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Abstract

Accurately estimating 3D hand pose is crucial for under-
standing how humans interact with the world. Despite re-
markable progress, existing methods often struggle to gen-
erate plausible hand poses when the hand is heavily oc-
cluded or blurred. In videos, the movements of the hand al-
low us to observe various parts of the hand that may be oc-
cluded or blurred in a single frame. To adaptively leverage
the visual clue before and after the occlusion or blurring for
robust hand pose estimation, we propose the Deformer: a
framework that implicitly reasons about the relationship be-
tween hand parts within the same image (spatial dimension)
and different timesteps (temporal dimension). We show that
a naive application of the transformer self-attention mech-
anism is not sufficient because motion blur or occlusions
in certain frames can lead to heavily distorted hand fea-
tures and generate imprecise keys and queries. To address
this challenge, we incorporate a Dynamic Fusion Module
into Deformer, which predicts the deformation of the hand
and warps the hand mesh predictions from nearby frames
to explicitly support the current frame estimation. Further-
more, we have observed that errors are unevenly distributed
across different hand parts, with vertices around fingertips
having disproportionately higher errors than those around
the palm. We mitigate this issue by introducing a new
loss function called maxMSE that automatically adjusts the
weight of every vertex to focus the model on critical hand
parts. Extensive experiments show that our method signifi-
cantly outperforms state-of-the-art methods by 10%, and is
more robust to occlusions (over 14%).

1. Introduction

Accurately estimating hand poses in the wild is a chal-
lenging task that is affected by various factors, including ob-
ject occlusion, self-occlusion, motion blur, and low camera
exposure. To address these challenges, temporal informa-
tion can be leveraged using a self-attention mechanism [52]
that reasons the feature correlation between adjacent frames
to generate better hand pose estimations. However, as the
generation of key and query vectors depends on per-frame
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Figure 1: Given a video where in some frames (left) the
hand is heavily occluded or blurred, the existing state-of-
the-art video-based method TCMR [10] (middle) fails to
predict accurate hand poses. Our method (right) is able
to capture the hand dynamics and leverage neighborhood
frames to robustly produce plausible hand pose estimations.

features, heavy occlusion or blurring can significantly con-
taminate them, resulting in inaccurate output. Another chal-
lenge of hand pose estimation is that the fingertips, located
at the periphery of the hand, are more prone to occlusion
and have more complex motion patterns, making them par-
ticularly challenging for the model to estimate accurately.

To tackle the aforementioned challenges, we propose
Deformer: a dynamic fusion transformer that leverages
nearby frames to learn hand deformations and assemble
multiple wrapped hand poses from nearby frames for a ro-
bust hand pose estimation in the current frame. Deformer
implicitly models the temporal correlations between adja-
cent frames and automatically selects frames to focus on.
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To mitigate the error imbalance issue, we design a novel
loss function, called maxMSE, that emphasizes the impor-
tance of difficult-to-estimate vertices and provides a more
balanced optimization.

Given a sequence of frames, our approach first uses a
shared CNN to extract frame-wise hand features. To rea-
son the non-local relationships between hand parts within a
single frame, we use a shared spatial transformer that out-
puts an enhanced per-frame hand representation. Then, we
leverage a global temporal transformer to attend to frame-
wise hand features by exploring their correlations between
different timestamps and forward the enhanced features to
a shared MLP to regress the MANO hand pose parameters.
To ensure consistency of the hand shape over time, we pre-
dict a global hand shape representation from all frame-wise
features through the cross-attention mechanism. Despite
incorporating temporal attention, the model may struggle
to accurately predict hand poses in frames where the hand
is heavily occluded or blurred. To address this issue, we
introduce a Dynamic Fusion Module, which predicts a tu-
ple of forward and backward hand motion for each frame,
deforming the hand pose to the previous and next times-
tamps. This allows the model to leverage nearby frames
with clear hand visibility to assist in estimating hand poses
in occluded or blurred frames. Finally, the set of deformed
hand poses of each timestamp is synthesized into the final
output with implicitly learned confidence scores. In opti-
mization, we found that standard MSE loss leads to imbal-
anced errors between different hand parts. Specifically, we
observed that the model trained with MSE loss had lower
errors for vertices around the palm and larger errors for the
vertices around the fingertips, which are more prone to oc-
clusions and have more complex motion patterns. Inspired
by focal loss [35] in the classification task, we introduce
maxMSE, a new loss function that maximizes the MSE loss
by automatically adding a weight coefficient to every hand
vertex. The maxMSE allows the model to focus on critical
hand parts like fingertips and achieve better overall perfor-
mance.

Experimental results on two large-scale hand pose esti-
mation video datasets, DexYCB [8] and HO3D [17], show
the proposed method achieves state-of-the-art performance
and is more robust to occlusions. In summary, our con-
tributions include: (1) a Deformer architecture for robust
and plausible 3D hand pose estimation from videos; (2)
a novel dynamic fusion module that explicitly deforms
nearby frames with clear hand visibility for robust hand
pose estimation in occluded or blurred frames; (3) a new
maxMSE loss function that focuses the model on critical
hand parts.

2. Related Work
3D hand pose estimation (HPE) aims to predict the 3D

coordinates of the 21 hand joints, or more precisely, re-
cover the hand mesh. It is a crucial computer vision task
for understanding human activities, which plays an impor-
tant role in many applications, including human-computer
interaction [43, 47, 54], AR/VR [44, 24], imitation learn-
ing [53, 18, 15], and etc.

Hand Pose Estimation from a Single Image Single-
view methods for hand pose estimation can be broadly
divided into two categories: model-free and model-based
methods.

Model-free methods [62, 57, 32, 31, 41, 42, 30, 49] di-
rectly regress the 3D coordinates or occupancy of hand
joints and mesh vertices. For example, [30] uses a graph
convolutional neural network to model triangle mesh topog-
raphy and directly predicts the 3D coordinates of hand mesh
vertices. [42] discretizes the 3D space into a voxel grid, and
proposed a CNN in the stacked hourglass [39] style to esti-
mate per joint occupancy. As hand mesh has a high degree
of freedom, model-free methods need to introduce biolog-
ical constraints [49] to get reasonable predictions. Mean-
while, these methods need a lot of data to train due to the
lack of priors.

Recently, [48] introduces a pre-defined hand model,
named MANO, which contains abundant structure priors of
human hands. It reduces the dimensions by mapping a set
of low-dimensional pose and shape parameters to a hand
mesh. Most model-based methods [20, 36, 3, 4, 58] instead
predict the MANO parameters, which consists of the pose
and shape deformation w.r.t. a mean pose and shape learned
from various hand scans of multiple subjects. 3D joints and
mesh vertices coordinates can be retrieved from the pre-
dicted parameters using the differentiable MANO model.
For instance, [58] develops an end-to-end framework opti-
mized by a differentiable re-projection loss to recover the
hand mesh. [20] exploits the contact loss between hand and
object to ensure the prediction is physically plausible. In
this work, we leverage the MANO model to reduce reliance
on annotations and prevent overfitting.

While image-based methods have made remarkable
progress, their predictions are not stable due to the occlu-
sions and visual jitters in static images.

Temporal Hand Pose Estimation Some recent meth-
ods [36, 56, 29, 19, 40, 13, 59, 50] start to explore the tem-
poral information in videos to regularize the per-frame pre-
diction. [19] exploits the photometric consistency between
the re-projected 3D hand prediction and the optical flow of
nearby frames. [56, 36] impose the temporal consistency
for smooth motions. [29] introduces a recurrent network as
a discriminator to supervise motion sequences through ad-
versarial training. Though the above methods use temporal
information as extra supervision, they are not specialized
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Figure 2: Overview of the Deformer Architecture. Our approach uses transformers to reason spatial and temporal relation-
ships between hand parts in an image sequence, and output frame-wise hand pose and motion. In order to overcome the
challenge when the hand is heavily occluded or blurred in some frames, the Dynamic Fusion Module explicitly deforms the
hand poses from neighborhood frames and fuses them toward a robust hand pose estimation.

for sequence input and the models fail to leverage the dy-
namic from the video.

Alternatively, [5] exploits spatial and temporal relation-
ships using a graph convolutional neural network to predict
3D hand pose. However, it relies on the 2D pose estimator
[39] to pre-computed consecutive 2D hand poses as input
and can’t be optimized jointly. Recently, [27] utilizes tem-
poral information by propagating frame-wise features using
a sequence-to-sequence model based on LSTM [23], yet it
only gives sparse joint location predictions. [10] presents
a temporally consistent system that synthesizes the implicit
feature from the past and future to recover the mesh of the
center frame. Those methods, mainly relying on recurrent
neural network, assumes a strong dependency on local rela-
tionships, which suffers from modeling long-range depen-
dency. Differently, our transformer-based method can ex-
plicitly attend to every frame as direct evidence, without
being constrained by spatial and temporal gaps, to give an
accurate hand pose estimation.

Transformer-based Methods Transformer [52] has
been the dominant model in various NLP tasks [11, 45, 46].
In contrast to CNNs, the self-attention mechanism at the
heart of the Transformer has no strong inductive biases and
can adaptively attend to a sequence of features. Inspired
by its success and versatility, there are growing interests in
applying the self-attention layer to computer vision tasks,
including classification [12, 37], detection [7, 60], video
understanding [2, 38], human-object interaction [14, 28],

etc. Recently, [32, 25] applied the transformer to exploit
non-local interactions for 3D human pose and mesh recon-
struction from a single image. [36] utilizes the transformer
to perform explicit contextual reasoning between hand and
object representations. Differently from these methods only
focusing on the spatial relationships in static images, we
propose a sequential transformer structure to simultane-
ously model spatiotemporal relationships of hand joints and
their motion for hand pose estimation from video.

3. Method
The overview structure of our framework is illustrated

in Fig. 2. Given an input image sequence V = {It}Tt=1

of length T, we aim to estimate the 3D hand joints Jt and
mesh vertices Vt. To achieve the goal, we first use a pre-
trained CNN to extract the hand feature map in every frame.
Then we learn transformers to sequentially reason spatial
and temporal relationships, which outputs a set of attended
latent vectors containing information on hand mesh and mo-
tion at each timestamp. The latent feature vector, on one
hand, is used to regress the MANO parameters by an MLP,
which is served as the input to the differential MANO[48]
hand layer to recover the hand mesh.

In addition to estimating MANO parameters, we also
proposed a dynamic fusion module to estimate deformation
parameters and a confidence score from the hidden feature
to model hand motion and frame accountability. Finally, the
predicted hand motions are utilized to explicitly deform the
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hand mesh prediction of all timestamps into other frames
and integrated by the implicitly learned confidence scores,
resulting in a more accurate estimation of hand pose and
better handling of occlusions and blurs.

Apart from the MANO parameters, we further estimate
the deformation parameters and a confidence score from the
hidden feature to model the motion of the hand and the
accountability of the frame. Furthermore, we utilize the
predicted hand motions to explicitly deform the hand mesh
prediction of all timestamps into other frames and integrate
them with the implicitly learned confidence scores. This re-
sults in a more precise estimation of hand pose and better
handling of occlusions and blurs.

3.1. Deformer

The Deformer is a sequential combination of a spatial
transformer, a temporal transformer, and a dynamic fusion
module. The spatial transformer focuses on extracting a
compact representation from an image, which is robust to
occlusions. The network weight of the spatial transformer
is shared for all frames. The temporal transformer enhances
the hand feature by exploiting the correlation of hand in ev-
ery timestamp and regresses a global hand shape. The dy-
namic module learns the hand motion and frames account-
ability to explicitly fuse the frame-wise predictions toward
final hand pose estimations in a confidence-driven manner.

Spatial Transformer Following the idea of the hybrid
model [7, 28], our method first uses the truncated FPN [34]
with ResNet50 [22], followed by ROIAlign [21] to extract
initial hand feature Ft ∈ RH×W×C for every timestamp
t. The feature extracted by CNN, fundamentally using a
set of convolutional kernels, has an inductive bias toward
two-dimensional neighborhood structure. It suffers from
occlusions where local structures are contaminated. In or-
der to overcome this challenge, we incorporate the Trans-
former [52] to address non-local relationships to make our
method more robust.

The spatial transformer encoder expects a sequence as
input. Thus, we flatten the spatial dimension of the hand
feature, resulting in HW vectors where each has a length of
C. Those feature vectors, named tokens, are processed by
several layers of multi-head self-attention and feed-forward
network (FFN). Since every layer of the transformer is
permutation-invariant, we supplement the 2D location in-
formation to every token by adding 2D positional embed-
dings. The output feature Fe

t ∈ RHW×C of the transformer
encoder reinforces the original feature by capturing the non-
local interactions of all tokens. The enhanced feature should
contain rich contextual about the hand, including the lo-
cation of hand joints. As an intermediate supervision, we
regress a heatmap of hand joints Ĥt from Fe

t , and retrieve
the Nj = 21 joints location prediction Ĵ 2D

t ∈ R21×2.
Inspired by the idea of skip connection [22], the joints

heatmap is explicitly added to Fe
t through concatenation.

The spatial transformer decoder takes a learnable query
vector Q ∈ RC as input, and gradually fuses the infor-
mation from the combined feature of Fe

t and Ĵ 2D into it
through multiple layers of cross-attention and FFN. Dif-
ferent from self-attention generating query, key, and value
from the same set of tokens, cross-attention uses the learn-
able query vector to generate the query and utilizes learned
tokens as the source for key and value. Similar to [26],
the decoder adaptively selects relevant information from
the feature map and outputs a compact latent representation
F+

t ∈ RC of 3D hand. This greatly reduces the computa-
tional cost of temporal reasoning in the following stage.

Temporal Transformer Estimating hand pose simply
based on a single image is not robust for at least two rea-
sons. First, the visual appearance of the hand may change
significantly as time proceeds, causing image-based models
to generate unstable predictions. Second, a hand could be
frequently occluded by itself or objects during hand-object
interaction. In these scenarios, an accurate hand pose esti-
mation from a static image is even more challenging as only
part of the hand is visible.

In a video, movements of the hand allow us to observe
various parts of the hand which may be occluded or blurred
in a single frame. Motivated by this, we use a transformer
encoder to reason the feature interaction along the tempo-
ral dimension. Different from [27, 10, 29] using recur-
rent architecture [23, 9], the self-attention mechanism of
the transformer allows every frame directly benefits from
other frames without being constrained by the temporal dis-
tance. Similar to the spatial transformer encoder, the tem-
poral transformer encoder accepts the sequence of features
of every frame {F+

t }Tt=1 and outputs a new set of latent
vectors {F++

t }Tt=1. Given the feature, we use an MLP as
the mesh regression network to estimate the pose parame-
ter θ̂t. As the hand shape is consistent throughout all time,
we use a standard transformer decoder that extracts a single
feature from all frame-wise features and predicts a global
shape parameter β̂+.

Dynamic Fusion Module Though the output feature of
the temporal encoder encodes the relationships between the
neighborhood frames, it still has a strong dependency on
the current frame. When the current frame is heavily oc-
cluded or blurred, we found the model remains challenging
to regress an accurate hand mesh. However, the predictions
of its neighborhood are decent because the hand is more
clearly visible in those frames. Motivated by this observa-
tion, we argue it is important to refer to other frames to help
for a robust estimation of the current frame.

To achieve this goal, we predict a confidence score ĉt,

and a tuple of forward and backward motion (d̂θ
fw

t , d̂θ
bw

t )
as extra output from temporally attended latent vector F++

t

for every frame. The motion ground truth is the deformation
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Figure 3: We propose a novel maxMSE loss function (top)
that automatically assigns larger weights to the hand parts
with more significant errors (around fingertips), and lower
weights for well-predicted parts (around the wrist). Exper-
iments demonstrate the proposed maxMSE loss mitigates
the error imbalance issue (bottom) and leads to better over-
all performance.

of MANO parameters to the next and previous frames.

dθfwt = θt+1 − θt, dθbwt = θt−1 − θt (1)

The frame-wise motion prediction allows us to deform
the predicted hand pose of frame i to any frame j by

θ̂i→j =

θ̂i +
∑i−1

k=j d̂θ
bw

k if j < i

θ̂i +
∑j−1

k=i d̂θ
fw

k if j > i
(2)

We deform the hand pose of all frames in the sequence to
every timestamp t and synthesize them. Formally, the final
hand pose prediction θ̂+t is the weighted sum of deformed
frame-wise predictions based on the confidence

θ̂+t =

∑T
t′=1 e

ĉt′ θ̂t′→t∑T
t′=1 e

ĉt′
(3)

The 3D coordinates estimation of hand joints Ĵt ∈
R21×3 and mesh vertices V̂t ∈ R778×3 can be recovered
from the predicted MANO parameters (θ̂+t , β̂

+) with the
differentiable MANO layer [48].

3.2. Optimization

As the Deformer gives a sequence of hand poses as out-
put, its training is ill-posed without proper regularization.
To this end, we first design a novel loss function, named
maxMSE, to supervise the frame-wise hand mesh output.
In order to address the complex hand dynamics, we further
add temporal constraints and a learnable motion discrimi-
nator. The total loss is the linear combination of them

Lhand = Lmesh + Ladv + Laux (4)

maxMSE Loss MSE is a standard loss function for the
3D joints and mesh vertices locations. However, we found
there is a large discrepancy of error between different hand
positions. For example, the predictions of fingertips gen-
erally have large errors than those around the palm. This
fact motivated us to design a loss that adjusts the weight for
different hand parts. Inspired by focal loss [35], we intro-
duce the maxMSE loss, which adjusts the weight of every
location wi =

(Pi−P′
i)

2∑N
j=1(Pj−P′

j)
2 to maximize the MSE loss.

Specifically, the maxMSE loss for two sets of 3D points
P,P ′ ∈ RN×3 is

maxMSE(P,P ′) =

N∑
i=1

wi||Pi − P ′
i||2 =

∑N
i=1 ||Pi − P ′

i||4∑N
i=1 ||Pi − P ′

i||2
(5)

In training, maxMSE loss assigns a large weight to the
joints or vertices which have larger errors. It allows the
model to focus on difficult parts of the hand. We use
maxMSE as the loss of predicted hand mesh as

Lmesh =

T∑
t=1

maxMSE(V̂t,Vt) + maxMSE(Ĵt,Jt) (6)

Note we do not have a ground truth for the confidence
score of each frame ĉt. However, since it is compounded
with the final hand pose prediction, the end-to-end loss
Lhand implicitly supervises the confidence score.

Motion Discrimination The mesh loss enforces the
model to generate a hand pose aligned with the visual ev-
idence. However, as the temporal continuity of hand dy-
namic is ignored, multiple inaccurate hand pose estimations
in a sequence may still be recognized as valid. Following
[29], we mitigate this issue by learning a motion discrim-
inator D. The motion discriminator accepts a sequence of
hand mesh and tells whether it is real or not. To capture the
complexity and variety of hand motion, our motion discrim-
inator is a multi-layer GRU [9] neural network. The model
details are included in the supplementary.

We train the Deformer (generator) and the motion dis-
criminator together using adversarial training [16]. The
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Figure 4: Qualitative Comparison of the state-of-the-art single-view method [36] (top), video-based method [10] (middle),
and our method (bottom). For each method, the first row shows the predicted hand mesh, and the second row shows the error
map. The proposed Deformer robustly generates more stable and accurate poses over time than previous approaches.

losses of the generator and discriminator are

Ladv = EΘ∼pG
(D(pG)− 1)2 (7)

LD = EΘ∼pG
(D(pG))

2 + EΘ∼pR
(D(pR)− 1)2 (8)

where pG is a predicted hand mesh sequence and the pR is
a randomly sampled ground truth sequence.

Auxiliary Constrains The auxiliary loss [1] has been
shown to be beneficial for training a deep transformer. Our
auxiliary loss comprises two components: (1) intermediate
supervision to stabilize the training, and (2) temporal con-
straints to regularize the sequential output.

Laux = L2D + Lmonocular + Lmotion + Lsmooth (9)

Intermediate Supervision is applied to the intermediate
features Fe

t and F+
t as each timestamp. The output feature

Fe
t of the spatial transformer encoder should encode the 2D

static hand feature. We use it to regress a heatmap of 2D
hand joints and retrieve the 21 hand joints prediction Ĵ 2D.
The loss of Ĵ 2D is the difference between the hand joints
prediction and the re-projected ground truth hand mesh.

L2D =
∑
j∈Nj

||Ĵ 2D
j − J 2D

j ||22 (10)

The hand features Fe
t are aggregated into a single la-

tent vector F+
t by the spatial transformer decoder, which

should represent the 3D hand shape and pose. To supervise
this feature, we use it to estimate the MANO parameters
(θ̂t, β̂t) at every timestamp as the monocular prediction of
our method. Similar to the final output, we retrieve the 3D
mesh using the differential MANO layer. The monocular
loss Lmonocular is computed by comparing the predicted
3D mesh with the ground truth using the proposed maxMSE
loss function. Note that in addition to the 3D joints and ver-
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tices, the maxMSE loss also applies to all predicted MANO
parameters.

Temporal Constraints are employed to regularize the se-
quential output to be consistent and smooth. First, we add a
motion loss Lmotion to enforce the deformed hand mesh
(θ̂t→t−1, θ̂t→t+1) based on the predicted motion (d̂θ

bw

t ,

d̂θ
fw

t ) to be consistent with the previous and subsequent
frames. Second, in order to generate a smooth hand pose
sequence without jittering, the hand motion should be slow.
We achieve this goal by adding the smooth loss Lsmooth

that encourages the first-order and second-order derivative
of the hand pose estimations to be close to zero.

3.3. Implementation Details

Motion Discrimination Our method is capable of pro-
cessing an image sequence of arbitrary length. For the
purposes of this paper, we empirically selected a sequence
length of T = 7 with a gap of 10 frames between consec-
utive sampled frames to capture meaningful hand motion
over approximately 2-3 seconds, while balancing memory
cost and performance considerations.

Model We use the ResNet-50[22] followed by
ROIAlign[21] to extract the initial hand feature with
a resolution of 32 × 32 and a feature size of 256. For
the spatial transformer encoder and decoder, we use 3
multi-head self-attention layers. Each self-attention has 8
heads and a feedforward dimension of 256. We use a size
of 256 for the query vector in the transformer decoder. The
temporal transformer structure is identical to the spatial
transformer.

Optimization Except that the ResNet-50 is pre-trained
on ImageNet, both the SpatioTemporal transformer and mo-
tion discriminator are trained from scratch in an end-to-end
manner. We use the Adam optimizer with a learning rate of
1×10−5 for the SpatioTemporal transformer, and 1×10−3

for the motion discriminator. Following the standard ad-
versarial training protocol, the generator (SpatioTemporal
transformer) and the discriminator are updated alternatively
in each step. The entire training takes 60 epochs and all
the learning rate is scaled by a factor of 0.7 after every 10
epoch.

Computational Cost We used 8 RTX 2080Ti GPUs to
train the model. On a single RTX 2080Ti, the inference
speed of the Deformer inferences is 105 FPS or 15 FPS,
depending on the stride selected.

4. Experiments
In this section, we first describe two public datasets used:

DexYCB [8] and HO3D [17]. Next, we show our method
achieves state-of-the-art performance compared to compet-
itive baselines. Finally, we demonstrate the effectiveness of
major designs in ablation studies.

4.1. Dataset

DexYCB contains multi-camera videos of humans
grasping 20 YCB [6] objects. It consists of 1000 sequences
with 582K frames captured by cameras from 8 different
views. During the data collection, there are multiple ran-
domly chosen objects placed on the table. Together with the
hand-held object, the hands are frequently occluded during
hand-object interaction. We deliberately use these challeng-
ing scenarios to test the robustness of the proposed method,
especially under occlusions.

HO3D is a large-scale video dataset for hand pose esti-
mation. It consists of 68 sequences captured from 10 sub-
jects manipulating 10 kinds of YCB [6] objects. There are
77,558 frames: 66,034 for training and 11,524 for testing.
As the test set annotation is not released, we submit our pre-
dictions to the official online system for evaluation.

4.2. Evaluation Metric

We employ the standard metric for hand pose estimation:
the Mean Per Joint Position Error (MPJPE) in millimeters
(mm), measured after Procrustes alignment. In addition, we
present the F-scores and AUC scores as provided by the
official evaluation system for each dataset. The released
DexYCB test set is further partitioned into three categories
based on the hand-object occlusion level, which is deter-
mined by the percentage of the hand obscured by the object
when re-projected onto the 2D image plane. These levels
are set at 25%, 50%, and 75%. We report the results for
each category separately to assess the robustness of various
methods in handling occlusions.

Following VIBE [29], we add a temporal consistency
metric: the acceleration error in (mm)/s2. This met-
ric quantifies the discrepancy in acceleration between the
ground truth and the predicted 3D joint positions. More-
over, we include the root-aligned MPJPE metric, which
evaluates accuracy by aligning the predicted and ground-
truth 3D hand roots solely through translation.

4.3. Results and Analysis

We compare the proposed method with state-of-the-art
video-based method [10, 51, 61, 29], and single-view meth-
ods [55, 20, 36, 17, 33, 40, 49] as shown in Tab. 1, Tab. 2,
and Tab. 3. The quantitative results demonstrate our method
outperforms previous methods, especially under occlusion
cases (also shown in Fig. 5). Note that our approach has
31M parameters, which is 20% less than [40] (39M), but
still achieves similar performance in the HO3D dataset and
better performance in the larger DexYCB dataset. We also
include the error of each hand joint at Fig. 3, where we can
observe the proposed maxMSE loss mitigates the error im-
balance issue and helps the network focus on critical hand
parts like fingertips.
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Methods Input All Occlusion (25%-50%) Occlusion (50%-75%) Occlusion (75%-100%)
A2J [55] Depth 12.07 (76.0) 12.44 (75.3) 14.74 (70.7) 19.59 (61.5)

[49] + ResNet50 Monocular 7.12 (85.8) 7.65 (84.7) 8.73 (82.6) 11.90 (76.3)
[49] + HRNet32 Monocular 6.83 (86.4) 7.22 (85.6) 8.00 (84.0) 10.65 (78.8)

MeshGraphormer [33] Monocular 6.41 (87.2) 6.85 (86.3) 7.22 (85.6) 7.76 (84.5)
[36] Monocular 6.33 (87.4) 6.70 (86.6) 7.17 (85.7) 8.96 (82.1)
[40] Monocular 5.80 (88.4) 6.22 (87.6) 6.43 (87.2) 7.37 (85.3)

S2HAND(V ) [51] Sequence 7.27 (85.5) 7.74 (84.5) 7.71 (84.6) 7.87 (84.3)
VIBE [29] Sequence 6.43 (87.1) 6.72 (86.5) 6.84 (86.4) 7.06 (85.8)

TCMR [10] Sequence 6.28 (87.5) 6.56 (86.9) 6.58 (86.8) 6.95 (86.1)
Ours Sequence 5.22 (89.6) 5.71 (88.6) 5.70 (88.6) 6.34 (87.3)

Table 1: Quantitative MPJPE in mm and (AUC Score) comparison of state-of-the-art hand pose estimation methods on the
DexYCB dataset. Our model (last row) greatly reduces the error in all hand-object occlusion levels, especially when the hand
is heavily occluded (last column).
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Figure 5: The mean ± standard deviation of MPJPE on
DexYCB test data samples within different hand-object oc-
clusion level ranges. Compared to [36], our method signif-
icantly reduces the hand pose estimation error in all occlu-
sion levels, especially when the hand is heavily occluded.

Methods root-aligned MPJPE Accel (mm/s2)

VIBE [29] 16.95 (67.5) 36.4
TCMR [10] 16.03 (70.1) 34.3

S2HAND(V ) [51] 19.67 (62.5) 41.6
MeshGraphormer [33] 16.21 (69.1) 35.9

[36]+Temporal Transformer+maxMSE 14.81 (72.0) 33.3
[40]+Temporal Transformer+maxMSE 15.15 (70.8) 33.4

Ours 13.64 (74.0) 31.7

Table 2: Quantitative comparison of root-aligned MPJPE
in mm and (AUC Score), and the acceleration error on the
DexYCB.

We also provide qualitative comparisons between state-
of-the-art methods by visualizing the hand mesh prediction
aligned with images in Fig. 4. As we shall observe, af-
ter addressing both spatial and temporal relationships, our
method can robustly produce hand mesh estimations that
align with visual evidence and have a more smooth and

Methods Input
Hand Error (↓) Hand F-score (↑)
Joint Mesh F@5 F@15

[20] Monocular 11.1 11.0 46.0 93.0
[17] Monocular 10.7 10.6 50.6 94.2
[36] Monocular 10.1 9.7 53.2 95.2
[40] Monocular 9.1 8.8 56.4 96.3

VIBE [29] Sequence 9.9 9.5 52.6 95.5
TCMR [10] Sequence 11.4 10.9 46.3 93.3

TempCLR [61] Sequence 10.6 10.6 48.1 93.7
Ours Sequence 9.4 9.1 54.6 96.3

Table 3: Quantitative MPJPE in mm and F-scores compari-
son of state-of-the-art hand pose estimation methods on the
HO3D dataset. Note that our approach has 31M parameters,
which is 20% less than [40] (39M), but still achieves similar
performance in the HO3D dataset and better performance in
the larger DexYCB dataset.

more plausible hand motion. We include more qualitative
results and visualization in the supplementary.

4.4. Ablation Study

We perform ablation studies on both HO3D and
DexYCB to explain how each component contributes to the
final performance. Specifically, we examine the effects of
the Dynamic Fusion Module, the maxMSE loss, and the
motion discrimination.

Effect of Dynamic Fusion Module The function of the
dynamic fusion module is to explicitly synthesize the hand
mesh prediction of neighborhood frames to estimate a more
accurate hand mesh at the current frame which is robust
to occlusions. It adaptively chooses to focus on specific
frames by predicting a weight factor for soft fusion. The
dynamic fusion module resolves the ambiguity when the
current visual feature is badly contaminated by occlusions
or motion blur. To validate its effectiveness, we compare
with three variants in Tab. 4 and Tab. 6. First, we simply re-
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Aggregation All Occlusion (25%-50%) Occlusion (50%-75%) Occlusion (75%-100%)
Center 5.72 (88.6) 6.11 (87.8) 6.14 (87.7) 6.75 (86.5)

Average 5.40 (89.2) 5.79 (88.4) 5.84 (88.3) 6.39 (87.2)
Weighted (Occlusion Level) 5.34 (89.3) 5.78 (88.4) 5.76 (88.5) 6.33 (87.3)

Dynamic 5.22 (89.6) 5.71 (88.6) 5.70 (88.6) 6.34 (87.3)

Table 4: Ablation studies of Dynamic Fusion Module on the DexYCB dataset. The evaluation metric is MPJPE in mm and
(AUC Score).

maxMSE Motion Discrimination All Occlusion (25%-50%) Occlusion (50%-75%) Occlusion (75%-100%)
✗ ✗ 5.72 (88.6) 6.11 (87.8) 6.14 (87.7) 6.75 (86.5)
✗ ✓ 5.63 (88.7) 6.00 (88.0) 5.92 (88.2) 6.62 (86.8)
✓ ✗ 5.43 (89.1) 6.05 (87.8) 6.00 (88.0) 6.59 (86.8)
✓ ✓ 5.22 (89.6) 5.71 (88.6) 5.70 (88.6) 6.34 (87.3)

Table 5: Ablation studies of the maxMSE loss and Motion Discrimination on the DexYCB dataset. The evaluation metric is
MPJPE in mm and (AUC Score).

Aggregation
Hand Error (↓) Hand F-score (↑)
Joint Mesh F@5 F@15

Center 9.8 9.3 52.8 96.2
Average 9.9 9.5 52.6 95.9

Weighted (Occlusion Level) 9.6 9.2 52.9 96.2
Dynamic 9.4 9.1 54.6 96.3

Table 6: Ablation studies of Dynamic Fusion Module on
the HO3D dataset. The evaluation metric is MPJPE in mm
and F-scores.

Low (0.05) High (0.36) Med (0.25) Med (0.22) Low (0.12)

Figure 6: Visualization of the confidence score predicted
by the Dynamic Fusion Module. The proposed module can
implicitly learn visual accountability and assign lower con-
fidence to frames where hands are blurred and occluded.

move this module and evaluate the frame-wise predictions,
noted as ”Center” in the tables. Secondly, we averaged the
deformed predictions from all frames to confirm the benefit
of soft fusion, noted as ”Average” in the tables. Third, we
show the results of using the object occlusion level as the
weighting factor, which shows a learnable confidence score
that allows the network to take more practical factors other
than occlusions into comprehensive consideration.

Effect of the maxMSE Loss Compared to vanilla MSE,
the proposed maxMSE loss enforces the model to focus on
critical hand parts, such as fingertips, by assigning higher
weights to the vertices with larger errors. To evaluate the
effectiveness of the maxMSE loss, we compare it with a
model trained using the standard MSE loss but with an iden-

tical architecture. The quantitative results are presented in
Tab. 5, where we can observe the maxMSE leads to better
overall performance. Moreover, we visualize the error of
every hand joint in Fig. 3, where we observe that the errors
around the fingertips are lower and the overall error distri-
bution is more balanced among different hand parts when
using the maxMSE loss.

Effect of Motion Discrimination The motion discrim-
inator implemented by a neural network is used to provide
adversarial supervision to ensure the predicted hand pose
sequence aligns with the data priors. We examine its effec-
tiveness by reporting the performance of the model trained
with and without the motion discriminator. Tab. 5 reveals
the benefits of incorporating adversarial training.

5. Conclusion

In this paper, we propose a novel Deformer architecture
for robust and plausible 3D hand pose estimation in videos.
Our method reasons non-local relationships between hand
parts in both spatial and temporal dimensions. To mitigate
the issue when a hand is badly occluded or blurred in one
frame, we introduce a Dynamic Fusion Module that explic-
itly and adaptively synthesizes deformed hand mesh predic-
tion of neighborhood frames for robust estimation. Finally,
we invented a new loss function, named maxMSE, which
adjusts the weight of joints to enforce the model to focus on
critical hand parts. We carefully examine every proposed
design and demonstrate how they contribute to our state-of-
the-art performance on large-scale real-life datasets. Future
work shall explore ways to learn fine-grained representation
from videos, and reduce the dependency on annotations.
Acknowledgement: This work is funded in part by JST
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[24] Markus Höll, Markus Oberweger, Clemens Arth, and Vin-
cent Lepetit. Efficient physics-based implementation for re-
alistic hand-object interaction in virtual reality. In 2018 IEEE
Conference on Virtual Reality and 3D User Interfaces (VR),
pages 175–182. IEEE, 2018. 2

[25] Lin Huang, Jianchao Tan, Jingjing Meng, Ji Liu, and Junsong
Yuan. Hot-net: Non-autoregressive transformer for 3d hand-
object pose estimation. In Proceedings of the 28th ACM
International Conference on Multimedia, pages 3136–3145,
2020. 3

[26] Andrew Jaegle, Felix Gimeno, Andy Brock, Oriol Vinyals,
Andrew Zisserman, and Joao Carreira. Perceiver: General
perception with iterative attention. In International confer-
ence on machine learning, pages 4651–4664. PMLR, 2021.
4

[27] Leyla Khaleghi, Alireza Sepas-Moghaddam, Josh Marshall,
and Ali Etemad. Multiview video-based 3-d hand pose esti-
mation. IEEE Transactions on Artificial Intelligence, 4:896–
909, 2021. 3, 4

[28] Bumsoo Kim, Junhyun Lee, Jaewoo Kang, Eun-Sol Kim,
and Hyunwoo J Kim. Hotr: End-to-end human-object in-
teraction detection with transformers. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 74–83, 2021. 3, 4

[29] Muhammed Kocabas, Nikos Athanasiou, and Michael J
Black. Vibe: Video inference for human body pose and
shape estimation. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, pages
5253–5263, 2020. 2, 4, 5, 7, 8

[30] Nikos Kolotouros, Georgios Pavlakos, and Kostas Dani-
ilidis. Convolutional mesh regression for single-image hu-
man shape reconstruction. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 4501–4510, 2019. 2

[31] Sijin Li and Antoni B Chan. 3d human pose estimation from
monocular images with deep convolutional neural network.
In Asian Conference on Computer Vision, pages 332–347.
Springer, 2014. 2

[32] Kevin Lin, Lijuan Wang, and Zicheng Liu. End-to-end hu-
man pose and mesh reconstruction with transformers. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 1954–1963, 2021. 2, 3

[33] Kevin Lin, Lijuan Wang, and Zicheng Liu. Mesh
graphormer. In Proceedings of the IEEE/CVF international

conference on computer vision, pages 12939–12948, 2021.
7, 8

[34] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He,
Bharath Hariharan, and Serge Belongie. Feature pyra-
mid networks for object detection. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 2117–2125, 2017. 4

[35] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and
Piotr Dollár. Focal loss for dense object detection. In Pro-
ceedings of the IEEE international conference on computer
vision, pages 2980–2988, 2017. 2, 5

[36] Shaowei Liu, Hanwen Jiang, Jiarui Xu, Sifei Liu, and Xi-
aolong Wang. Semi-supervised 3d hand-object poses es-
timation with interactions in time. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 14687–14697, 2021. 2, 3, 6, 7, 8

[37] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng
Zhang, Stephen Lin, and Baining Guo. Swin transformer:
Hierarchical vision transformer using shifted windows. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 10012–10022, 2021. 3

[38] Ze Liu, Jia Ning, Yue Cao, Yixuan Wei, Zheng Zhang,
Stephen Lin, and Han Hu. Video swin transformer. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 3202–3211, 2022. 3

[39] Alejandro Newell, Kaiyu Yang, and Jia Deng. Stacked hour-
glass networks for human pose estimation. In European con-
ference on computer vision, pages 483–499. Springer, 2016.
2, 3

[40] JoonKyu Park, Yeonguk Oh, Gyeongsik Moon, Hongsuk
Choi, and Kyoung Mu Lee. Handoccnet: Occlusion-robust
3d hand mesh estimation network. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 1496–1505, 2022. 2, 7, 8

[41] Sungheon Park, Jihye Hwang, and Nojun Kwak. 3d human
pose estimation using convolutional neural networks with 2d
pose information. In European Conference on Computer Vi-
sion, pages 156–169. Springer, 2016. 2

[42] Georgios Pavlakos, Xiaowei Zhou, Konstantinos G Derpa-
nis, and Kostas Daniilidis. Coarse-to-fine volumetric pre-
diction for single-image 3d human pose. In Proceedings of
the IEEE conference on computer vision and pattern recog-
nition, pages 7025–7034, 2017. 2

[43] Vladimir I Pavlovic, Rajeev Sharma, and Thomas S. Huang.
Visual interpretation of hand gestures for human-computer
interaction: A review. IEEE Transactions on pattern analysis
and machine intelligence, 19(7):677–695, 1997. 2

[44] Thammathip Piumsomboon, Adrian Clark, Mark
Billinghurst, and Andy Cockburn. User-defined gestures for
augmented reality. In IFIP Conference on Human-Computer
Interaction, pages 282–299. Springer, 2013. 2

[45] Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya
Sutskever, et al. Improving language understanding by gen-
erative pre-training. 2018. 3

[46] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario
Amodei, Ilya Sutskever, et al. Language models are unsu-
pervised multitask learners. OpenAI blog, 1(8):9, 2019. 3

23610



[47] Siddharth S Rautaray and Anupam Agrawal. Vision based
hand gesture recognition for human computer interaction: a
survey. Artificial intelligence review, 43(1):1–54, 2015. 2

[48] Javier Romero, Dimitris Tzionas, and Michael J Black. Em-
bodied hands: Modeling and capturing hands and bodies to-
gether. ACM Transactions on Graphics, 36(6), 2017. 2, 3,
5

[49] Adrian Spurr, Umar Iqbal, Pavlo Molchanov, Otmar Hilliges,
and Jan Kautz. Weakly supervised 3d hand pose estimation
via biomechanical constraints. In European Conference on
Computer Vision, pages 211–228. Springer, 2020. 2, 7, 8

[50] Garvita Tiwari, Dimitrije Antić, Jan Eric Lenssen, Nikolaos
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