rd is the L2 distance between the im-
age center and the mapping point P ′ in the distorted image,
we merge f and θd to obtain the fisheye distortion model as,

rc =

Nk∑
i=1

kir
2i−1
d , Nk = 1, 2, 3, 4, · · · . (3)

It depicts the radial distortion distribution of fisheye image
and is used for the dataset generation (see Sec. 5.1).

4. Methodology

Our goal is to learn useful visual representations of fish-
eye images to improve their rectification. Fig. 2 presents
the overview of our method, which consists of two stages:
(a) self-supervised pre-training for distortion representation
learning, and (b) fine-tuning for distortion rectification. We
elaborate on each stage in the following sections.
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4.1. Self-supervised Pre-training

As shown in Eq. (3), fisheye images have an inherent
property where the distortions are radially symmetrical, and
the degree of distortion in a particular region is dependent
on its position on the image plane. A greater radius leads
to a higher degree of distortion. To enhance rectification
by capturing these detailed distortion patterns, we propose
a unified distortion-aware pretext task.

Specifically, on the one hand, we use contrastive learn-
ing [10] to narrow the patch features with the same dis-
tortion degree and push away the different ones. This ap-
proach allows us to encode local distortion features while
eliminating texture features. On the other hand, we esti-
mate the patch-wise quantified distortion degrees to learn
fine-grained distortion features, by introducing a position
loss (see Fig. 2). To implement the idea, we introduce a
transformer-based model [54], described next.

Patch Embedding. The standard transformer [54] takes
a sequence of token embeddings as input. To adapt it, as
shown in Fig. 2, given a fisheye image Id ∈ RH×W×3,
we first divide it into a sequence of 2D patches xp ∈
RN×(P 2·3), where H and W are the height and width of
the image Id, P is the patch size, and N = HW/P 2 de-
notes the number of patches. Then, we flatten these patches
into vectors and map them to D dimensions with a linear
projection. We refer to the output projection as the patch
embeddings Eo ∈ RN×D.

Distortion Encoding Transformer. To retain positional
information, positional embeddings are supplemented to the
patch embeddings in transformer [54]. In our method, to
avoid the simple mapping between the positional embed-
ding and specific distortion pattern, we arbitrarily shuffle
the patch embeddings Eo ∈ RN×D along the first dimen-
sion (token dimension). Then, positional embeddings [54]
(the sine-cosine version) are added to the shuffled patch
embeddings. The resulting sequence of embedding vec-
tors are fed into the NT transformer encoder [54] layers.
Thereafter, we obtain the abstracted patch representations
Er ∈ RN×D, as shown in Fig. 2.

In the meantime, we build a position map Po ∈ RH
P ×W

P ,
in which each value denotes the distortion degree of a patch.
For clarity, we provide an example of the position map, as
shown in Fig. 1. Note that it can be readily obtained from
the patch radius. Besides, in Table 1, we show the category
number Ct of distortion degree, when dividing a 256× 256
image with P ×P patches. Note that Ct measures the level
of granularity of the division on distortion degree. Then,
Po is reshaped and shuffled in the same way as the patch
embeddings. In this way, we obtain the per-patch distortion
degree annotation Pr ∈ RN×1, corresponding to the patch
representations Er ∈ RN×D.

Contrastive Loss. To learn a useful distortion represen-

P 8×8 16×16 32×32 64×64
Ct 136 36 10 3

Table 1: The distortion degree number Ct in the position
map when dividing an 256×256 image with P×P patches.

tation for rectification, we first introduce a contrastive loss
to supervise the output representation Er ∈ RN×D. The
motivation of contrastive learning [10] is to associate the
query with its positive examples and push away the neg-
ative examples. Considering that the distortion pattern of
fisheye images is radially distributed (see Fig. 1) and the
distortion degree increases with the distance from the im-
age center, we regard the patches with the same distor-
tion degree as positive examples and with different degrees
as negative examples, respectively. In this way, the con-
trastive learning can help the network encode the local dis-
tinct distortion pattern in different image regions, regard-
less of their individual appearance. Concretely, the cross-
entropy loss is calculated, representing the probability of
the positive examples being selected over the negatives. For
the ith(i = 1, 2, · · · , N) patch of the input image, the loss
function is defined as follows,

ℓi = −log

∑N
j=1 1[j∈Ni]exp(pi · pj/τ)∑N
k=1 1[k ̸=i]exp(pi · pk/τ)

, (4)

where pi ∈ R1×D is the ith representation in Er ∈ RN×D,
Ni is index set of positive examples for the ith patch,
1[f(·)] ∈ {0, 1} represents an indicator function evaluating
to 1 iff f(·), and τ denotes a temperature parameter. The
total contrastive loss Lcon is calculated over the N patches,

Lcon =

N∑
i=1

ℓi. (5)

Position Loss. As mentioned above, the shuffled patch
representations Er ∈ RN×D have been labeled with Pr ∈
RN×1 according to their distortion patterns (degrees). To
model these local distinct distortion patterns, we further in-
troduce a simple but effective position loss. Specifically,
given the patch representation Er ∈ RN×D, we apply a
layer normalization [54] and a linear projection to estimate
their distortion degrees. The loss is defined as a cross-
entropy loss,

Lpos = −
N∑

n=1

Ct∑
c=1

log
exp(x̂n,c)∑Ct

i=1 exp(x̂n,i)
xn,c, (6)

where x and x̂ denote the ground truth and predicted confi-
dence, respectively; Ct is the category number of distortion
degree in Pr which measures the level of granularity of the
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learned features. Note that this constraint on the network
also facilitates the perception of positives and negatives in
the above contrastive learning.

At the pre-training stage, the overall architecture is end-
to-end optimized with the following training objectives:

Lpre = Lcon + Lpos. (7)

4.2. Fine-tuning for Rectification

After pre-training, the network is capable of extracting
the fine-grained distortion features. Next, as illustrated in
Fig. 2, we initialize the rectification network with the pre-
trained weights and perform fine-tuning.

Specifically, we adopt the same patch embedding mod-
ule as the pre-training stage, and directly feed the embed-
dings Eo into NT transformer encoder layers without shuf-
fling. To adapt to the rectification task, we only initialize
the first NF (NF < NT ) layers with pre-trained weights,
and randomly initialize the remaining layers. The obtained
patch representation Er is then passed through two parallel
modules for rectification, described below.

Flow Prediction Module. Different from the existing
parameter-based and image-based methods, we unwarp a
fisheye image with a backward flow field. Given the repre-
sentation Er ∈ RN×D, we estimate a full scale flow fb ∈
RH×W×2. As illustrated in Fig. 3, with fb = (fx,fy), the
rectified image Ic ∈ RH×W×3 is obtained by the warping
operation based on bilinear sampling as follows,

Ic(u, v) = Id(fx(u, v),fy(u, v)), (8)

where (u, v) is the integer pixel coordinate in rectified im-
age Ic, and (fx(u, v),fy(u, v)) is the predicted decimal
pixel coordinate in distorted image Id.

To this end, we introduce a learnable upsample module.
We first reshape Er to shape H

P × W
P ×D. Then, two con-

volutional layers (stride 1) are followed and produce a 1/P

scale warping flow fm ∈ RH
P ×W

P ×2. Next, We use other
two convolutional layers to predict a H/P ×W/P × (P ×
P × 9) mask and perform softmax over the weights of the
3 × 3 neighborhood of each pixel in fm. Finally, the ob-
tained H

P × W
P ×P ×P × 2 map is permuted and reshaped

to the full resolution warping flow fb ∈ RH×W×2.

Boundary Refinement Module. We find that the ob-
tained Ic struggles with the serrated boundaries and noisy
backgrounds (see Fig. 7). To further improve the image
quality, we propose a boundary refinement module (BRM).

Similar to the flow prediction module, BRM also esti-
mates the weights of neighbor pixels for upsampling. Then,
we obtain a confidence map M ∈ RH×W×1, in which each
value denotes the confidence whether a pixel belongs to the
rectified region. M is further binarized with a threshold
σ to obtain the binary boundary refinement mask Mb ∈

(𝑢, 𝑣)(𝒇𝑥(𝑢, 𝑣),𝒇𝑦(𝑢, 𝑣))
Sampling

𝑰𝑑 𝑰𝑟

Figure 3: Visualization of the rectification process of a cer-
tain pixel on the rectified image based on warping flow.

RH×W×1, as illustrated in Fig. 2. The final rectified image
Ir can be obtained by multiplying Ic with Mb.

Training Loss. At the fine-tuning stage, the model is
end-to-end optimized with the following training objectives,

Lft = Lflow + Lmask. (9)

Lflow is the L1 distance between the predicted warping
flow fb and its given ground truth fgt as follows,

Lflow = ∥fb ×Mgt − fgt∥1 , (10)

where Mgt denotes the ground truth valid foreground re-
gion of the rectified image.

Lmask is the cross-entropy loss between the predicted
boundary refinement confidence map M and its given
ground truth Mgt as follows,

Lmask = −
Nd∑
i=1

[yi log(ŷi) + (1− yi) log(1− ŷi)] ,

(11)
where Nd = H × W is the number of pixels in image Id,
yi ∈ {0, 1} and ŷi ∈ [0, 1] denote the ground-truth and the
predicted confidence value in Mgt and M , respectively.

5. Experiments
5.1. Dataset and Metrics

We train and evaluate our method according to the con-
ventions in the literature. Following method [46, 6, 58,
37, 38], we establish a dataset using original images from
the Place365 dataset [63]. We use the polynomial model
(Eq. (3)) to generate the dataset and the first four distor-
tion parameters are used (Nk = 4), which is enough to fit
most of the real-world application scenarios. The synthetic
dataset contains multiple annotations for each distorted fish-
eye image, including distortion-free image, warping flow,
and distortion parameters. We synthesize 100k images for
training and 5k images for evaluation, respectively.

In fisheye image rectification, Peak Signal to Noise Ratio
(PSNR) and Structural Similarity (SSIM) are the two most
popular evaluation metrics in existing works. Given a recti-
fied image and a reference distortion-free one, PSNR mea-
sures the detailed quality differences while SSIM assesses
their structural differences. Besides, we use Frechet Incep-
tion Distance (FID) to evaluate the distribution difference.
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(a) Pre-training. Joint pre-training obtains re-
markable performance gain.

Lcon Lpos PSNR SSIM
20.33 0.82

✓ 20.70 0.83
✓ 21.30 0.84

✓ ✓ 22.47 0.86

(b) Fine-tuning way. Both fine-tuning strategies
work and training from-scratch is better.

settings PSNR SSIM
w/o pre-training 20.33 0.82
w/ pre-training:
frozen encoder 21.12 0.85

unfrozen encoder 22.47 0.86

(c) Shuffle. Without the shuffle, the perfor-
mance drops to the baseline level.

settings PSNR SSIM
w/o shuffle 20.28 0.82
w/ shuffle 22.47 0.86

(d) Prediction target. Compared with
distortion parameter and image, warping
flow is the most effective target.

targets PSNR SSIM
parameter 21.09 0.82

image 20.50 0.69
flow 22.47 0.86

(e) Patch size. Reducing patch size works bet-
ter. To strike a balance between accuracy and ef-
ficiency, we choose 16×16 by default.

patch PSNR SSIM FPS
8 25.82 0.90 14.93

16 22.47 0.86 15.51
32 20.23 0.81 14.64
64 18.65 0.74 14.19

(f) Architecture setting. Several different
architectures are set up. Our scheme per-
forms better.

settings PSNR SSIM
w/o BRM 18.01 0.68
w/o FPM 22.11 0.85

full 22.47 0.86

Table 2: Ablation experiments of our method. The default setting is: the patch size is 16 × 16 and we import 8 pre-trained
layers for fine-tuning. Default settings are all marked in gray .

5.2. Implementation

Model Settings. The image size (H,W ) is (256, 256).
The latent vector size D in transformer encoder layer [54]
is 256 and the total layer number NT is 10. The threshold
σ for binarizing the confidence map in the boundary refine-
ment module is empirically set as 0.5.

Training Details. We use 100k images for pre-training
and 50k images for fine-tuning. For contrastive learning,
we set the temperature τ = 0.07 (Eq. (4)). We utilize
Adam [31] as the optimizer and one-cycle policy [50, 52]
with a maximum learning rate of 10−4. Both stages are
trained for 65 epochs with a batch size of 64. Two NVIDIA
GeForce RTX 2080Ti GPUs are used to train the network.

5.3. Ablation Study

We conduct ablations to verify the effectiveness of the
core settings and components in our method.

Impact of Self-supervised Pre-training. The key idea
of this work is the self-supervised distortion representation
learning for fisheye images. Table 2 (a) shows the studies on
the proposed pretext task. Without any pre-training, we can
still provide a strong baseline, with a PSNR of 20.33 and a
SSIM of 0.82. This can be attributed to the powerful repre-
sentative ability of transformer [54]. Then, compared with
the baseline, the performance improves by pre-training with
an independent contrastive loss Lcon or position loss Lpos.
Furthermore, the unified pre-training boosts the rectification
performance significantly. These results verify the effec-
tiveness of our self-supervised representation learning strat-
egy. Note that the two pre-text tasks promote each other.
In Fig. 4, we provide the training loss plots of fine-tuning
under the setting w/ and w/o the pre-training. From the
training perspective, we can observe that our pre-training
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w
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(a) flow loss
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m
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(b) mask loss

Figure 4: Training loss plots during the fine-tuning stage.
With the distortion representation pre-training, the training
errors of the rectification (Lflow and Lmask) are reduced.

effectively reduces the losses of the baseline.

Impact of Fine-tuning Way. During the fine-tuning
stage, we train the model from scratch. An alternative way
is to freeze the pre-trained encoder and only update the
rest weights of the model. As shown in Table 2 (b), both
fine-tuning ways produce better performance than the base-
line (w/o pre-training), illustrating the effectiveness of our
learned representations and our default fine-tuning strategy.

Impact of Shuffle Manipulation. Shuffle strategy is
important for our method. During the pre-training stage,
we arbitrarily shuffle the patches, to avoid the directed as-
sociation between the fixed positional embedding and the
specific distortion pattern/degree. As shown in Table 2 (c),
without the shuffle strategy, the performance degrades to
the baseline level in Table 2 (a), which means that the pre-
training does not learn any useful representation for the
downstream rectification.

Impact of Reconstruction Target. Our SimFIR es-
timates a warping flow [21, 19] to resample the pixels
from distorted images for rectification. In contrast, other
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Distorted Predict image Predict flow GT

Figure 5: Examples to illustrate the impact of the recon-
struction target. For our method, predicting flow to unwarp
the distorted images preserves more image details.

256×256 512×512 1024×1024 1080P
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S

28.71

10.95

2.74 1.48

56.57

39.62

20.52
15.51
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Ours

Figure 6: Running efficiency comparison between our Sim-
FIR and the state-of-the-art PCN [58] on processing differ-
ent resolution fisheye images.

pipelines predict the distortion parameters [46, 6, 60, 57]
or regress the rectified images directly [39, 58, 38]. We
implement the above two pipelines into our method with
the following experiments: 1) meaning the output repre-
sentations Er ∈ RN×D into a vector and projecting it to
regress the distortion parameters, and 2) reshaping the out-
put Er to form a reconstructed image, following MAE [28].
As shown in Table 2 (d), the performance drops with these
two targets. This is because for distortion rectification, pre-
dicting the deformation instead of the target image itself is
simpler [35, 20], and can preserve more image details (see
Fig. 5). The network can focus on the spatial transformation
between two images, without needing to restore the texture
details. Besides, it is difficult to extract complex nonlinear
model parameters in different intervals [58].

Impact of Patch Size. Table 2 (e) studies the impact of
patch size. We can observe that a smaller patch steadily pro-
duces a higher performance. The reason is that, as shown in
Table 1, a smaller patch setting increases the subdivision of
distortion patterns, which helps to extract more fine-grained
distortion representations. However, a smaller patch will
also introduce more patches when dividing an input image.
To balance the computational cost, we choose a 16 × 16

Distorted w/o BRM w/ BRM GT

Figure 7: Examples to illustrate the impact of the boundary
refinement module (abbreviated as “BRM”). With the help
of BRM, the boundary regions are well rectified.

Method PSNR ↑ SSIM ↑ FID ↓
SC [48] 10.14 0.32 229.60

DeepCalib [6] 13.28 0.51 136.73
DR-GAN [38] 18.66 0.70 74.56

DDM [39] 17.51 0.66 114.66
MLC [37] 19.33 0.73 55.97
PCN [58] 20.53 0.76 30.64

Ours 22.47 0.86 17.23

Table 3: Comparison between the state-of-the-art methods
and the proposed method on the test set. “↑” indicates the
higher the better and “↓” means the opposite.

patch size as the default setting in our final model.
Impact of Boundary Refinement Module. In our Sim-

FIR, the BRM is used to smooth the serrated boundaries
and remove the noisy backgrounds of the coarse rectified
image Ic (see Sec. 4.2). As shown in Table 2 (f), with the
proposed BRM, performances are remarkably improved.
Moreover, we provide two examples to visualize the im-
provement from the BRM in Fig. 7. As we can see, the
boundary regions are well rectified with the help of BRM.

Impact of Flow Prediction Module. We compare the
bilinear upsampling with our learnable upsampling used for
FPM. Table 2 (f) shows that our learnable FPM works better
than the module based on the bilinear upsampling. This is
likely because the coarse bilinear upsampling operation can
not recover the small deformations.

5.4. Comparison with State-of-the-art Methods

Quantitative Comparison. In this section, we compare
our SimFIR with the recent state-of-the-art rectification
methods, including SC [48], DeepCalib [6], DR-GAN [38],
DDM [39], MLC [37], and PCN [58]. The quantitative re-
sults are shown in Table 3. As we can see, our method
achieves state-of-the-art performance on all metrics. Note
that for SC [48], DeepCalib [6], and PCN [58], we cal-
culate the results based on their released codes. For DR-
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PCNDeepCalib MLCDR-GAN DDM OursDistorted SC GT

Figure 8: Qualitative results on the synthesized test set. For each comparison, we show the distorted image, the rectified
results of SC [48], DeepCalib [6], DR-GAN [38], DDM [39], MLC [37], PCN [58], our method, and ground truth.

Blind DeepCalib MLCDistorted PCNDR-GAN DDM OursSC

Figure 9: Qualitative results on real-world fisheye images. For each comparison, we show the distorted image, the rectified
results of SC [48], Blind [36], DeepCalib [6], DR-GAN [38], DDM [39], MLC [37], PCN [58], and our method.

GAN [38], DDM [39], and MLC [37], we obtain the recti-
fied test set from the authors.

Qualitative Comparison. To better demonstrate the ef-
fectiveness of our proposed method, we further conduct
qualitative comparisons with existing methods [48, 6, 38,
39, 37, 58] on the synthetic test set. As present in Fig. 8, the
rectified images of our method show less distortion.

Application to Real-world Fisheye Images. Additional
experiments are conducted on real-world fisheye images. In
this evaluation, we capture the images with several fish-
eye lenses of different FoV. As shown in Fig. 9, although
there exists a gap between synthetic and real-world data, our
method still shows strong generalization ability. Compared
with SC [48], our method guarantees the integrity of the re-
covered content. Compared with Blind [36], DeepCalib [6],
DR-GAN [38], DDM [39], MLC [37], and PCN [58], our
rectified images show less distortion. Note that in Fig. 9,
the resolution of the input distorted fisheye images is much
higher (up to 2454 × 2454) than that in the test set (256
×256). Compared with DR-GAN [38], DDM [39], and
PCN [58], our method preserves more texture details.

Efficiency Comparison. Next, we compare the running
efficiency of our method and the state-of-the-art method
PCN [58] on processing images with various resolutions.
As shown in Fig. 6, on different resolutions, our method
shows higher efficiency. The reason is that PCN [58] di-
rectly regresses the rectified image with a fully convolu-
tional network [47], like DR-GAN [38], and DDM [39]. In
contrast, our SimFIR infers a warping flow at the fixed res-
olution (256 × 256) and interpolates it to the original high
resolution same as the input image for unwarping. Such a
strategy ensures efficiency and does not demand any extra
training at a certain scale like image-based methods.

6. Conclusion

In this work, we present an effective self-supervised rep-
resentation learning paradigm for fisheye images. We as-
sociate different image regions with their specific distor-
tion patterns and design a distortion-aware pretext task for
their learning. With the pre-training, the network extracts
the fine-grained distortion representation. Extensive experi-
ments are conducted on our proposed dataset, and the trans-
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fer performance in the downstream rectification task verifies
the effectiveness of the learned representations.
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