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Abstract

Foundation models are pre-trained on massive data
and transferred to downstream tasks via fine-tuning. This
work presents Vision Middleware (ViM), a new learning
paradigm that targets unified transferring from a single
foundation model to a variety of downstream tasks. ViM
consists of a zoo of lightweight plug-in modules, each of
which is independently learned on a midstream dataset
with a shared frozen backbone. Downstream tasks can
then benefit from an adequate aggregation of the module
z00 thanks to the rich knowledge inherited from midstream
tasks. There are three major advantages of such a design.
From the efficiency aspect, the upstream backbone can be
trained only once and reused for all downstream tasks
without tuning. From the scalability aspect, we can easily
append additional modules to ViM with no influence on
existing modules. From the performance aspect, ViM can
include as many midstream tasks as possible, narrowing the
task gap between upstream and downstream. Considering
these benefits, we believe that ViM, which the community
could maintain and develop together, would serve as a
powerful tool to assist foundation models.

1. Introduction

The pretrain-finetune paradigm has served as a gen-
eral framework across various vision tasks, where models
are pre-trained on large-scale datasets and fine-tuned on
downstream tasks [64]. Recent efforts have been attracted
to build up a foundation model [54, 73, 80] with large
architecture and massive pre-trained data (e.g., in the scale
of billions). Considering the trend of scaling up foundation
models, it is costly to fine-tune model for different tasks
separately, and worthy of solving tasks with single model.
When directly transferred to downstream tasks, foundation
models still suffer from the task-gap problem. Downstream
tasks may require different targets with the upstream, thus
could not fully leverage the pre-learned knowledge. As
shown in Figure 1, models are observed with preference
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Figure 1. Task preference problem: (a) Single-task pre-trained
models tend to perform better on tasks similar to their upstream.
(b) Intermediate task fine-tuning further tunes the pre-trained
model on specific task, showing similar imbalanced performance.

to those tasks similar to their encountered ones. Task
preference restricts unified transferring of single foundation
model to multiple tasks with varying targets.

To bridge the task-gap, existing works address the
problem on either upstream or downstream. Upstream
works propose multi-task pre-training to simultaneously
learn various types of tasks [18, 23, 28,49, 72]. However,
when extending to a new pre-training task, these works
require to re-formulate the task I/O and re-train the model
together with existing tasks, which is complicated and time-
consuming. Downstream works introduce prompt [34, 46,
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87] or adapter-based tuning [5, 8, 15, 31, 35] to adapt to
downstream tasks with additional parameters. Since the
downstream datasets for transferring are generally small
(e.g., in the scale of thousands), the appended parameters
might be insufficiently trained to master newly-encountered
tasks, usually resulting in unsatisfying performance [21,74].

In this paper, we present a unified framework for sup-
porting multiple downstream tasks with single foundation
model. After the upstream pre-training, we introduce
a collection of midstream tasks based on middle-scale
datasets (e.g., in the scale of millions). For each midstream
task, a lightweight plug-in module is inserted into the pre-
trained backbone, and individually optimized to learn the
current task. The foundation model is frozen without any
parameter tuning in the above process. Throughout this
way, we collect the Vision Middleware (ViM), a module
zoo containing knowledge from diverse midstream tasks
based on the single foundation model. To fully leverage the
knowledge of ViM for downstream transferring, we develop
practical strategies to adaptively aggregate ViM modules.
Modules correlated with the downstream task would be
emphasized for better transferring. ViM is expected to
cope with the task-gap problem with sufficient supervi-
sion in midstream, and achieve balanced performance on
multiple downstream tasks without preference. During the
experiments, we build up a ViM consisting of modules
trained from 47 midstream tasks in 12 types, which can be
grouped into global recognition, local recognition, vision
and language understanding and self-supervised learning.
We then evaluate with the averaged transferring perfor-
mance on 30 downstream tasks in 4 types. The experimental
results show satisfying performance of ViM with balanced
improvements on multiple tasks.

ViM introduces a new paradigm of applying foundation
models for unified transferring, which shows the following
advantages: (i) For the efficiency, the foundation model is
maintained frozen after upstream pre-training, thus without
any cost of storing different model parameters for various
downstream tasks. (ii) For the scalability, new ViM module
can be individually trained and freely appended into the
current ViM. The diverse middle-scale datasets from the
community also enable us to easily expand ViM into great
scale. (iii) For the performance, ViM addresses the task-
gap issue via including ViM modules of various midstream
tasks, thus can achieve balanced performance for unified
downstream transferring. With the above advantages and
verified performance, we would like to encourage the com-
munity to maintain a public ViM to which all researchers
can contribute with their own well-trained ViM modules.

2. Related Work

We review related works from perspectives of different
stages for solving the task-gap problem.

Upstream: multi-task pre-training. Multi-task pre-
training [56] aims to train single model for supporting
multiple tasks. Methods using individual heads: Pioneer
works study multi-task from single data source [57, 66,
77,82,83,88], where each sample contains multiple labels
from different tasks, e.g., boundary, depth and segmentation
maps. However, the single source scenario is restricted
with expensive annotation and limited scenes. Multi-
source multi-task pre-training further combines different
tasks from multiple datasets [18,28,39], e.g., ImageNet [10]
and COCO [44]. The multi-source scenario is much more
free to benefit from diverse supervisions from varying tasks.
Methods using shared head: More recently, studies on
foundation models strive to unify the multi-task, multi-
source and multi-modality pre-training [23, 49, 54, 72,73,
80]. By converting different tasks into the same format
of input and output (I/O), e.g., sequence to sequence [49,
72], models can be pre-trained on them with both shared
backbone and head. Such a unification removes all the task-
specific architectures, thus learns universal representation
to master various tasks simultaneously. Discussion: Multi-
task pre-training involves various tasks to expand the task-
coverage of the foundation model. But it would be hard
to continuously append new pre-training tasks, since all the
tasks should be pre-trained together once again.

Midstream: intermediate task fine-tuning. In the lit-
erature of natural language processing (NLP), it has been
demonstrated that tuning pre-trained models on additional
intermediate tasks can further boost downstream perfor-
mance [4, 51-53]. Experimental results indicate that not
all intermediate tasks can benefit downstream tasks [52],
considering the task-similarity, level of semantics, domain
distribution, etc. Recent application of vision foundation
models also introduce intermediate fine-tuning before eval-
uating their transferrability, e.g., fine-tuning BEiT-3 [73] on
Objects365 [59] before transferring to COCO [44]. The
intermediate tasks are generally based on larger datasets,
which enables fully supervision for understanding tasks.
Though with improved performance, since all the parame-
ters of model have been fully adjusted for supporting single
type of task, intermediate task fine-tuning can not be unified
solution for multi-task transferring.

Downstream: parameter efficient tuning. Downstream
solutions aim to adapt model with tuning a few parameters.
Prompt-based tuning: The prompt tuning is firstly intro-
duced in NLP area to bridge the gap between upstream and
downstream tasks [45]. Pioneer works define hand-crafted
text templates as hard prompts to convert downstream tasks
into the format of pre-trained task [2, 16], which might be
sub-optimal due to the man-made templates. Continuous
prompts are further proposed to assign additional trainable
parameters as prompt for downstream tasks [42, 46, 47].
VPT [34] firstly adapts prompt for vision models, where
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Figure 2. Vision Middleware for unified downstream transferring. The framework is in three stages based on varying sizes of datasets:
(1) In the upstream, a foundation model is pre-trained leveraging a massive dataset (e.g., in billions). (ii) In the midstream, a sequence of
different midstream tasks are introduced with middle-scale datasets (e.g., in millions). ViM is collected as a zoo of modules individually
trained for each task, and the foundation model is frozen as the same backbone for all mid-tasks. (iii) In the downstream, ViM aggregation
adaptively gathers beneficial ViM modules to work for each downstream dataset (e.g., in thousands).

trainable prompts are appended as tokens in each layer.
Adapter-based tuning: Adapters are lightweight modules
inserted into the model for adapting tasks in NLP [31,32].
Compared with prompt tuning, adapters can directly influ-
ence the model architecture for more generalized adapta-
tion. For vision models, adapters have been widely applied
on multiple tasks [5,8, 15,35, 86] with specific design for
vision modalities. Discussion: As a downstream solution,
parameter efficient tuning is only supervised by the limited
scale of downstream samples, which restricts the upper
bound of its performance.

3. Vision Middleware

We introduce Vision Middleware (ViM) to formulate
a unified framework for supporting various vision tasks
with single foundation model, as illustrated in Figure 2.
Following the framework, we present an implementation of
building up and applying ViM, including the module archi-
tecture, midstream training and downstream aggregation.

3.1. Towards Unified Downstream Transferring

We start by reviewing the pretrain-finetune framework,
where a foundation model is pre-trained on large-scale up-
stream dataset and fine-tuned on downstream tasks. Under
such a framework, the downstream performance is corre-
lated with the similarity between upstream and downstream
tasks. Disparate formats of tasks could lead to unsatisfying
or even degraded downstream performance. Such a task-

gap restricts a pre-trained model to simultaneously support
diverse downstream tasks.

To alleviate the task-gap problem for unified transferring
with single foundation model, we introduce Vision Middle-
ware (ViM) between the upstream and downstream stages,
which factorizes varying abilities of model in advance to
downstream transferring. ViM enables a new paradigm for
assisting foundation model in the following three stages:
Upstream: A large-scale dataset with massive samples is
leveraged to construct an upstream task 7y, e.g., classifica-
tion [26], contrastive learning [6,25, 54] and masked image
modeling [1,24,76]. Then a foundation model is supervised
by task 7y, with the optimized parameters ©,,. Recent
efforts concentrating on pre-training have been striving
to expand the scale of both model architecture and pre-
trained dataset, generating outstanding foundation models
with fruitful knowledge. It is noteworthy that the following
processes can be used with arbitrary foundation model.
Midstream: In this stage, we introduce a set of midstream
tasks, i.e., {Thqs T2qs - AL}, based on different middle-
scale datasets. The midstream tasks are expected to show
diverse task formats, and allowed to be freely appended
without limitation. For each mid-task 7., we assign
a lightweight ViM module with parameters i.,, and
combine it with the frozen foundation model for learning,
which can be denoted as f([Oup, plial) — Trig- In the
optimization process, only the parameters of the new ViM
module are trainable for adapting to each mid-task. The
original parameters of the foundation model are frozen to
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Figure 3. (a) Existing transferring paradigm v.s. (b) The detailed implementation of the ViM transferring paradigm. ViM modules are
implemented as per-layer sub-modules and are aggregated in each layer. (c) Details of two ViM aggregation strategies.

avoid damaging the pre-learned representation with task-
specific shifting. The ViM module should be in plug-in
style towards the foundation model, but is not restricted for
its design of architecture. Besides, the module is expected
to be relatively lightweight, ie., %M sizeof(¢l ) <
sizeof(Oyp). Such a lightweight characteristic enables us
to collect ViM, i.e., a module zoo {¢? 1, , without large
memory cost, while at the same time maintaining various
abilities of the foundation model.

Downstream: Based on ViM inherited from the midstream,
we aim to boost the performance on a wide range of
downstream tasks. For each downstream task, ViM modules
relevant to current task are expected to be picked up and
aggregated together for transferring. Taking one task Tgown
as example, the process can be denoted as

F([Oup, a88(Phias Ponias -+ Pomia)]) = Taowns (1)

where agg(-) is an aggregation function that adaptively
incorporates different ViM modules for benefiting Tgown- It
is noted that there may exist irrelevant modules in the zoo to
current downstream task. Since such cases are unknown for
the midstream stage, the aggregation process is responsible
to filter out these irrelevant modules, and maintain the
performance on varying types of downstream tasks.

Scalability: Thanks to the high extensibility, ViM could
be maintained online by the community to continuously
support different tasks. Here we present a brief conceptual
framework: (i) Constructing ViM Module Zoo. The zoo
stores both the initial and developer uploaded ViM modules.
Each module is specified with its training task, dataset
and performance. The task-specific head can be optionally
stored together for direct usage. (ii) Benchmarking and
Grouping. A benchmark with diverse tasks is set to evaluate
ViM modules. Then modules can be divided into groups
based on their strengths, and serve as more lightweight
ViMs for specific requirements. (iii) Uploading Control.
Any uploaded ViM module is firstly tested before appended
into the zoo. We would check the parameter sizes, avoid
repeating with existing ones, and evaluate its transferability

to filter out meaningless modules. (iv) Usage. Users can
download pre-set ViM groups, or customize their own ViM
zoo for specific target. Corresponding algorithm of ViM
aggregation is also provided for transferring.

3.2. Constructing and Applying ViM

Following the framework, we present an implementation
of how to build up, train and aggregate ViM. It should
be noted that the following practice is not the only way
of implementing the framework. As an exploration, we
demonstrate the potential of ViM for unified downstream
transferring, and lay foundations for future works.

In this paper, we take the vision transformer (ViT) [13] as
the architecture of foundation model for presentation, which
is commonly used in recent studies of pre-training [54,73,
80]. ViT converts an image into a sequence of patch tokens,
and encodes them using stacking of transformer layers with
multi-head self-attention (MHSA) [67] and MLP modules.
Architecture of ViM module. The ViM module can
be implemented by any lightweight plug-in module to
adapt the foundation model to specific tasks. We adopt a
recent adapter-based module, ConvPass [35], for its simple
architecture and stable performance on vision tasks. As
shown in Figure 3 (b), for each layer, an additional sequence
of convolution layers are appended as a bypass. It contains
an 1 x 1 convolution squeezing the feature channel, a 3 x 3
convolution with the same input and output channels, and an
1 x 1 convolution recovering the channel. The convolutions
are concatenated with non-linear activation function, i.e.,
GELU [29]. We append such a convolution sequence along
with both the MHSA and MLP modules of all transformer
layers. With extremely small value of the squeezed channel
(e.g., 1/96 of the original dimension), the newly introduced
parameters are only 0.4% of the whole model. Though with
tiny size of learnable parameters, such a module has been
proved with satisfying performance on task adaption.

ViM Training. Based on the robust design of framework,
each ViM module could be individually trained via different
developing tools. Additional task-specific heads would be
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Table 1. Configurations of the tasks and datasets for training ViM modules in the midstream. The numbers in brackets after each task type
indicate the number of midstream tasks. We only list the example datasets for brevity. Additional task-specific architectures are assigned
for adapting to each task, which are dropped after midstream training. Totally, we train on 12 types of tasks containing 47 mid-tasks,
generating a zoo of diverse ViM modules with representation for various tasks.

Task Type (#mid-tasks) Example Datasets

Size Task-specific Architecture

Image Classification (21)
Object Detection (7)

Instance Segmentation (2)
Semantic Segmentation (4)
Keypoints Estimation (1)
Depth Estimation (2)

Visual Question Answering (2)

LVIS [22], COCO [44]

COCO-Keypoint [44]

ImageNet-21K [10, 55], Places365 [48], etc. 26M
Objects365 [59], LogoDet-3K [69], etc. 2.3M

COCO-Stuff164K [3], ADE20K [89], etc. 240K

NYU Depth V2 [62], KITTI (Eigen) [14,17] 48K
VQA-v2 [20], GQA [33]

Linear Classifier

ViTDet [43] w/ FastRCNN [19]
223K ViTDet [43] w/ MaskRCNN [27]
UperNet [75]

57K ViTDet [43] w/ KeypointRCNN [27]
Deconvolutions

265K  Concat. MLP with BERT [11]

Referring Expression Compre. (3) RefCOCO, RefCOCOg, RefCOCO+ [81] 60K  MLM with PEVL text encoder [78]
Phrase Grounding (1)  Flickr30K [79] 32K MLM with PEVL text encoder [78]

Visual Relationship Detection (1)  Visual Genome [41] 101K  MLM with PEVL text encoder [78]
Visual Commonsense Reasoning (1)  VCR [84] 100K MLM with PEVL text encoder [78]

Self-Supervised Learning (2)  ImageNet-1K [10]

1.3M  MoCo-v2 [7], MAE [24]

TOTAL (47)

32M

introduced depending on the current mid-task, e.g., linear
classifier or Rol-Align [27]. These task-specific heads
are possibly heavy, but would all be dropped after the
midstream stage. Only the trained ViM module is kept
for memorizing the representation required by the mid-task.
Besides the mid-task supervised modules, we also append a
zero ViM module with parameters ¢Y,.;, which is initialized
to output all-zero values. The zero ViM module serves as a
buffer to leave more space of downstream optimization.

ViM Aggregation. Given the zoo of ViM with varying
abilities of tasks, we aim to adaptively select and aggregate
them for specific downstream task. Different strategies of
aggregation are explored based ensemble and reparameter-
ization, as illustrated in Figure 3 (b). The ensemble is a
common strategy to aggregate models from multiple pre-
training sources. Taking the input, we firstly forward it with
different ViM modules, then aggregate their outputs. To
better activate relevant modules, we adopt the Mixture-of-
Experts (MoE) [60] that uses a routing module to pick up
top-k beneficial modules. Different from mapping the input
to generate aggregation weights as in MoE, we directly
optimize a vector of aggregation weights w € RM for each
task, and find it effective in experiments. We activate the
ViM modules with top-k weight values and aggregate their
outputs with weights after softmax. By default, we activate
all the modules into aggregation. The reparameterization-
based strategy firstly aggregates the parameters of ViM
modules into a single one, then only forward it once with
better efficiency. We follow the same implementation of
aggregation weights with the ensemble strategy. Since the
aggregation is fixed after training, ViM could be employed
as a single module during the inference.

4. Experiments
4.1. Experimental Setup

Upstream Setup. We utilize the CLIP [54] pre-trained
image encoder as the foundation model, due to its power-
ful generalization performance. CLIP is pre-trained with
image-text contrastive learning on a web-scale dataset with
0.4 billion image-text pairs. For the main experiments, we
construct ViM based on the official ViT-B/16 model.
Midstream Setup. As shown in Table 1, we incorporate
12 types of midstream tasks with totally 47 sub-tasks for
training ViM. The tasks can grouped into global recognition
(e.g., image classification), local recognition (e.g., detection
and segmentation), vision-language (e.g., VQA and visual
grounding) and self-supervised learning (e.g. masked
image modeling). Additional task-specific architectures are
assigned for the varying targets on each task. Taking the
zero ViM module into account, we collect a ViM with size
of 48. More details of the midstream configurations and
training results are in the Supplementary Material.
Downstream Setup. We evaluate the transferrability of the
proposed framework on the following downstream tasks:
(i) Classification: We leverage two common benchmarks
for fine-grained classification, i.e., the VTAB-1k [85] and
FGVC benchmark. VTAB-1k contains 19 datasets divided
into Natural, Specialized and Structured groups with dif-
ferent contents. FGVC consists of 5 datasets including the
CUB-200-2011 [68], NABirds [65], Oxford Flowers [50],
Stanford Dogs [37] and Stanford Cars [40]. Linear classifier
is appended as the task head for classification learning.
(ii) Object Detection: We evaluate with the PASCAL [12]
dataset (074+12) for common scene, and the Cityscapes [9]
dataset for traffic scene. For the task head of detection,
ViTDet [43] is used with FastRCNN [19] for PASCAL
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Table 2. The downstream transferring results on 30 tasks in 4 groups of task types, i.e., image classification (CLS), object detection
(DET), semantic segmentation (SEG) and depth estimation (DEP). Evaluation metrics for different tasks are shown in the brackets. The
last column is highlighted with an averaged metric across all tasks. The best results among methods with frozen CLIP-B/16 backbone are
bold for each task. FB indicates whether the method is based on frozen backbone, which is more flexible for multi-task transferring. For
the single-task pre-training, T indicates the results are reported by INTERN [58], while § indicates the results are reported by MuST [18].

Method CLS (acc.t) DET (APso 1) SEG (mloU?) DEP (RMSEJ /&1 1)
S 3§ 2 ¥ ; 2z ¢
Upstr('ea{n Midstream Downs?ream (FB) % g % ‘g % é S E Avg.
Pre-training Tuning DA > g > > N
2 u — 8 —
single-task pre-training
ImageNet [10] Cls. - Linear oo - 82.7 - 67.8 - 043/ - 3.06/ - -
CLIP-R50x16 [54] t - Linear oo - 836 - 68.7 039/ - 283/ - -
MoCo-v2 [7] § - Linear v oo - 79.1 - 66.9 - 043/ - 3.09/ - -
JFT [63] Cls. § - Fully X - - 852 - 80.4 - - 186.5 - -
SimCLR (w. JFT) [6] T - Fully X - - 841 - 74.9 - - /848 - -
multi-task pre-training
MuST (w. JFT) [18] - Fully X - - 879 - 82.9 - - /895 - -
X-Learnerg;sy [28] - Fully X - - 88.6 - 82.6 - - /913 - -
Unified-IOparcE [49] - Fully X - - - - - - 040/ - - -
INTERN [58] (1B param.) - Linear oo - 907 - 78.7 - 032/ - 255/ - -
intermediate fine-tuning / parameter efficient tuning
- Fully X 714 921 842 498 74.1 53.0 0.37/90.0 242/96.0 76.3
ImageNet21K ft. ConvPass [35] v 75.1 92.6 86.1 534 455 234 044/84.8 2.75/945 694
Objects365 ft.  ConvPass [35] v 67.7 87.4 87.0 545 84.0 52.0 042/863 2.64/944 76.7
CLIP-B/16 [54] COCO-Stuff ft. ConvPass [35] v 64.7 83.1 843 564 843 52,6 044/852 282/939 7538
- Linear v 61.7 81.7 485 37.6 786 49.0 0.61/70.1 3.49/884 64.4
- VPT[34] « 713 853 - - 82.8 49.6 0.50/80.0 3.05/92.1 -
- Adapter [31] v 73.1 90.1 847 544 845 51.8 0.43/8542.70/943 773
- ConvPass [35] v 73.1 90.2 849 551 844 53.0 041/86.9 2.52/95.1 177.8
Ours: Vision Middleware (ViM)
CLIP-B/16 [54] +ViM ViM-agg (rep.) v/ 74.8 90.2 859 556 850 52.6 0.39/88.7 246/95.6 78.6
; +ViM ViM-agg (ens.) v 75.3 91.7 872 569 86.0 54.1 0.38/89.0 2.38/96.3 79.6

and MaskRCNN [27] for Cityscapes. (iii) Semantic Seg-
mentation: We evaluate with the PASCAL [12] (2012 set)
dataset for common scene, and the LoveDA [71] dataset for
remote sensing. We reshape the feature maps from layer
4,6, 8,12 into varying resolutions with up/down sampling
as in [1], then feed them into a semantic FPN module [38]
for segmentation map prediction. (iv) Depth Estimation:
We evaluate with the NYU Depth V2 [62] and KITTI [17]
(with [14] split) datasets for indoor and outdoor scenes,
respectively. We append deconvolution and up-sampling
layers to predict the depth map. Summary: We evaluate
with 30 tasks in 4 types. Details of datasets and training
configurations are in Supplementary Material.

Compared Methods. (i) We firstly compare the results of
single or multiple task pre-training as reported. Since they
are based on various backbones and tuning methods, we list
the results for reference. (ii) For the intermediate task fine-
tuning, we respectively fine-tune the model with the largest
datasets of 3 tasks in the midstream, i.e., classification on

ImageNet-21K [10, 55], detection on Objects365 [59] and
segmentation COCO-Stuff164K [3]. The fine-tuned models
are transferred to downstream with SoTA tuning method.
(iii) For the parameter efficient tuning, we compare with
recent SOTA tuning methods for vision [31,34,35]. (iv) The
two ViM aggregation methods are denoted as ViM-agg (rep.
or ens.). We optimize the aggregation weights, activated
ViM modules and task head for downstream task learning.

4.2. Downstream Transferring Results

Analysis on Main Results. Table 2 shows the transferring
results on all downstream tasks. To investigate the unified
transferability, we compute an averaged metric across dif-
ferent tasks (taking the d; for depth estimation). Compared
with single-task pre-training, multi-task pre-training models
generally show balanced performance on different tasks. As
we have discussed, they require to include all the task types
in pre-training stage, and lack extensibility to more tasks.
The intermediate fine-tuned models achieve great improve-
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Table 3. Results of changing the backbone to CLIP-L/14.

Backbone  Method VTAB -Natural -Special. -Struct.

ConvPass 76.81 84.41 87.78 58.25
ViM 78.07 85.02 88.13 61.06

CLIP-L/14

Table 4. Results of further transferring to midstream tasks.
“Mid.” indicates training single ViM module in the midstream.

Method IN1K [10] iNat18 [30] THDogs [90] Logo [70] FoodX [36]

Fully 87.89 81.93 92.05 92.39 84.90
Mid. 86.60 78.40 89.94 91.37 83.37
ViM 87.74 81.18 91.37 92.31 84.80

ment on similar tasks, but also decrease dramatically on
the remaining tasks. For instance, the ImageNet-21K fine-
tuned model performs well on VTAB classification (+3.7%
accuracy than fully tuning), but shows —28.6% mlIoU on
PASCAL segmentation. Such an imbalanced performance
is also illustrated in Figure 1 (b). For the parameter efficient
tuning, i.e., VPT [34], adapter [31] and ConvPass [35], they
show general improvement to linear probing on all tasks.
However, such improvements are restricted by the limited
downstream data for mastering new tasks.

When introducing ViM in the midstream and conducting
ViM aggregation for downstream, we achieve the high-
est performance on the averaged metric and almost all
tasks. It is noteworthy that we conduct fair comparison
on all methods with the same CLIP-B/16 backbone. The
ensemble-based aggregation shows better improvements
with +3.3% than fully tuning without touching the back-
bone. The reparameterization-based aggregation, though
performs slightly worse than ensemble, is also more effec-
tive than compared methods, and shows better efficiency
on the computation cost during the inference. With a
frozen backbone, ViM is also competitive with multi-task
pre-training models using fully tuning or larger backbone.
On some dense prediction tasks, e.g., PASCAL detection
and NYUv2, MuST [18] and X-Learner [28] achieve better
results, which is attributed to the natural gap between their
convolutional backbone and our plain ViT backbone.

ViM with different backbone. The design of our frame-
work is decoupled with backbone. To further demonstrate
the effectiveness of ViM, we also construct a ViM based
on the CLIP ViT-L/14 backbone, with the 21 classification
mid-tasks. We further transfer it to downstream VTAB clas-
sification. Table 3 shows that ViM maintains improvement
with larger backbone and higher baseline results.

Transferring ViM to midstream tasks. We also apply the
same transferring process back to the midstream tasks for
training ViM. Table 4 shows the results on some midstream
datasets based on the above ViM with CLIP-L/14. Since
the backbone is frozen, the performance of single ViM
module trained in midstream is worse than fully tuning.

Table 5. Results of further transferring to more types of tasks.

Method Results (%)
Keypoints Estimation on COCO
ConvPass  APyp: 54.37, APy, 50: 80.29, APy, 75: 58.35

ViM APypi: 56.39, APy, 50: 83.00, APy, 75: 59.16
Visual Question-Answering on GQA
ConvPass val acc: 66.14
ViM val acc: 67.35
Referring Expression Comprehension on RefCOCO
ConvPass val acc: 79.92, testA: 84.30, testB: 71.62
ViM val acc: 81.45, testA: 84.73 testB: 72.38

Table 6. Results of transferring to unseen tasks in the midstream.

ViM (size) CLS DET SEG DEP
VTAB PASCAL PASCAL KITTI
ConvPass (ref.) 73.1 84.9 84.4 2.52/95.1
w/o CLS (37) 75.0 - - -
w/o DET (39) - 86.6 - -
w/o SEG (42) - - 85.9 -
w/o DEP (46) - - - 2.51/95.5
whole set (48) 75.3 87.2 86.0 2.38/96.3

Table 7. Directly transferring single ViM module, which is named
as [Task]-[Dataset]. The best value of single module is underlined.

CLS (VTAB) SEG
-Natural -Special. -Struct. PASCAL LoveDA

CLS-INIK 71.8 789 86.1 57.1 841 530
CLS-Places 71.5 772 859 587 833 523
DET-LVIS 70.8 744 843 567 839 534
SEG-ADE20K 704 74.1 842 562 852 522
VIM (zoo) 732 799 872 589 860 54.1

Method AVG

However, with further transferring ViM to midstream tasks,
we successfully compensate the performance degradation
without touching the backbone, even comparable to fully
tuning, demonstrating the effectiveness of our paradigm.

Transferring ViM to unseen tasks. For specific down-
stream task, the ViM modules trained on similar mid-
tasks play important roles. To further investigate their
importance, we construct experiments to transfer ViM to
unseen tasks, e.g., removing the classification ViM modules
and transferring to classification. As shown in Table 6,
removing similar midstream modules indeed decreases the
corresponding results, but still achieves better performance
than compared methods. The results suggest that ViM
modules on similar mid-tasks are important but not the
only beneficial modules for downstream transferring. The
detailed study on contribution of modules is in Section 4.4.
Transferring ViM to more types of tasks. To fully investi-
gate the generalization of ViM, we present the downstream
performance on more types of tasks. Results in Tab. 5 show
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Figure 4. Ablation study on (a) the ViIM zoo size and (b)
the number of activated ViM modules, conducted on VTAB
classification with two aggregation strategies.

that ViM could consistently improve the transferring results
on different tasks.

Transferring with single ViM module. The transferability
of single ViM module is studied in Table 7. We observe
similar unbalanced performance as the intermediate task
fine-tuning, where modules generally perform better only
on tasks correlated with their encountered ones.

4.3. Ablation Studies

We conduct ablation studies within the process of ViM
aggregation, the results of which are expected to be helpful
for further improved implementation of our framework.
On the size of ViM. To verify the significance of expanding
ViM with more modules, we construct ViM in varying
sizes via randomly adding modules into the zoo. Figure 4
(a) shows the results. The downstream performance is
observed to be positively related to the zoo size of ViM,
which encourages us to continuously append new ViM
modules from diverse mid-tasks for better transferring.

On the number of activated ViM modules. By default,
all the ViIM modules are activated. We study the influence
of activating different number of modules in Figure 4
(b). Both showing increasing performance with more acti-
vate modules, the ensemble-based aggregation consistently
outperforms reparameterization-based strategy. Therefore,
when training with more available memory, it is suggested
to increase the number of activated modules and firstly
consider the ensemble-based strategy.

On the modeling of aggregation weights. The aggregation
weights are set as trainable vectors by default. We also
explore to generate weights using a projection of the input
embeddings, as in [60,61]. Table 8 shows the results of

Table 8. Ablation study on modeling of aggregation weights with
ViM-agg (rep.). “#params” indicates the modeling parameters.

Agg. weights VTAB -Natural -Special. -Struct. #params

proj. (linear) 1849 3.99 3751 1397 0.1758 M
proj. (MLP)  73.04 7895 8599 54.19 04281 M
vector 74.78 79.14 86.21 58.98 0.0002 M

Table 9. Ablation study on empty ViM modules.

Method VTAB -Natural -Special. -Struct. #params
empty (x48) 71.77 7855 8440 5236 1498M
VIM (x48) 7531 80.18 86.80 58.95 14.98M

Table 10. Ablation study on building ViM with Adaptformer.

Method VTAB-1K -Natural -Special. -Struct.

Adaptformer-8 72.40 77.83 8221 57.17
ViM (Adaptformer-8, x6)  74.60  79.44 86.70 57.68

projection using linear layer or MLP. Though with more
trainable parameters, it is hard to learn to project the input
into proper aggregation weights, especially with a linear
projection. Therefore, the trainable vector is a simple yet
effective way of modeling aggregation weights.

On the parameters of ViM modules. To demonstrate the
improvement of ViM is not introduced by more parameters,
we conduct experiment with empty modules, which are
set as the initial state of ViM modules without midstream
training. As shown in Tab. 9, directly introducing more
parameters without our midstream training would not result
in similar improvement as ViM, and may cause even worse
performance for transferring.

On the architecture of ViM modules. The ViM module
can be implemented as any plug-able lightweight module.
We also construct a ViM zoo based on another choice,
Adaptformer [5] with 6 midstream classification tasks, and
evaluate on VTAB-1K for transferring. The results in
Tab. 10 demonstrate the effectiveness of ViM as a general
framework for applying foundation models.

4.4. Visualization Analysis

For further understanding the influence of different ViM
modules in the aggregation process, we visualize the aggre-
gation weights of all layers in Figure 5. We label the ViM
modules trained with different groups of mid-tasks. It is
observed that ViM modules with similar mid-tasks to the
current task are emphasized in general, e.g., modules with
local recognition abilities show higher weights on down-
stream detection task. Nevertheless, modules with different
mid-tasks could also contribute from their own perspectives
and knowledge to further improve the performance. We also
observe that ViM modules are aggregated with different

11703



ViM Modules

global recognition
zero (image classification)

local recognition vision & language

(detection, segmentation, depth)  (VQA, grounding, etc)

\ oo il il 1 0.20
4] 5) 015
= I
o = 010
T q
= o0
s & 0.05
.-
g 0.00
2
f‘: A, -0.05
w4
g 2‘ -0.10
—
=}
Q E -0.15
-020
020
- S 01s
< I
0.10
2
< o0 0.05
al-' <
: 0.00
2
g 5 —0.05
% 2‘ -0.10
=}
Q %IJ —-0.15
-0.20
0.20
é 0.15
N e 0.10
z =
on 0.05
= &
Z 0.00
1
=
N —0.05
=
8 -0.10

-0.15

agg-MLP

-0.20

Figure 5. Visualization of the aggregation weights on different
downstream tasks. The activation of ViM modules along with the
MHSA and MLP inside each layer are visualized, respectively.

weights among layers, suggesting that different modules are
found beneficial in varying depth of the network, and work
in a per-layer cooperation manner.

5. Conclusion

In this paper, we present the Vision Middleware (ViM)
in a unified framework to support multiple vision tasks
with single foundation model. ViM contains a zoo of
lightweight modules, each of which is trained individually
on a midstream task for factorizing task-specific knowl-
edge with shared backbone. For downstream transferring,
the ViM modules are adaptively aggregated to boost the
performance on various downstream tasks. Experimental
results indicate that ViM achieves balanced and improved
performance. The efficiency, extensibility and effectiveness
of ViM encourage the community to maintain a public ViM,
where modules are contributed from different researchers to
facilitate the application of foundation models.
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