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Abstract

Recent works on pose-based gait recognition have
demonstrated the potential of using such simple informa-
tion to achieve results comparable to silhouette-based meth-
ods. However, the generalization ability of pose-based
methods on different datasets is undesirably inferior to
that of silhouette-based ones, which has received little at-
tention but hinders the application of these methods in
real-world scenarios. To improve the generalization abil-
ity of pose-based methods across datasets, we propose a
Generalized Pose-based Gait recognition (GPGait) frame-
work. First, a Human-Oriented Transformation (HOT) and
a series of Human-Oriented Descriptors (HOD) are pro-
posed to obtain a unified pose representation with discrim-
inative multi-features. Then, given the slight variations
in the unified representation after HOT and HOD, it be-
comes crucial for the network to extract local-global rela-
tionships between the keypoints. To this end, a Part-Aware
Graph Convolutional Network (PAGCN) is proposed to en-
able efficient graph partition and local-global spatial fea-
ture extraction. Experiments on four public gait recognition
datasets, CASIA-B, OUMVLP-Pose, Gait3D and GREW,
show that our model demonstrates better and more stable
cross-domain capabilities compared to existing skeleton-
based methods, achieving comparable recognition results
to silhouette-based ones. Code is available at https:
//github.com/BNU-IVC/FastPoseGait.

1. Introduction
Gait recognition is an essential task in the human iden-

tification field. Compared with existing biometric identifi-
cation methods, such as face, fingerprint, and iris recogni-
tion, it can capture long-distance gait features without the
cooperation of subjects. Existing studies of gait recogni-
tion can mainly be divided into two streams, appearance-
based [4–6, 11, 12, 17, 39] and model-based methods [19,
21, 23, 31, 32, 38]. Specifically, the appearance-based meth-
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Figure 1. GPGait achieves state-of-the-art generalization perfor-
mance across four popular gait datasets. In each subgraph, three
vertices correspond to the source domain. Arrows (−→) point to the
target domain. Triangles in different colors represent the general-
ization ability of different models under cross-domain settings.

ods try to directly learn gait features from the silhouette se-
quences and have been the dominant approach for a long
time. And the model-based methods try to explicitly es-
timate human body structures (e.g., keypoints or 3D mesh)
for gait recognition. Despite that the performance is inferior
to the appearance-based methods at the moment, the model-
based methods have their own advantage of being robust to
carrying and clothing, which is appealing to practical appli-
cations and thus deserves continuous attention.

Model-based methods mostly take human poses (i.e.,
keypoints) as the input which encodes visual clues for body
structure and proportion in an explicit way. Benefiting from
the rapid development in pose estimation [2, 7, 16, 29] and
graph-based models (GCN [28, 36] and Transformer [24]),
pose-based methods have achieved fairly surprising results
in some cases [31,32,38], e.g., GaitTR [38] introduces Spa-
tial Transformer to establish overall spatial relationships be-
tween keypoints. The model achieves much higher accu-
racy than previous pose-based methods [31,32] on CASIA-
B [37], even surpassing the accuracy of appearance-based
methods [4, 6, 11, 20] in clothes-changing conditions.
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However, a vital problem is ignored in these research,
i.e., generalization ability. Through a preliminary study as
shown in Fig.1, we find that the performance of these meth-
ods tends to drastically degrade when testing gait sequences
from unseen environments, limiting the application in real-
istic scenarios. Our analysis suggests that the decline in
cross-domain performance can be linked to various factors:
(1) scale variations due to the distance to cameras, (2) tilt
and horizontal views due to the deployment of cameras,
(3) offsets within the camera coordinate system. All these
factors can cause intense changes in data distributions, re-
sulting in a dramatic decline in performance when there are
variations in cameras and environments.

To promote the research on model-based gait recogni-
tion, we aim to design a framework for Generalized Pose-
based Gait Recognition (GPGait) that can effectively im-
prove the generalization ability of pose-based methods. Par-
ticularly, we try to solve the problem from two perspectives:
a human-oriented input that is comparable across different
cameras, and a part-aware model that extracts fine-grained
body features for recognition.

In terms of input format, we propose a Human-Oriented
Transformation (HOT) and a series of Human-Oriented De-
scriptors (HOD) to obtain a unified and enriched represen-
tation. Specifically, HOT consists of three steps, namely
affine transform, body rescale, and body alignment, through
which the original skeleton sequences captured in the cam-
era coordinate system are transformed into unified repre-
sentations in the human-oriented coordinate system. Then,
to enrich the input, we carefully design a module named
Human-Oriented Descriptors (HOD) to generate individual-
invariant features of bone and angle to explicitly reflect the
body proportion and structure.

Regarding the modeling, we argue that the fine-grained
learning for different human parts is the key to extracting
discriminative gait features and improving the generaliza-
tion ability. Although we can obtain a unified represen-
tation with HOT and HOD, the uniform gait expression
exhibits less variation over time compared to the original
pose sequence. Therefore, it is imperative to capture the
local-global relationships between the keypoints, where lo-
cal features can capture the slight changes in pose and the
global ones can represent the entire human structure. In-
spired by the recent progress in the field of gait recogni-
tion [3, 4, 6, 11, 20] and domain generalization [5], we de-
sign a Part-Aware Graph Convolutional Network (PAGCN)
which can efficiently implement graph partition and local-
global relationship construction through mask operations on
the adjacency matrix.

To summarize, we make the following three major con-
tributions:

• In the HOT module, a series of human-oriented oper-
ations are proposed to facilitate a uniform input that

overcomes problems caused by various environmental
covariances. The input is further enriched in the HOD
module to explicitly reflect the skeleton structure and
movement.

• We present PAGCN to achieve efficient graph parti-
tion and local-global feature relation extraction under
the unified pose representation. With different part-
specific masks and a well-designed network structure,
the method can not only capture fine-grained features
and distinct local relations but also reduce the amount
of calculations and the number of parameters required.

• Extensive experiments demonstrate that the proposed
GPGait framework achieves state-of-the-art general-
ization results in all scenarios (indoor and outdoor) un-
der cross-domain settings. Especially, the result of the
cross-domain test on GREW−→CASIA-B outperforms
previous methods by a large margin of 34.69%.

2. Related Work

2.1. Gait Recognition

Gait recognition methods can be classified into two main
categories: appearance-based [4,6,9,11,12,17] and model-
based methods [14, 15, 18, 19, 31, 32, 35] depending on the
type of data input. Appearance-based methods usually rely
on silhouette sequences [4, 6, 11, 12, 17] or their transfor-
mation, such as Gait Energy Image (GEI) [9] and Chrono-
Gait Image (CGI) [34]. Model-based methods, on the other
hand, represent the human body as mesh [14,15,35] or a set
of keypoints [18, 19, 31, 32].

Silhouette-based methods GaitSet [4] aggregates tem-
poral information in silhouette sequences using a statisti-
cal function to adapt to different frame rates. GaitPart [6]
uses Focal Convolutional Layer to extract fine-grained lo-
cal features and Micro-motion Template Builder with dif-
ferent window sizes to extract local temporal information.
GaitGL [20] uses 3D Convolution to extract global and local
spatiotemporal information. LagrangeGait [3] adds a local
motion extractor and a viewpoint branch based on GaitGL
to get more discriminative local temporal information.

Pose-based methods PoseGait [19] employs 3D pose in-
formation to generate multi-feature vectors and uses a CNN
to extract the gait information in both spatial and tempo-
ral dimensions. GaitGraph [32] and GaitGraph2 [31] adopt
Graph Convolutional Network for gait recognition, treat-
ing keypoints as nodes and limbs as edges to form a topol-
ogy graph. GaitTR [38] and GaitMixer [23] use the self-
attention [33] to explore long-range spatial correlations, and
temporal convolution with a large kernel size to extract long
temporal information.
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Figure 2. The framework of GPGait. The original pose sequence is first transformed into a unified representation by Human-Oriented
Transformation. Then, angle, bone and joint features generated by Human-Oriented Descriptors are learned dependently through a multi-
branch network named PAGCN. The output features are concatenated in part dimension and learned by a fully connected layer separately.
Finally, a widely used BNNeck [22] is adopted to adjust feature space. Triplet loss [10] and cross-entropy loss are utilized to supervise the
whole training process.

2.2. Generalization in Gait Recognition

The generalization ability of the model is a practically
significant concern. From GaitSet [4] to LagrangeGait [3],
the size of all the silhouette data is aligned based on meth-
ods in [30]. Each silhouette is put in the central position
to generate a uniform representation, which is more stable
and robust than the original input. Cross-domain experi-
ments are done by [40] with the backbone of GaitSet be-
tween popular public datasets and Gait3D to prove the im-
portance of in-the-wild datasets. GaitEdge [17] evaluates
their method on cross-dataset settings to demonstrate the ir-
relevance to RGB texture and color. Self-supervised learn-
ing has also been employed by [5] to improve the ability
to generalize in unseen domains. In skeleton-based meth-
ods, PoseGait [19] and CNN-Pose [1] use the human neck
to align the skeletons and spine length to rescale the body.
However, the spine length is sensitive to occlusion which in-
troduces noise and even errors. Rashmi et al. [25] uses the
dataset-independent statistics to rescale the skeleton, which
still lacks the ability to generalize for the scale changes of
skeletons across datasets.

3. Method
In this section, we first present the pipeline of GPGait.

Then we display a Human-Oriented Transformation (HOT)
and a series of Human-Oriented Descriptors (HOD) which

generate a unified and enriched pose representation, fol-
lowed by the description of the Part-Aware Graph Convo-
lutional Network (PAGCN) that is specially designed for
efficient fine-grained feature extraction.

3.1. Pipeline

As shown in Fig.2, the pose sequences are first fed into
Human-Oriented Transformation (HOT) to get a unified
pose representation. Then a series of Human-Oriented De-
scriptors (HOD) are obtained to generate discriminative and
domain-invariant features. Due to the different distributions
of joints, angles and bones, we perform different feature ex-
tractions with a parameter-independent multi-branch archi-
tecture. The multi-features are learned through Part-Aware
Graph Convolutional Network (PAGCN) which can enable
efficient human graph partitioning and local-global relation-
ship building. The pooling operations on semantic body
parts are utilized at the end of the network to get the final
embedding for recognition. We use the separate triplet and
cross-entropy losses to supervise the training process.

3.2. Human-Oriented Transformation

In this part, as Fig.2 shows, we transform the original
data from various cameras to a stable and unified pose rep-
resentation. Specifically, HOT consists of three phases of
affine transform, body rescale and alignment to eliminate
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the environment covariance like viewpoints, distance away
from the camera, offset noises, et al.

First, an affine transform is used to overcome the prob-
lem of slant skeletons resulting from different camera
views. Formally, we suppose the original 2D frame set of
one subject sequence is P = {p ∈ RTin×Vin×Cin} , where
Tin, Vin, Cin denote the number of input frames, joints,
and coordinates, respectively. We regard the neck pneck

as the median position of the right shoulder and left shoul-
der. Similarly, the location of hip joint phip is the average
of the right hip and the left hip. The spine is considered
as the line between the neck and hip. We take the spine as
the axis, and the neck as a center to transform the inclined
skeleton perpendicular to the ground. The rotation angle θ
is calculated as:

θ = arctan(
pcxneck − pcxhip

p
cy
neck − p

cy
hip

), (1)

where cx is the coordinate of x-axis and cy is the coordi-
nate of y-axis. Affine transform is applied exclusively to
sequences with serious slant problems when the angle θ is
larger than the threshold ϕ. Otherwise, the original pose P
is directly adapted. We assume the concatenation of P and
pneck in C dimension is D = {di|i = 1, 2, ..., Vin}. The
process can be formulated as:

Pa =

{
MaD, θ ⩾ ϕ

P, otherwise
(2)

Ma =

[
cos θ − sin θ 1− cos θ sin θ
sin θ cos θ − sin θ 1− cos θ

]
, (3)

di =
[
pcxi p

cy
i pcxneck p

cy
neck

]⊤
, (4)

where Pa is the output of the affine transform, Ma is the
affine transform matrix, pki denotes the i-th joint at the k-th
coordinate, and k ∈ {cx, cy}. After the series of operations,
the slanted human spine in all the sequences is perpendicu-
lar to the ground.

Second, considering the scale of the skeleton in each
frame is variational, we propose a simple yet effective body-
rescale (in Eq.5) method to achieve a uniform height of
skeletons by dividing the difference between the maximum
and minimum keypoint values along the vertical axis.

p′
i = pai ∗

hunif

max(pacy)−min(pacy)
, (5)

where pa is taken from Pa and hunif is a factor to control
the uniform body height.

Third, an alignment operation (in Eq.6) is performed on
the human joints, in which the camera coordinate is con-
verted to a human-oriented coordinate:

ji = p′
i − p′

neck. (6)

The unified pose sequence we get in this module is J =
{ji|i = 1, 2, ..., Vin} .
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Figure 3. The detailed description of COCO2017 format with 17
keypoints. The figure also illustrates the sketch of inner and pe-
ripheral angles calculated in Human-Oriented Descriptors.

3.3. Human-Oriented Descriptors

Recent works [19,31] have noticed that multi-input char-
acterization can lead to improved recognition performance.
However, these works tend to underestimate the potential
of the second-order information related to bones and an-
gles. Specifically, the input of bone and angle features usu-
ally have different distributions from that of joint features,
which can result in a totally different relation-learning pro-
cess in GCN. The direct input of joints or the earlier fusion
leads to distinct degradation in performance. So we explic-
itly add information of bone and angle to learn discrimina-
tive gait signatures.

For the bone features (in Eq.7), we consider the human
bone as vectors, i.e., B = {bi|i = 1, 2, ..., Vin}.

bi = ji − jadj(i), (7)

where adj(i) denotes the adjacency joint of i-th joint. For
angles of the skeletons, unlike previous works [28,31] using
angles between bones and the horizontal or vertical line, we
design a human-oriented angle-calculating method. Specif-
ically, we use inner angles and peripheral angles shown in
Fig.3, i.e., A = {ai|i = 1, 2, ..., Vin}.

ai =


arccos(

s2l (i) + s2r(i)− s2opp(i)

2 ∗ sl(i) ∗ sr(i)
), inner

arctan(
jcxi − jcxadj(i)

j
cy
i − j

cy
adj(i)

), peripheral

(8)

where the sl(i), sr(i), sopp(i) denotes the length of adjacent
sides and the opposite side of the i-th joint. adj(i) denotes
the adjacency joints of peripheral skeleton joints and jki de-
notes i-th joint at k-th coordinate. Specifically, taking the
14⃝ joint in Fig.3 as an example, [sl, sr] denotes the length
of [ 14⃝- 12⃝, 14⃝- 16⃝], while sopp denotes the length of 12⃝- 16⃝.
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Figure 4. The detailed structure of Part-Aware Graph Convolu-
tional Network (PAGCN) block.

3.4. Part-Aware Graph Convolutional Network

PAGCN Block Although we get a unified representation
to eliminate the camera covariance across datasets after
HOT and HOD, there are actually not so many changes in
body scale and offset when the subject is moving. So, it
is important to capture the local variation and the overall
structural information for the network. However, the tradi-
tional methods using graph convolutional network [31, 32]
or spatial transformer [38] only construct the global rela-
tions between the keypoints, in which the slight move of
some keypoints around the aligned center would be ignored.
According to this, we propose a Part-Aware Graph Convolu-
tional Network (PAGCN) to get local-global representations
by using different partitioned masks. Our PAGCN block
can be formulated in Eq.9 and described in Fig.4. The par-
titioned masks following the structure of the human body
are shown in Fig.5.

fout =

Kv∑
k

Wk(fin(Ak +Bk + Ck)⊙Mk), (9)

where Ak denotes the predefined adjacency matrix of nat-
ural human structure, Bk denotes the parameterized adja-
cency matrix which can be updated in an end-to-end learn-
ing manner, Ck denotes the self-attention adjacency matrix
which is used to construct global connections of joints for
each sequence, the Kv denotes the number of graph subset.
⊙ stands for element-wise product. Especially, the value of
Mk depends on the different body partition strategies G, as
shown in:

Mk(i1, i2) =

{
1, pi1 , pi2 ∈ g, g ⊂ G

0, otherwise
(10)

where G = {g1, g2, .., gn}, n means the number of differ-
ent body partition strategies shown in Fig.5. And the global
PAGCN block is with Mk(i1, i2) = 1. Different from the
previous work [26], PAGCN allows for explicit graph parti-
tion and unleashes the deep GCN’s expressive power in the
training phase through mask operations, which is verified in
the experimental study.

(a) (b) (c) (d)

Figure 5. The partition masks following the human body structure.
The larger body parts in (b), (c) and (d) are the combinations of 5
small parts in (a). The small black boxes in the adjacency matrices
of keypoints refer to 1 and the white ones refer to 0.

PAGCN Backbone The design of the backbone is mainly
based on the following considerations: 1) One part cannot
include too few keypoints because each of them contains
limited information. 2) In order to make each part as distin-
guishable as possible, we try to avoid including the infor-
mation of keypoints outside of the part during the process of
learning the relationships . 3) The backbone should be light
and efficient. 4) To adapt to diverse human feature distribu-
tions and enhance performance, multiple descriptor features
should be applied using different parameters. Motivated by
these principles, the overall backbone is composed of three
parameter-independent branches. And in each branch, we
stack 5-part PAGCN blocks with shared parameters in the
first few layers to construct relations between keypoints in
small parts as shown in Fig.2. In the last few layers, we
use larger-part PAGCN blocks to learn the relationships in-
side the major body parts and ensure better learning of part-
specific relationships by avoiding parameter sharing across
different partition masks. The whole architecture of the net-
work can not only learn the fine-grained body part features
but also prioritizes significant consideration of the second-
order joint information.

In previous works, using split feature maps is considered
effective for silhouette-based methods in gait recognition
tasks. Instead of pyramid mapping [4, 8], we use semantic
body feature mapping for the final recognition since every
keypoint has its own semantic information and each body
part has specific abilities for identification. We perform the
pooling operation on the predefined body parts and on the
whole body features to get the final embedding. We assume
that fM ∈ RT×V×C is the output of a last-layer PAGCN
block, C is the output channels, T is the number of frames
in a sequence and V is the number of keypoints. The feature
mapping in spatial dimension can be formulated as:

fn
vp = apn(fM ) + mpn(fM ), (11)
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where ap(·) refers to the statistical function average
pooling and mp(·) refers to max pooling along the V
dimension. n is the n-th body part. The output fn

vp ∈
RT×1×C . Then, a set pooling function is used to aggregate
the temporal information:

fn
tp = sp(fn

vp), (12)

where sp(·) is the max pooling function along the T di-
mension and fn

tp ∈ R1×1×C . The final representation for
recognition is to concatenate the output of each part from
three branches including joint, angle and bone branch:

Fbranch = cat(f1
tp, ..., f

n
tp), (13)

Ffinal = cat(Fjoint, Fangle, Fbone), (14)

3.5. Optimization

During training, the triplet loss [10] Ltriplet and the
cross-entropy loss LCE are calculated for each part inde-
pendently and the average of all parts is used to supervise
the learning process of the model:

Ljoint = Ltriplet + γLCE , (15)

where the hyper-parameter γ is used to balance the weights
of two losses.

4. Experiments
4.1. Datasets and Implementation Details

To validate the effectiveness of GPGait, we conduct ex-
periments under indoor (CASIA-B and OUMVLP-Pose)
and outdoor (Gait3D and GREW) scenarios, respectively.

CASIA-B [37] contains 124 subjects and each subject is
required to walk under three conditions. For each condi-
tion, 11 sequences from multiple viewpoints range from 0◦

to 180◦. During the testing stage, sequences of four nor-
mal conditions are regarded as the gallery, and the rest se-
quences are regarded as the probe. HRNet [29] is used
to extract pose data from the RGB videos following the
CASIA-B release agreement.

OUMVLP-Pose [1] is based on the large gait recognition
dataset OUMVLP [30] which contains 10,307 subjects, and
the sequences of each subject are collected from 14 views (0
◦, 15◦, ..., 90◦; 180◦, 195◦, ..., 270◦). There are 2 sequences
(#00-01) under each view. 5,153 subjects are split for train-
ing and 5,154 subjects are split for testing. During the test,
sequences with index #01 are regarded as the gallery and
those with index #00 are used as the probe.

Gait3D [40] is a wild dataset containing 4,000 subjects with
over 25,000 sequences. The data is collected in a supermar-
ket from 39 cameras. 3,000 subjects are used for training

and the rest for testing. At the testing stage, one sequence
of each subject is selected to build the probe, and the rest
sequences become the gallery.

GREW [41] is also a wild dataset that includes almost
3,500 hours from 882 cameras. GREW dataset is split into a
training set, a validation set and a testing set which contains
20,000, 345 and 6,000 subjects respectively. During testing,
two sequences of each subject are regarded as the probe and
the other two sequences are regarded as the gallery.

Implementation Details In all experiments, hunif is set
to a fixed number of 225. The threshold ϕ in Eq.2 is set
to 0.1 radians. We design the network capacity referring
to the baselines [31, 32, 38] and do not deliberately tune it.
Specifically, for CASIA-B and Gait3D, the number of 5-
part blocks is 3 and the vector sizes of each block are (64,
64, 128). While for OUMVLP and GREW, the number of
5-part blocks is 4 and the vector sizes of each block are (64,
128, 128, 128, 128). During training, the length of pose se-
quences is fixed to 30 for OUMVLP and 60 for others in
an unordered selecting manner. For data augmentations, we
apply left-right flipping of the skeleton with a probability of
0.01 and gaussian noises are added to each keypoint with a
probability of 0.3. The optimizer is adam [13] with a one-
cycle learning rate schedule [27] of three phases, where ini-
tial, maximum, and final learning rates are set to 1e-5, 1e-3,
and 1e-8. We adjust the batch size and the number of iter-
ations to fit different dataset scales. 1) On CASIA-B, we
train the model for 40k iterations with a batch size of (4,
32). 2) On Gait3D, we train the model for 60k iterations
with a batch size of (32, 4). 3) On OUMVLP and GREW,
the model is trained for 150k iterations with a batch size of
(32, 16), (32, 8), respectively. During the test stage, all the
frames of a sequence are fed into the network.

4.2. Performance Comparison

Evaluation for Cross-Domain Settings For a compre-
hensive comparison, we conduct cross-domain experiments
on previous pose-based methods to evaluate the ability of
generalization, i.e., train the model on the source dataset
(Source) and test on other datasets (Target). As shown
in Tab.1, our method outperforms the existing pose-based
methods over all of the source-target dataset pairs, sug-
gesting our model’s excellent generalization ability. In
particular, compared to the second-best methods trained
on the outdoor datasets, we achieve state-of-the-art re-
sults with considerable margins of 23.86%, 34.69% Rank-
1 on Gait3D−→CASIA-B and GREW−→CASIA-B respec-
tively. We have also surpassed the second-best result
trained on indoor datasets by a significant margin of 9.35%,
10.07% Rank-1 on CASIA-B−→GREW and OUMVLP-
Pose−→GREW respectively.

Furthermore, the cross-domain results of GPGait are

19600



Table 1. Rank-1 accuracy (%) on four popular datasets: cross-domain and single-domain performance of GPGait and recent state-of-the-art
pose-based methods, excluding identical-view case of indoor datasets. 1

Source
Dataset

Method
Target Dataset

CASIA-B
OUMVLP-Pose GREW Gait3D

NM BG CL Mean

CASIA-B

GaitGraph [32] 86.37 76.5 65.24 76.04 0.07 0.45 0.90
GaitGraph2 [31] 80.29 71.40 63.80 71.83 0.07 0.48 1.10

GaitTR [38] 94.72 89.29 86.65 90.22 0.07 0.62 1.10
GPGait(ours) 93.60 80.15 69.29 81.01 2.84 9.97 8.90

OUMVLP-Pose

GaitGraph [32] 4.85 4.84 3.90 4.53 4.24 0.67 1.50
GaitGraph2 [31] 8.83 7.62 5.13 7.19 70.68 0.85 1.40

GaitTR [38] 10.10 8.26 5.17 7.84 39.77 1.06 2.60
GPGait(ours) 44.36 31.97 22.35 32.90 59.11 11.13 9.00

GREW

GaitGraph [32] 10.54 7.73 5.73 8.00 0.17 10.18 4.40
GaitGraph2 [31] 8.85 7.18 5.13 7.05 0.22 34.78 8.30

GaitTR [38] 7.60 6.36 6.40 6.79 0.06 48.58 7.30
GPGait(ours) 57.87 45.98 24.23 42.69 4.25 57.04 18.50

Gait3D

GaitGraph [32] 16.47 12.18 8.29 12.31 0.27 3.14 8.60
GaitGraph2 [31] 12.32 9.93 5.43 9.23 0.09 2.39 11.20

GaitTR [38] 4.50 3.90 3.96 4.12 0.06 4.38 7.20
GPGait(ours) 48.83 40.26 19.43 36.17 2.79 11.02 22.40

found to even outperform or approach the source-domain
results of recent methods. For instance, the cross-domain
result (GREW−→Gait3D) of GPGait outperforms the best
source-domain results (Gait3D−→Gait3D) of other methods
with a margin of 7.3% in Rank-1 accuracy. These supe-
rior performances collectively demonstrate the generaliza-
tion capabilities of our proposed method.

Comparison on Source Domain The comparison in Tab.1
indicates that GPGait achieves nearly comparable or even
better performance than recent pose-based methods in most
cases. Especially for Gait3D, GPGait outperforms previ-
ous works by a considerable margin of 11.2%. Also, com-
pared with other methods that failed to produce a stable re-
sult on specific datasets, GPGait achieves a relatively stable
performance without any distinct performance degradation
on single-domain settings across all four datasets. A de-
tailed analysis of the performance on the source domain is
included in Sec.5.

1(a) We take great efforts to build a unified framework for pose-
based gait recognition named FastPoseGait (https://github.com/
/BNU-IVC/FastPoseGait) and re-run these experiments for a more
fair comparison by sticking to the original implementations as much as
possible. The results are a little different but comparable to those in the
initial submission as well as those in the corresponding papers.

(b) In the literature, there are two versions of pose-based CASIA-B
estimated by HRNet [29] and SimCC [16] respectively. Given that Gait3D
and GREW are generated by HRNet, we finally use the HRNet version of
CASIA-B for a unified experimental setting. We will also provide some
results for the SimCC version of CASIA-B in our codebase.

(c) For OUMVLP-Pose, the sequences are generated by Alpha-
Pose [7] consisting of 18 keypoints for each frame. In our experiments,
we transform the keypoints into the COCO2017 format with 17 keypoints
for the cross-domain evaluation.

4.3. Ablation Study

To verify the effectiveness of the components in GPGait,
a series of ablation studies are conducted on CASIA-B and
Gait3D to show the source-domain and cross-domain per-
formance of indoor and outdoor evaluation systematically.

Analysis of Human-Oriented Transformation In this
section, we first analyze the effectiveness of HOT compared
with other normalization methods. Then we insert HOT
into different backbones to verify generalization ability af-
ter normalizing the pose data.

As shown in Tab.2, compared with previous methods,
the results of GPGait demonstrate the best generalization
ability. a) Compared with spine-unit normalization [1, 19],
HOT outperforms it by a large margin in the source do-
main as well. On the one hand, it proves the effectiveness
of employing such a simple method to achieve remarkable
results. On the other hand, the spine as a body part is not
a good solution for some special situations like occlusion
which introduces abnormal calculations. b) Compared with
the dataset-independent normalization method [25], HOT
demonstrates excellent generalization results. This is be-
cause the dataset statistics preserve the relative height of the
human body in one dataset. However, the relative informa-
tion is lost when the model is applied to another sequence
recorded by a different camera of different datasets, which
makes it less applicable in the real world.

In addition, to demonstrate the reusability of HOT on
different backbones, we apply it to previous methods which
are shown in Tab.3. a) Although HOT reduces the perfor-
mance of the previous pose-based methods on CASIA-B,

19601



Table 2. Analysis of different pose representations, in which we
control the structure of the network.

Method
CASIA-B→Gait3D Gait3D→CASIA-B
Source Target Source Target

HOT(ours) 81.01 8.90 22.40 36.17
Spine-Unit [1, 19] 74.53 5.50 14.50 15.74

Dataset-Independent [25] 87.03 1.50 9.90 11.54

Table 3. Analysis of HOT, in which we compare the performance
of HOT on different backbones.

Method(w/wo)
CASIA-B→Gait3D Gait3D→CASIA-B
Source Target Source Target

GaitGraph 40.91 1.96 11.00 29.24
GaitGraph2 45.66 3.20 12.20 24.49

GaitTR 64.37 2.40 8.10 21.74
GPGait 81.01 8.90 22.40 36.17

GaitGraph 76.04 0.90 8.60 12.31
GaitGraph2 71.83 1.10 11.20 9.23

GaitTR 90.22 1.10 7.20 4.12
GPGait 86.15 2.70 16.00 20.30

Table 4. Analysis of Human-Oriented Descriptors, in which we
keep the network architecture consistent.

Setting CASIA-B→Gait3D Gait3D→CASIA-B
Joint Bone Angle Source Target Source Target
✓ 77.10 7.20 17.90 31.12

✓ 76.02 7.20 18.30 31.78
✓ 43.78 2.90 5.30 14.18

✓ ✓ 80.08 7.70 19.20 32.46
✓ ✓ 79.40 7.70 18.30 32.74

✓ ✓ 77.42 7.00 17.00 34.46
✓ ✓ ✓ 81.01 8.90 22.40 36.17

its generalization ability remains relatively steady across
different backbones. Also, all the methods with HOT on
Gait3D improve by a large margin. This demonstrates that
HOT can be effectively adapted to other works, enabling
them to achieve better and more stable results. b) For set-
tings without HOT, GPGait still performs relatively sta-
ble and outperforms most previous works, which further
demonstrates the superiority of PAGCN.

Analysis of Human-Oriented Descriptors In Tab.4, the
results show the impact of using different combinations of
generated features in Human-Oriented Descriptors. It can
be seen that using only a single modality as input can not
yield satisfactory results. When combining the input types,
corresponding improvements can be achieved in both the
source domain and the target domain. Furthermore, the
multi-features of joint, bone and angle can significantly
boost the performance. The benefit of multi-features gen-
erated by HOD can explicitly describe discriminant infor-
mation of the human body that includes human keypoints,
human body structure, and gait movement.

Impact of Multi-Branch in PAGCN This section aims

Table 5. Analysis of Multi-branch, in which we control the back-
bone of PAGCN.

Setting
CASIA-B→Gait3D Gait3D→CASIA-B
Source Target Source Target

Single-Branch 75.54 7.10 18.90 33.04
Multi-Branch 81.01 8.90 22.40 36.17

Table 6. Analysis of Partition, in which we control the whole net-
work structure.

Partition
CASIA-B→Gait3D Gait3D→CASIA-B
Source Target Source Target

w 81.01 8.90 22.40 36.17
w/o 76.47 7.10 20.40 35.15

to explore the contribution of multi-branch architecture to
learn the features generated by HOD. In single-branch set-
tings, we concatenate the three types of features in the chan-
nel dimension and put them into a one-branch network as
the operations in GaitTR [38]. The multi-branch settings
consist of parameter-independent branches to extract three
types of features. In Tab.5, the use of multi-branch networks
can lead to better performance, showing its effectiveness in
learning specific expressions. This is mainly because each
branch can focus on extracting information from different
types of features separately. In contrast, a single-branch
network merges the information from different data distri-
butions, making the learning process challenging.

Impact of Partition in PAGCN A completely identical
network without multiplying the Mk in Eq.9 is designed
to verify the effectiveness of partition masks, where the
number of parameters is completely the same as well. In
Tab.6, the remarkable performance of the network leverag-
ing masks proves that it is beneficial to extract the discrimi-
native body features at both local and global levels with the
help of partition on the adjacency matrices.

5. Discussion
Source-Domain Results It can be seen that GPGait does
not achieve state-of-the-art but comparable source-domain
results on some datasets. The main reason is that HOT
eliminates certain relative information in one dataset. For
example, the relative information of body height is a dis-
criminative factor to improve single-domain performance.
But it does not exist in real-world scenarios due to the var-
ious heights of camera viewpoints. HOT rescales all the
skeletons to a uniform height, which can force the net-
work more concerned about gait-relevant features and fur-
ther enhance the practicality of skeleton-based methods.
Therefore, it is reasonable for the performance degrada-
tion on some datasets, and we believe future research that
incorporates advanced feature extraction methods under
the human-oriented representation can improve the perfor-
mance of pose-based methods on both source-domain and
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cross-domain settings.

Compared with Silhouette-based Methods Compared to
recent silhouette-based methods, the performance of GP-
Gait is still limited. An evident explanation is that the poses
used in GPGait lose body shape compared with the silhou-
ettes. But pose-based methods have their own strengths like
the robustness to wearings and explicit modeling for pro-
portions and relations of body parts, which deserves further
and continuous exploration.

Prospect Pose as an important modality for human repre-
sentation contributes a lot to gait recognition as well. How-
ever, the lack of ability to generalize limits the application
and further development of skeleton-based gait recognition.
Our GPGait framework takes both the input and method
into account, proposing a viable solution to address the gen-
eralization problem of pose-based methods. We are expect-
ing the unified representation of skeletons can be utilized
in later works for a fair and applicable future of pose-based
methods. And PAGCN offers a promising approach for es-
tablishing part relations and extracting fine-grained gait in-
formation, which can be readily adapted for future research.
Overall, more advanced pose-based methods are expected
to further narrow the gap between the lab and the real world
and promote the development of gait recognition.

6. Conclusion
In this paper, we present a generalized pose-based frame-

work (GPGait), which transforms the arbitrary human pose
into a unified representation and make full use of human
pose characteristics to extract multi-features in Human-
Oriented Transformation and Human-Oriented Descriptors.
Part-Aware Graph Convolutional Network allows efficient
partitions of the human graph and the effective learning of
local-global relations. Experiments on four benchmarks (in-
cluding indoor and outdoor scenarios) have indicated that
GPGait achieves the highest accuracy on cross-domain set-
tings and the most stable performance on single-domain set-
tings, which also demonstrates the great potential of pose-
based gait recognition.
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