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Abstract

Recovering a 3D human mesh from a single RGB im-
age is a challenging task due to depth ambiguity and self-
occlusion, resulting in a high degree of uncertainty. Mean-
while, diffusion models have recently seen much success
in generating high-quality outputs by progressively denois-
ing noisy inputs. Inspired by their capability, we explore
a diffusion-based approach for human mesh recovery, and
propose a Human Mesh Diffusion (HMDiff) framework
which frames mesh recovery as a reverse diffusion process.
We also propose a Distribution Alignment Technique (DAT)
that injects input-specific distribution information into the
diffusion process, and provides useful prior knowledge to
simplify the mesh recovery task. Our method achieves
state-of-the-art performance on three widely used datasets.
Project page: https://gongjia0208.github.io/HMDiff/.

1. Introduction

Monocular 3D human mesh recovery, where the 3D
mesh vertex locations of a human are predicted from a
single RGB image, is an important task with applications
across virtual reality [17], sports motion analysis [1], and
healthcare [54]. The field has received a lot of attention in
recent years [6, 7, 32, 33, 8, 22], which has led to signif-
icant progress, but monocular 3D human mesh estimation
still remains very challenging. Human body shapes are not
only complex and contain many fine details, but also inher-
ently exhibit depth ambiguity (when recovering 3D infor-
mation from single 2D images) and self-occlusion (where
body parts can be occluded by other body parts) [25, 6, 53].
In particular, the depth ambiguity and self-occlusion in this
task often bring much uncertainty to the recovery of 3D
mesh vertices, and places a huge burden on the model to
handle this inherent uncertainty [30, 39, 8, 22].

At the same time, denoising diffusion probabilistic mod-
els (diffusion models) [16, 49] have recently seen much suc-
cess in generative tasks, such as image [36], video [48] and
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text [31] generation, where they have been capable of pro-
ducing highly realistic and good-quality samples. Specif-
ically, diffusion models [16, 49] progressively “denoise” a
noisy input – which is uncertain – into a high-quality out-
put from the desired data distribution (e.g., natural images),
through estimating the gradients of the data distribution [52]
(also known as the score function). This progressive de-
noising helps break down the large gap between distribu-
tions (i.e., from a highly uncertain and noisy distribution to
a desired target distribution), into smaller intermediate steps
[52], which assists the model in converging towards gener-
ating the target data distribution smoothly. This gives diffu-
sion models a strong ability to recover high-quality outputs
from uncertain and noisy input data.

For the monocular 3D mesh recovery task, we also seek
to recover a high-quality mesh prediction from uncertain
and noisy input data, and so we leverage diffusion models to
effectively tackle this task. To this end, we propose a novel
diffusion-based framework for monocular 3D human mesh
recovery, called Human Mesh Diffusion (HMDiff), where
we frame the mesh recovery task as a reverse diffusion pro-
cess which recovers a high-quality mesh by progressively
denoising noisy and uncertain inputs.

Intuitively, in our HMDiff’s approach, we can regard
the mesh vertices as particles in the context of thermody-
namics. At the start, the particles (representing the ground
truth mesh vertices) are systematically arranged to form
a high-quality human mesh, then these particles stochasti-
cally disperse throughout the space and eventually degrade
into noise, leading to high uncertainty. This process (i.e.,
particles becoming more dispersed and noisy) is the forward
diffusion process. Conversely, for human mesh recovery, we
aim to perform the opposite of this process, i.e., the reverse
diffusion process. Starting from a noisy and uncertain input
distribution, we want to progressively denoise and reduce
the uncertainty of the input to obtain a target human mesh
distribution containing high-quality samples.

Correspondingly, our HMDiff framework consists of
both the forward process and the reverse process. Specif-
ically, the forward process is performed during training to
generate samples of intermediate distributions that are used
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as step-by-step supervisory signals to train our diffusion
model g. On the other hand, the reverse process is a cru-
cial part of our mesh recovery pipeline, which is used during
both training and testing. In the reverse process, we first ini-
tialize a noisy distribution HK , and use our diffusion model
g to progressively transform HK into a high-quality human
mesh distribution (H0) over K diffusion steps.

However, we face challenges in adopting a diffusion-
based approach to tackle human mesh recovery. Firstly, it
is difficult to directly produce complicated 3D mesh out-
puts with a single RGB image as input; as shown in pre-
vious works [7, 58, 42, 29, 8, 22, 41, 59], it is important
to leverage some prior knowledge (e.g., pose information,
segmentation maps) as input to guide the mesh recovery
process, which is not performed in the standard diffusion
process. Secondly, it is difficult to predict an accurate mesh
output that corresponds to the RGB image, using only the
standard diffusion process [16]. This is because we aim to
predict a mesh that exactly corresponds to the input (i.e.,
it is an input-specific prediction), but the reverse process
starts from the Gaussian distribution (HK), which is input-
agnostic and does not contain helpful input-specific distri-
bution information. To tackle the above issues, we can ex-
tract useful input-specific distribution information to guide
the reverse diffusion process, e.g., we can potentially fol-
low some existing works [22, 8] to extract a pose heatmap
from the image (which encodes rich semantic and uncer-
tainty information [37, 28, 14]) and use it to initialize the
input (HK) for our diffusion process.

Using an input-specific distribution (e.g., a pose
heatmap) to initialize the input (HK) to the diffusion pro-
cess has two benefits. Firstly, it will provide input-specific
information to the diffusion process, which helps in gen-
erating an accurate mesh prediction (H0) that corresponds
to the input. Secondly, using an input-specific distribu-
tion (e.g., a pose distribution extracted from a pose esti-
mator) allows us to effectively leverage prior knowledge
[7, 58, 42, 29, 8, 22, 41, 59], which makes the mesh re-
covery task easier. Due to these reasons, we ideally want
an input-specific distribution as input (HK) to our reverse
diffusion process. However, it is not feasible to directly ini-
tialize the starting distribution (HK) with an input-specific
distribution, because the standard reverse diffusion process
is theoretically formulated and constrained to start from the
(input-agnostic) Gaussian distribution.

Hence, we further propose a Distribution Alignment
Technique (DAT) to inject input-specific distribution in-
formation to the diffusion process, which narrows down
the target space for the diffusion process towards the spe-
cific mesh distribution that corresponds to the input im-
age. Specifically, we initialize an input-specific distribu-
tion from the input image via a pose estimator [57], and
use it to guide the initial diffusion steps towards the diffu-

sion target H0. This allows us to start the reverse process
from Gaussian noise, while infusing the diffusion process
with input-specific information, leading to faster conver-
gence (i.e., fewer diffusion steps) and better performance.

2. Related Work
Human Mesh Recovery (HMR) aims to recover the

3D human mesh from a given input. Traditionally, HMR
has been successful with the aid of information from depth
sensors [46, 40] and inertial measurement units [18, 56].
Recently, there has been much research attention on the
monocular setting [53], which is more convenient and
widely applicable. Yet, monocular HMR is very challeng-
ing due to depth ambiguity, occlusions and complex pose
variations [32, 53, 4]. Many works [20, 42, 41, 25, 13, 47, 4]
tackle monocular HMR via a model-based approach, where
networks are trained to regress the parameters of a human
parametric model (e.g., SMPL [35], SCAPE [3]). To fur-
ther improve performance, some works propose to leverage
various forms of prior knowledge as guidance, including
pose [7, 58], pose heatmaps [8, 22, 29], or segmentation
maps [41, 59]. Recently, some works adopt a model-free
approach [7, 32, 33, 27, 39, 6], where the full 3D human
body shape is directly predicted. In this line of work, several
models have been explored, including Convolutional Neu-
ral Networks (CNNs) [39], Graph Convolutional Networks
(GCNs) [27, 7] and Transformers [32, 33, 6]. Differently,
here we explore a diffusion-based framework to handle the
uncertainty in HMR. To the best of our knowledge, this is
the first work to use diffusion models to tackle monocular
HMR. Our HMDiff framework effectively recovers human
3D mesh and achieves state-of-the-art performance.

Denoising Diffusion Probabilistic Models (Diffusion
Models) [49, 16] effectively enable us to learn to sample
from a desired data distribution, by iteratively “denoising”
random noise into a high-quality sample from the desired
data distribution through estimating the gradients (i.e., score
function) of the data distribution [52, 9]. Diffusion mod-
els have been effective at image generation [16, 50], and
have been explored for various other generation tasks such
as video generation [48], and text generation [31]. Recently,
several works also explore applying diffusion models in pre-
diction tasks [10, 12, 43] and image-based inverse prob-
lems [9, 21, 51]. In contrast to these studies, monocular
HMR presents a more difficult challenge, requiring a dense
(mesh) output with only a single input image. Thus, to sim-
plify the task of monocular HMR, we take inspiration from
previous works [9, 21, 51] that estimate the posterior, and
adopt a similar approach to guide the initial stages of the
diffusion process with our DAT. Our DAT aligns the initial
mesh distribution towards an extracted input-specific pose
distribution (bridged by a mesh-to-pose function), resulting
in faster convergence and better performance.
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3. Background on Diffusion Models
Overall, diffusion models [16, 50] are probabilistic gen-

erative models that learn to transform random noise hK ∼
N (0, I) into a desired sample h0 by denoising hK in a re-
current manner. Diffusion models have two opposite pro-
cesses: the forward process and the reverse process.

Specifically, in the forward process, a “ground truth”
sample h0 with low uncertainty is gradually diffused over
K steps (h0 → h1 → ... → hK) towards becoming a sam-
ple hK with high uncertainty. Samples are obtained from
the intermediate steps along the way, which are used during
training as the step-by-step supervisory signals for the diffu-
sion model g. To start the reverse process, noisy and uncer-
tain samples hK are first initialized according to a standard
Gaussian distribution. Next, the diffusion model g is used in
the reverse process (hK → hK−1 → ... → h0) to progres-
sively reduce the uncertainty of hK and transform hK into a
sample with low uncertainty (h0). The diffusion model g is
optimized using the samples from intermediate steps (gen-
erated in the forward process), which guide it to smoothly
transform the noisy and uncertain samples hK into high-
quality samples h0. We go into more detail below.

Forward Process. Firstly, the forward diffusion pro-
cess generates a set of intermediate noisy samples {hk}K−1k=1

that will be used to aid the diffusion model in learning the
reverse diffusion process during training. Since Gaussian
noise is added between each step, we can formulate the pos-
terior distribution q(h1:K |h0) as:

q(h1:K |h0) :=
K∏

k=1

q(hk|hk−1) (1)

q(hk|hk−1) := Npdf

(
hk

∣∣√ αk

αk−1
hk−1, (1−

αk

αk−1
)I
)
, (2)

where Npdf (hk|·) is the likelihood of sampling hk condi-
tioned on the given parameters, while α1:K ∈ (0, 1]K is
a fixed decreasing sequence that controls the noise scaling
at each diffusion step. We can then formulate the posterior
q(hk|h0) for the diffusion process from h0 to step k as:

q(hk|h0) :=

∫
q(h1:k|h0)dh1:k−1

=Npdf (hk|
√
αkh0, (1− αk)I). (3)

Hence, we can express hk as a linear combination of the
source sample h0 and random noise z, where each element
of z is sampled from N (0, I), as follows:

hk =
√
αkh0 +

√
(1− αk)z. (4)

Thus, by setting a decreasing sequence α1:K such that
αK ≈ 0, the distribution of hK will converge to a standard
Gaussian (hK ∼ N (0, I)). Intuitively, this implies that the
source signal h0 will eventually be corrupted into Gaussian
noise hK , which matches with the non-equilibrium thermo-
dynamics phenomenon of the diffusion process [49]. This

facilitates the training of the reverse process, as the gener-
ated samples {hk}Kk=1 effectively bridge the gap between
the standard Gaussian noise hK and the source sample h0.

Reverse Process. Next, to approximate the reverse dif-
fusion process which transforms Gaussian noise hK to a
high-quality sample h0, a diffusion model g (which is often
a deep network) is optimized using the generated samples
{hk}Kk=1 and the source sample h0. The diffusion model
g can be interpreted to be a score-based model [52] that
estimates the score function ∇h log p(h) of the data distri-
bution, where the iterative steps are performing denoising
score matching [55] over multiple noise levels. The stan-
dard formulation of the reverse diffusion step by DDPM
[16] can be formally expressed as:

hk−1 =

√
αk

αk−1

(
hk −

αk−1 − αk

αk−1
√
1− ᾱk

g(hk, k)
)
+ σkzk, (5)

where σk is a hyperparameter and zk is Gaussian noise.
Therefore, during inference, Gaussian noise hK can be

sampled, and the reverse diffusion step introduced in Eq. 5
can be recurrently performed, allowing us to generate a
high-quality sample h0 with the trained diffusion model g.

4. Method
In this section, we first formulate our HMDiff framework

(in Sec. 4.1). An overview of our framework is depicted in
Fig. 1. Then, in Sec. 4.2, we propose DAT to inject input-
specific distribution information into the diffusion process.
Lastly, we design a diffusion network for HMR in Sec. 4.3
that can effectively model the relationship between vertices.

4.1. Human Mesh Diffusion (HMDiff)

Monocular 3D HMR is a very challenging task, due
to the inherent depth ambiguity in recovering 3D infor-
mation from single 2D images, as well as self-occlusion
where some body parts may be occluded by other body
parts. These issues often result in high uncertainty during
3D mesh recovery [25, 6, 53, 30]. Thus, in order to alleviate
the uncertainty, we propose to leverage diffusion models,
which have a strong capability in recovering high-quality
outputs from noisy and uncertain data.

To this end, we propose HMDiff, a diffusion-based
framework for HMR, which consists of a forward process
and a reverse process. The forward process gradually adds
noise and uncertainty to the ground truth mesh samples,
eventually corrupting the mesh vertices into Gaussian noise.
On the other hand, the reverse process learns to reverse the
effects of the forward process, and learns to model the step-
by-step reduction of noise and uncertainty, gaining the abil-
ity to progressively denoise the noisy inputs to recover a
high-quality mesh. Specifically, we frame the HMR task as
a reverse diffusion process, while the forward process plays
a crucial role during training, as described below.
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Figure 1. Illustration of the proposed Human Mesh Diffusion (HMDiff) framework with the Distribution Alignment Technique (DAT).
Given an RGB image I , we first extract an image feature fI and input-specific distribution U , by using pre-trained models ϕI and ϕP .
Then, a Transformer-based diffusion model g takes in U , fI and noise from a Gaussian distribution HK , and iteratively performs K
denoising diffusion steps to eventually obtain a denoised distribution H0. We use our DAT technique to guide the diffusion process by
computing a Distribution Alignment Gradient, which effectively injects input-specific information to guide the denoising step. Lastly, after
obtaining the high-quality mesh distribution H0, we take the center of H0 and feed it into an MLP to obtain the final prediction hm.

Forward Process. To train the diffusion model g
to bridge the large gap between the target human mesh
distribution H0 and the standard Gaussian distribution
HK , we first generate a set of intermediate distributions
{H1, H2, ...,HK−1} in the forward process. We obtain the
intermediate distributions via Eq. 4, and use them as step-
by-step supervisory signals to train the diffusion model g.
Throughout the forward process, we apply noise to the ver-
tex coordinates while keeping the topology between ver-
tices fixed. To be more precise, we set the topology ac-
cording to a predefined adjacency matrix (following [6, 7])
and keep it fixed.

Reverse Process. In the reverse process, we aim to re-
cover an accurate and high-quality human mesh distribution
H0 from a noisy and uncertain input HK (initialized as a
standard Gaussian distribution) through a step-by-step pro-
cess where the uncertainty is reduced. To achieve this, we
design a diffusion model g, which predicts the score func-
tion in each k-th reverse diffusion step, conditioned on step
index k. Then, we can use diffusion model g to perform re-
verse diffusion by recurrently taking reverse diffusion steps.
Specifically, the reverse process consists of K steps that
produce mesh distributions pk(hk) at each k-th step, which
are trained such that pk(hk) match q(hk|·) of the forward
process (i.e., Eq. 2 and Eq. 3) at the k-th step. Overall, the
reverse process is trained to produce p0(h0) at step 0, which
corresponds to the high quality mesh distribution H0.

However, rather than taking the standard steps (Eq. 5)
for reverse diffusion, here we instead use a different formu-
lation [50] for each reverse diffusion step. This is because
the reformulated reverse diffusion step (i.e., Eq. 6) includes
the ĥ0 term, which plays an important role in our DAT, and
allows us to inject input-specific distribution information

(defined as U ) into the diffusion process. Importantly, the
presence of ĥ0 provides a good way for us to update hk

such that it is more aligned towards U yet stays within Hk,
which will be explained in detail in Sec. 4.2. Specifically,
we adopt the following formulation [50] for the k-th reverse
diffusion step:

hk−1 =
√

1− αk−1 − σ2
k · g(hk, k) +

√
αk−1 · ĥ0 + σkzk, (6)

where hk is a sample at the k-th step (hk ∼ Hk), αk, σk

are hyperparameters and zk is standard Gaussian noise. We
remark that this formulation for reverse diffusion is widely
applicable, and as noted in [50], is equivalent to DDPM [16]
when we set σk =

√
(1− αk−1)/(1− αk)

√
1− αk/αk−1

for all k. Following [50], we can further define ĥ0 as:

ĥ0 =
1

√
αk

(hk −
√

1− αk · g(hk, k)). (7)

Intuitively, ĥ0 represents an estimation of the target (h0)
by using the sample at the current step (hk) and “reverse
diffusing” in one step, without taking k steps. Remarkably,
including ĥ0 in the reverse diffusion step helps to improve
the efficiency, as the DDIM acceleration technique [50] can
be applied during testing that allows the model to skip dif-
fusion steps [50]. Furthermore, to facilitate the reverse dif-
fusion process, we also extract an image feature fI from
the image, and feed it to the diffusion model g at each step.
More details can be found in Sec. 4.3.

Overall, after recurrently applying Eq. 6 on hK for K
iterations, we can get h0, where h0 ∼ H0 and H0 is the
denoised (high-quality) mesh distribution. In practice, we
can run this reverse diffusion process in parallel N times,
and obtain N samples of h0 to represent H0.

Through the reverse diffusion process introduced above,
we can generate a high-quality mesh output, but it is dif-
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ficult to predict an accurate mesh that matches the RGB
image. This is because we start the reverse diffusion from
the Gaussian distribution (HK) which is input-agnostic and
does not contain characteristics specific to the input image.
Thus, in order to recover an accurate human mesh, we ide-
ally should perform the reverse diffusion from an input-
specific distribution extracted from the input image, e.g.,
where HK can be an extracted pose heatmap which contains
rich and meaningful semantic and uncertainty information.
This also has the additional benefit of allowing us to lever-
age on prior knowledge (from pre-trained extractors), which
helps to simplify the challenging 3D human mesh recovery
task. However, it is not feasible to directly initialize the
starting distribution (HK) with an input-specific distribu-
tion, since the standard reverse process is theoretically for-
mulated and trained to start from the input-agnostic Gaus-
sian distribution instead. Thus, we propose a way to extract
an input-specific distribution from the image and use it to
guide the diffusion process, as described next.

4.2. Distribution Alignment Technique (DAT)

We develop DAT to inject input-specific distribution in-
formation to the diffusion process, which narrows down the
target space for the diffusion process towards the specific
mesh distribution that accurately matches with the input
image. This enables us to start the reverse process from
Gaussian noise, while infusing the diffusion process with
input-specific distribution information. An illustration can
be seen in Fig. 1.

The Big Picture. In the reverse diffusion process, we
start the diffusion from the Gaussian distribution (HK), that
is input-agnostic and has a large gap from the desired diffu-
sion target H0, which makes it difficult to predict an accu-
rate target distribution that exactly corresponds to the input
image. To overcome this, we take inspiration from previ-
ous approaches [9, 21, 51] that estimate the posterior, and
aim to adopt a similar approach to guide the initial stages of
the diffusion process. Specifically, we can extract an input-
specific distribution U that is much closer to H0 as com-
pared to the Gaussian distribution, e.g., in this paper, U is a
pose heatmap which contains rich semantic and uncertainty
information [37, 28, 14] of the input image. Thus, as U is
close to H0, we want to align our initial (input-agnostic)
distribution HK towards the extracted distribution U at the
initial stages of the diffusion process.

Intuitively, this usage of the input-specific distribution
U narrows down the target of the diffusion process to the
neighbouring area around U , where the rest of the diffusion
process can further reduce the uncertainty to obtain the de-
sired target mesh distribution H0. This greatly reduces the
difficulty of the 3D mesh recovery process. Therefore, we
modify the diffusion process in a manner that fulfills this
intuition, which we formulate below.

Theoretical Formulation. First, we formally introduce
some definitions. We are given an input-specific distribu-
tion U and Gaussian noise hK ∼ HK , and want to produce
an output h0 ∼ H0 after K iterations of reverse diffusion.
We also define the relationship between the samples from
the target distribution H0 and the input-specific distribution
U as: f(h0) + n = u, where f is a function (e.g., a linear
mesh-to-pose function if U is a human pose distribution),
u ∼ U , and n is some error which is defined since the dis-
tribution U can be imprecise and uncertain. Moreover, since
diffusion model g can be interpreted to be a learned score
estimator [52, 16] to estimate the score function (distribu-
tion gradient) ∇hk

log pk(hk), the reverse diffusion step in
Eq. 6 can be reformulated as:

hk−1 =
√

1− αk−1 − σ2
k · ∇hk

log pk(hk) +
√
αk−1 · ĥ0 + σkzk

(8)

Intuitively, Eq. 8 shows that the evolution between each
step (e.g., hk → hk−1) is dependent on the gradient of
the data distribution ∇hk

log pk(hk) – which is called the
score function – that pushes hk to hk−1. Importantly, here
we want this gradient to take into account the information
from distribution U and align towards it. In other words,
instead of estimating the gradient of the data distribution
∇hk

log pk(hk), we instead want an estimate that is con-
ditioned on U , i.e., ∇hk

log pk(hk|U), which allows us to
effectively inject input-specific distribution information into
the diffusion process.

Next, we aim to find a way to compute
∇hk

log pk(hk|U). From Bayes’ rule, we can get
∇hk

log p(hk|U) = ∇hk
log pk(hk) + ∇hk

log p(U |hk),
where we already have the first term (i.e., the original
score function). Hence, in order to compute the gradient
conditioned on input U , we would only need to find a way
to compute the second term, i.e., ∇hk

log p(U |hk). Intu-
itively, to directly compute the gradient ∇hk

log p(U |hk),
we need to find a differentiable function that connects
U and hk and compute its gradient, i.e., minimize the
gap between the noisy hk and the distribution U . Such a
gradient will directly update hk to be closer to U , thereby
injecting input-specific information directly into hk at each
step k.

Why we use ĥ0. However, it is not feasible to directly
apply the above-mentioned gradient (∇hk

log p(U |hk)) on
hk. This is because the distribution Hk at every step k is
unique and different from each other, thus the diffusion
model g is trained conditioned on the step index k (see
Eq. 5), to learn how to bring a sample specifically from Hk

to Hk−1. Hence, if we forcefully align hk to be closer to U ,
it can be pulled away from Hk and be different from what
the diffusion model was trained to denoise at step k, and
thus disrupt the diffusion process. Therefore, although we
want to perform an alignment of hk to U , but at the same
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time we also want to keep the sample hk within the distri-
bution Hk, where the diffusion model is trained to perform
well.

Next, we observe that our aim is to eventually predict
an accurate mesh sample h0 – not to align hk itself to U .
Thus, we propose an indirect approach to align hk. For
every hk, we can first compute an estimate of h0 (i.e., ĥ0)
as an intermediate prediction via Eq. 7 which is conditioned
on k. Next, we can compute some gradients that will make
ĥ0 into a better prediction (i.e., by minimizing the gap with
U ), then propagate those gradients back from ĥ0 to hk. As
a result, these gradients give guidance on how to align hk,
such that after k diffusion steps the prediction ĥ0 is pulled
closer to U (and the target H0), which fulfills our objective.
Through this method, we can inject suitable information at
every step k, updating hk with input-specific information
to be aligned with the target H0, while keeping the sample
within the distribution Hk.

Specifically, we first estimate ĥ0 as a function of hk (i.e.,
in Eq 7); we slightly abuse notation to denote this as ĥ0(hk),
to make it clear that ĥ0 is estimated as a function of hk.
Using ĥ0(hk), we can approximate p(U |hk) by computing
p(U |ĥ0(hk)), which can be used to compute the gradients
to update hk.

Distribution Alignment Gradient. Next, we show how
the gradient ∇hk

log p(U |ĥ0(hk)) can be computed in prac-
tice to obtain a Distribution Alignment Gradient that can in-
ject input-specific distribution information into the diffusion
process. Specifically, we can interpret − log p(U |ĥ0) to be
the negative log-posterior of observing U given ĥ0, which
tends to have higher magnitude as the difference between U
and ĥ0 gets larger, and we can derive a gradient by trying
to minimize the gap Dk between them. However, U is a
pose distribution, while ĥ0 is in mesh format, making it dif-
ficult to directly compute the gap Dk. Thus, we introduce a
mesh-to-pose function f to map ĥ0 to a corresponding pose,
and minimize the gap between U and f(ĥ0). To efficiently
calculate Dk, we sample N elements from U (i.e., u ∼ U ),
and calculate the sum of L2 norms between u and f(ĥ0), as
follows:

∇hk
log p(U |hk) ≈ −∇hk

Dk, (9)

Dk =

N∑
i=1

||ui − f(ĥ0(hk))||22, ui ∼ U, (10)

where −∇hk
Dk is our Distribution Alignment Gradient. In

practice, we also add a hyperparameter γ as a coefficient to
−∇hk

Dk. This Distribution Alignment Gradient enables us
to align the diffusion steps towards the distribution U (and
the diffusion target H0) at the initial stages of the diffusion
process. This narrows down the target space for the dif-
fusion process towards the specific mesh distribution that
corresponds to the input image, which greatly reduces the

Algorithm 1: The DAT Reverse Diffusion Process
Input: input-specific distribution U , number of samples N , decreasing

sequence α1:K , sequence σ1:K , diffusion model g, threshold r,
DAT weight γ.

1 Sample a noise hK , where hK ∼ N (0, I)
2 act = True// Initialize activation status
3 for k = K to 1 do // Reverse diffusion process
4 s← g(hk, k) // Estimate score

5 ĥ0 ← 1√
αk

(hk −
√
1− αk · s) // Estimate ĥ0

6 Dk ←
∑N

i=1 ||ui − f(ĥ0)||22// Measure the gap

7 Rk ←
Dk
DK

// Measure the relative gap

8 if Rk ≥ r and act == True then // with DAT
9 hk−1 ←√

1 − αk−1 − σ2
k
· s +

√
αk−1 · ĥ0 − γ∇hk

Dk + σkzk

10 else // without DAT
11 act← False

hk−1 ←
√

1− αk−1 − σ2
k · s +

√
αk−1 · ĥ0 + σkzk

difficulty of the 3D mesh recovery process. However, the
role of DAT diminishes in importance towards the end of
the diffusion process, after having aligned hk towards U
and H0. Thus, we design an Activation Strategy to decide
when we apply the gradient, as explained next.

Activation Strategy for DAT. Our DAT seeks to infuse
input-specific characteristics into the diffusion process, and
align the initial (input-agnostic) Gaussian distribution HK

towards an input-specific distribution U , which is close to
the target H0. However, as the extracted input-specific dis-
tribution U contains uncertainty and noise, we do not want
to overly align Hk towards U in the later parts of the diffu-
sion process, when Hk is relatively more accurate and cer-
tain. Therefore, we want to use our proposed DAT only in
the early reverse diffusion steps, while not using it in the
later steps when Hk converges to a more compact and high-
quality distribution. To achieve that, we propose activating
(or deactivating) DAT based on the measured gap (Dk) be-
tween hk and U .

Specifically, at the start, we measure the initial gap DK

(between U and hK) based on Eq. 10. Then, at each step
k, we measure the gap Dk, and calculate the relative distri-
bution gap value Rk = Dk

DK
. At the start (when k = K),

Rk = 1, and it starts to shrink as Hk slowly gets aligned
to U . We activate DAT as long as the relative distribution
gap value Rk is more than a specified threshold r. On the
other hand, when Rk < r for some k-th step, we terminate
DAT for the steps thereafter, because the distribution Hk

has become rather aligned to U and the target H0.
In summary, the detailed reverse diffusion process with

our DAT can be seen in Algorithm 1.

4.3. Network Architecture

As shown in Fig. 1, our full pipeline consists of a CNN
backbone ϕI with a 3D pose estimator head ϕP , a diffusion
model g and a DAT component. We present the details of
each of them below, with more details in Supplementary.

CNN backbone ϕI . We follow previous works [6, 33,
32] to adopt HRNet [57] as our CNN backbone ϕI , that
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extracts a context feature fc ∈ R2048×7×7 from the input
image I , which is sent into the pose estimator head ϕP .
Moreover, to produce an image feature fI ∈ R128×49 to
feed into diffusion model g, we also flatten fc and send it
into an average pooling layer.

Pose estimator head ϕP is used to initialize the input-
specific distribution U , and is a lightweight module con-
sisting of three de-convolutional layers. ϕP takes in context
features fc ∈ R2048×7×7 extracted from the CNN backbone
ϕI , and generates an xy heatmap Ex,y ∈ RJ×56×56 and a
depth heatmap Ez ∈ RJ×56×56, where J is the number of
joints. Since a heatmap is naturally a distribution, we ini-
tialize a 3D pose distribution U based on these heatmaps to
guide the reverse diffusion process.

Diffusion model g facilitates the step-by-step denoising
during the reverse process, as shown in the red block of
Fig. 1. At the start of step k, we are given a noisy 3D
mesh input hk ∈ RV×3 where V is the number of ver-
tices. We first encode each v-th vertex ID to an embedding
Ev

ID ∈ R64 via a linear layer and generate a diffusion step
embedding Ek

d ∈ R61 for the k-th step via the sinusoidal
function. Then, we construct V tokens, where each token
xv ∈ R128 represents the vth vertex, and each token is con-
structed by concatenating Ev

ID, Ek
d , and the 3D coordinates

of the v-th vertex in hk. These tokens are sent into our
diffusion network g, which consists of a single vertex self-
attention layer, a single vertex-image cross-attention layer,
and a linear layer. Refer to Supplementary for more details.

Distribution Alignment Technique. In this paper, we
define the function f in DAT as a linear operation (i.e., a
matrix) defined using the human body model SMPL [35]
(or human hand model MANO [45]), that regresses 3D joint
locations from the estimated mesh sample (ĥ0).

4.4. Training

Learning Reverse Diffusion Process. As introduced in
previous sections, our diffusion model g is optimized to it-
eratively denoise HK to get H0, i.e., HK → HK−1 →
... → H0. To achieve this, we first generate “ground truth”
intermediate distributions {H1, H2, ...,HK−1} via the for-
ward diffusion process, where we take a ground truth mesh
distribution H0 and gradually add noise to it based on Eq. 4.
Then, during model training, we follow previous works
[16, 50] to formulate diffusion reconstruction loss LDiff as
follows: LDiff =

∑K
k=1 ∥(hk−1 − hk)− g(hk, k, fI)∥22,

where hk ∼ Hk and hk−1 ∼ Hk−1.
Learning Mesh Geometry. To recover an accurate hu-

man mesh, we also optimize our diffusion model with the
geometric constraints of human mesh. Specifically, at each
diffusion step, we obtain the estimate of diffusion target ĥ0

via Eq. 7 and then follow previous work [7] to optimize our
model via 4 kinds of losses to constrain the mesh geometry:
3D Vertex Regression Loss Lv , 3D Joint Regression Loss

Lj , Surface Normal Loss Ln, and Surface Edge Loss Le.
See Supplementary for more details.

Total loss. Combining the losses described above, we
define the total loss for training our HMDiff framework as
follows: Ltotal = LDiff + λvLv + λjLj + λnLn + λeLe.

5. Experiments
Datasets. We follow previous works [6, 33, 32] to evalu-

ate our method on the following datasets. 3DPW [56] con-
sists of outdoor images with both 2D and 3D annotations.
The training set has 22K images, and the test set has 35K
images. Human3.6M [19] is a large-scale indoor dataset
that has 3.6M images labelled with 2D and 3D annotations.
Following the setting in previous works [32, 27, 20], we
train our models using subjects S1, S5, S6, S7 and S8 and
test using subjects S9 and S11. FreiHAND [61] consists
of hand actions with 3D annotations. It has approximately
32.5K training images and 3.9K testing images.

Specifically, we follow previous works [6, 33, 32] to first
train our model with the training sets of Human3.6M [19],
UP-3D [29], MuCo-3DHP [38], COCO [34] and MPII [2],
and then evaluate the model on Human3.6M. Moreover, we
follow [6, 33, 32] to fine tune the model on 3DPW [56]
training set and evaluate our model on its test dataset. For
FreiHAND [61], following [32], we optimize our model on
its training set and test our model on its evaluation set.

Evaluation Metrics. We follow the evaluation metrics
from previous works [32, 27, 20, 33, 7, 6]. Mean-Per-
Vertex-Error (MPVE) [42] measures the Euclidean distance
(in mm) between the predicted vertices and the ground truth
vertices. Next, Mean-Per-Joint-Position-Error (MPJPE)
[19] is a metric for evaluating human 3D pose [26, 20, 7],
and measures the Euclidean distance (in mm) between the
predicted joints and the ground truth joints. PA-MPJPE,
or Reconstruction Error [60], measures MPJPE after using
Procrustes Analysis (PA) [11] to perform 3D alignment.
We also report PA-MPVPE on FreiHAND, which mea-
sures MPVE after performing 3D alignment with PA. On
FreiHAND, we also report the F-score [23], which is the
harmonic mean of recall and precision between two sets of
points, given a specified distance threshold. Following pre-
vious works [32, 33, 7, 6], we report the F-score at 5mm
and 15mm (F@5 mm and F@ 15mm) to evaluate accuracy
at fine and coarse scales respectively.

Implementation Details. During training, we set the to-
tal number of diffusion steps (K) at 200 and generate the de-
creasing sequence α1:200 via a linear interpolation function
(more details in Supplementary). We also set the number
of samples N to 25. Following previous works [6, 33, 32],
we obtain the coarse human mesh with 431 vertices from
the original SMPL human mesh (or a human hand mesh
with 195 vertices from the original MANO hand mesh) via
a GCN model [44] for training. We set the learning rate at
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0.0001 and adopt the Adam optimizer to optimize our dif-
fusion model g. The models ϕI and ϕP are pre-trained and
then frozen during training of g. For DAT, we set the ac-
tivation threshold r at 0.05, and γ at 0.2. During testing,
we adopt the DDIM acceleration technique [50], and take
40 steps to complete the whole reverse diffusion process in-
stead of 200.

5.1. Comparison with State-of-the-art Methods

We compare our method with existing state-of-the-art
HMR methods on Human3.6M and 3DPW datasets. As
shown in Tab. 1, our proposed method can outperform pre-
vious works on all metrics. This shows that our proposed
method (i.e., HMDiff framework with DAT) can effectively
recover a high-quality human mesh from a single image.

To further demonstrate the capability of our model to
tackle hand mesh reconstruction, we also conduct exper-
iments on FreiHAND dataset [61]. As shown in Tab. 2,
our method outperforms previous state-of-the-art methods,
showing its generalizability in this setting as well.

Table 1. Comparison results on 3DPW and Human3.6M.
3DPW Human3.6M

Method MPVE↓ MPJPE↓ PA-MPJPE↓ MPJPE↓ PA-MPJPE↓
Kanazawa et al. [20] - - 81.3 88.0 56.8
GraphCMR [27] - - 70.2 - 50.1
SPIN [26] 116.4 - 59.2 - 41.1
Pose2Mesh [7] - 89.2 58.9 64.9 47.0
I2LMeshNet [39] - 93.2 57.7 55.7 41.1
VIBE [24] 99.1 82.0 51.9 65.6 41.4
METRO [32] 88.2 77.1 47.9 54.0 36.7
Mesh Graphormer [33] 87.7 74.7 45.6 51.2 34.5
FastMETRO [6] 84.1 73.5 44.6 52.2 33.7
Ours 82.4 72.7 44.5 49.3 32.4

Table 2. Comparison results on FreiHAND. The results with an
asterisk (*) are reported by [7].
Method PA-MPVPE↓ PA-MPJPE↓ F@5 mm↑ F@15 mm↑
Hasson et al. [15] * 13.2 - 0.436 0.908
Boukhayma et al. [5] * 13.0 - 0.435 0.898
FreiHAND [61] * 10.7 - 0.529 0.935
Pose2Mesh [7] 7.8 7.7 0.674 0.969
I2LMeshNet [39] 7.6 7.4 0.681 0.973
METRO [32] 6.7 6.8 0.717 0.981
Mesh Graphormer [33] 5.9 6.0 0.764 0.986
FastMETRO [6] - 6.5 - 0.982
Ours 5.7 5.6 0.781 0.986

5.2. Ablation Study

We also conduct extensive ablation experiments on
3DPW. See Supplementary for more experiments and
analysis.

Impact of Diffusion Process. We evaluate the efficacy
of the diffusion process by comparing against two baseline
models: (1) Baseline A possesses the same structure as our
diffusion network, but the mesh recovery is conducted in a
single step without diffusion. (2) Baseline B has nearly the
same architecture as our diffusion network, but we stack the
network multiple times to approximate the computational
cost of our method. We remark that both baselines are op-
timized to directly predict the human mesh with a forward

pass, instead of learning the step-by-step reverse diffusion
process. We report the results of our proposed method and
the baselines in Tab. 3. The performance of both baselines
are much worse than ours, suggesting that much of the per-
formance improvement comes from the designed diffusion
pipeline.

Table 3. Evaluation of diffusion pipeline.
Method MPVE MPJPE PA-MPJPE
Baseline A 104.0 93.2 57.6
Baseline B 97.1 85.9 52.7
Ours 82.4 72.7 44.5

Impact of DAT. We also verify the impact of our DAT
by comparing against three baselines: (1) Image Feature
where the standard diffusion process is used (without DAT),
with image feature fI as an input feature. (2) Pose Feature
where the standard diffusion process is used (without DAT),
with pose heatmap U as an input feature. (3) Both Features
where we concatenate the pose heatmap with the image fea-
tures fI before feeding them to the diffusion model g. For
each method, we tune the DDIM [50] acceleration rate to
perform the reverse diffusion process with different diffu-
sion steps, and report the number of steps used where they
obtain the best performance. Results are reported in Tab. 4,
where our method significantly outperforms all baselines
while using fewer steps. This is because, as compared to
these baselines, our DAT can explicitly constrain the initial
steps to align towards the input-specific distribution, which
improves the performance as well as the speed of conver-
gence to the target H0.

Table 4. Evaluation of impact of DAT.
Method MPVE MPJPE PA-MPJPE Steps needed
Image Feature 94.9 83.3 51.3 200
Pose Feature 92.7 81.4 50.5 200
Both Features 92.3 81.1 49.9 100
Ours (with DAT) 82.4 72.7 44.5 40

Impact of DAT components. We study the impact of
various DAT components by comparing against the follow-
ing: (1) Ours w/ HU starts the reverse process from a noisy
distribution HU , generated by upsampling the prior pose
distribution U to a mesh distribution. (2) Direct L2 baseline
directly aligns hk to the prior pose distribution U via an L2

loss which directly modifies hk (i.e., disrupts the diffusion
process). (3) Ours w/ uc uses a single 3D pose uc as prior
knowledge (detected from the heatmap), instead of the 3D
pose distribution U . (4) Ours w/o AS activates DAT over
the whole reverse process, i.e., without using the Activation
Strategy. As shown in Tab. 5, our method outperforms all
baselines, showing the efficacy of our design choices.

Table 5. Evaluation of DAT components.
Method MPVE MPJPE PA-MPJPE
Ours w/ HU 93.5 82.1 50.4
Direct L2 91.3 78.0 50.0
Ours w/ uc 89.9 76.5 49.2
Ours w/o AS 85.3 72.9 46.6
Ours 82.4 72.7 44.5

Visualization of difficult samples. Some qualitative re-
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Human3.6M 3DPW FreiHAND

Figure 2. Visualization of body and hand mesh outputs using our method. Our method effectively recovers the mesh even under ambiguity
(e.g., due to heavy occlusions), and produces high-quality results. (More visualization results are shown in Supplementary.)

sults of our method on Human3.6M and 3DPW are shown
in Fig. 2. We observe that our method can handle challeng-
ing cases, e.g., under heavy occlusions or with noisy back-
ground, showing its strong ability to handle uncertainty.

Inference Speed. Here, we conduct experiments on a
single GeForce RTX 3090 card and compare the speed of
our proposed method (HMDiff with DAT) with existing
methods in terms of the accuracy metric (MPJPE) and in-
ference speed (FPS) in Tab. 6. Our method can achieve
a competitive speed compared with the current SOTA [6]
while significantly outperforming it (as shown in Tab. 1 and
Tab. 2).

Table 6. Comparison of inference speed.
Method Human3.6M(MPJPE) FPS
[6] 52.2 23
Ours 49.3 18

6. Conclusion

We present HMDiff, a novel diffusion-based framework
that frames mesh recovery as a reverse diffusion process to
tackle monocular HMR. We inject input-specific informa-
tion via our proposed DAT during the diffusion process to
obtain improved performance. Extensive experiments show
that the proposed method achieves state-of-the-art perfor-
mance on three widely used benchmark datasets.
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