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Abstract

Most existing learning-based 3D point cloud comple-
tion methods ignore the fact that the completion process
is highly coupled with the viewpoint of a partial scan.
However, the various viewpoints of incompletely scanned
objects in real-world applications are normally unknown
and directly estimating the viewpoint of each incomplete
object is usually time-consuming and leads to huge an-
notation cost. In this paper, we thus propose an un-
supervised viewpoint representation learning scheme for
3D point cloud completion without explicit viewpoint es-
timation. To be specific, we learn abstract representa-
tions of partial scans to distinguish various viewpoints in
the representation space rather than the explicit estima-
tion in the 3D space. We also introduce a Viewpoint-
Aware Point cloud Completion Network (VAPCNet) with
flexible adaption to various viewpoints based on the learned
representations. The proposed viewpoint representation
learning scheme can extract discriminative representations
to obtain accurate viewpoint information. Reported ex-
periments on two popular public datasets show that our
VAPCNet achieves state-of-the-art performance for the
point cloud completion task. Source code is available at
https://github.com/FZH92128/VAPCNet.

1. Introduction
Incomplete shapes in 3D scans resulting from occlusion

(both self-occlusion and occlusion by other objects) and low
resolution of sensors often make them unsuitable for direct
use in practical applications such as object grasping and Vir-
tual Reality (VR) [16, 9, 25, 10]. To remedy this, shape
completion aims to recover complete 3D shapes from par-
tial 3D scans.

Current learning-based shape completion methods can
be classified into two categories: volumetric representation
The former category transforms a point cloud into 3D occu-
pancy grids and uses 3D convolution operations to predict
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Figure 1. Example of an unsupervised viewpoint representation
learning. In MVP dataset [30], all objects have been aligned, and
missing parts indicate various incomplete objects scanned from
varying viewpoints. In this context, incomplete objects marked
with orange and red boxes are scanned from the same viewpoint,
while those marked with black boxes have been scanned from dif-
ferent viewpoints.

the complete shapes of objects. However, these volumet-
ric representations often come with high memory expenses
and restricted shape accuracy. The second category, on the
other hand, operates directly on point clouds, providing a
more memory-efficient way to represent 3D data. However,
these point cloud based methods are difficult to recover de-
tailed structures of objects due to the irregular and disorder
nature of point clouds.

To recover the full shape of partial point cloud ob-
jects, most existing methods adopt a coarse-to-fine ap-
proach to firstly predict coarse full shapes and then re-
cover detailed complete shapes using complex refinement
modules [54, 41, 52, 29, 30, 57]. More specifically, skip-
connection is used to connect the detailed visible point-wise
features with the missing point-wise features to preserve
the detailed local patterns of objects [41]. In addition, at-
tention mechanism is used to explore correlation between
(non-)local patterns to recover detailed structures [52]. Al-
though existing methods have made a certain progress in
recovering the details of objects, they ignore the fact that
the completion process is highly coupled with the scanning
viewpoint.
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Commonly, complete objects can be composed of vis-
ible parts and missing parts. For each object, the visible
parts are closely related to corresponding viewpoints and
and can vary a lot when obtained from different viewpoints.
This means that the viewpoint information of each incom-
plete object can provide additional cues to 3D point cloud
completion. However, explicit viewpoint estimation is usu-
ally time-consuming and leads to huge annotation cost.
Motivated by the recent advances in contrastive learning
[2, 7, 17, 20, 35], we propose to use unsupervised view-
point representation learning by contrasting positive pairs
with negative pairs within the latent space (as shown in
Fig. 1), thereby generating a distinct latent representation
for each incomplete object. The benefits of the proposed
viewpoint representation learning are twofold: First, it is
more practicable to learn abstract representations to distin-
guish between different viewpoints than extracting full rep-
resentations for estimating the viewpoints of incomplete ob-
jects. Consequently, we can obtain a discriminative view-
point representation of incomplete objects to provide aux-
iliary viewpoint information. Second, the unsupervised
viewpoint representation learning does not require supervi-
sion with ground-truth viewpoints, making it more suitable
for real-world applications with unknown viewpoints.

In this paper, we propose to complete partial point cloud
objects under the guidance of viewpoint representation.
More specifically, we first encode incomplete point clouds
into viewpoint representations using contrastive learning.
Then, we propose a Viewpoint-Aware Point cloud Comple-
tion Network (VAPCNet) with flexible adaptation to differ-
ent viewpoints based on the learned representations. The
proposed VAPCNet incorporates viewpoint information to
perform feature adaptation by predicting convolutional ker-
nels and modulated self-attention for local information ag-
gregation from the viewpoint representation. Experimental
results show that our network can handle various viewpoints
and produce state-of-the-art results on both MVP [30] and
PCN datasets [54]. Formally, our contributions include:

• A novel formulation of point cloud completion with
unsupervised viewpoint representation learning, which
reveals the usefulness of viewpoint information;

• An effective viewpoint-aware module that perform
feature adaptation by predicting convolutional kernels
and modulated self-attention for local information ag-
gregation for accurate point cloud completion;

• State-of-the-art completion results on both MVP and
PCN datasets.

2. Related Work

We first review the main approaches for learning-based
point cloud completion, including volumetric representa-
tion based shape completion and point cloud based shape

completion (Sec. 2.1). Then, we discuss the recent ad-
vances of contrastive learning (Sec. 2.2).

2.1. Learning-based Point Cloud Completion

Volumetric Representation based Shape Completion.
The use of structured volumetric representations and pow-
erful 3D convolutions has resulted in significant achieve-
ments in 3D reconstruction [4, 12] and shape completion
[5, 18, 44]. However, these methods are expensive in terms
of computation time and memory requirements. Although
these issues can be alleviated based on sparse representa-
tions [14, 33, 37], the quantization operation in these meth-
ods still causes a significant loss of detailed information.
Point Cloud based Shape Completion. More recently, re-
searchers have started to use unstructured point clouds as
representations for 3D objects to reduce memory require-
ments and represent finer grained details. Nevertheless, the
migration from structured 3D data understanding to point
clouds analysis is non-trivial because the commonly used
convolution operator is no longer suitable for unordered
point clouds. PointNet and its variants [31, 31] allow the di-
rect processing of 3D points for many downstream tasks. In
the point cloud completion field, PCN-Net [54] was the first
learning-based architecture. It adopts a FoldingNet [51] to
map the 2D points onto a 3D surface by mimicking the de-
formation of a 2D plane. Following PCN-Net, Tchapmi et
al. [34] proposed a tree-structured decoder to predict com-
plete shapes. To preserve and recover local details, a num-
ber of approaches [38, 22, 41, 45] exploited local features
to refine their 3D completion results. NSFA [57] recov-
ered complete 3D shapes by combining known features and
missing features. However, NSFA assumed that the ratio
of the known part and the missing part is around 1:1, i.e.,
the visible part should be roughly half of the whole object.
However, in most cases, this assumption does not hold for
point cloud completion. Pan et al. [30] proposed a vari-
ational framework by leveraging the relationship between
structures during the completion process. PMP-Net [42] ac-
complished the completion task by learning point moving
paths. PMP-Net++ [43] enabled multi-step movement of
the input point set and used the least total moving distance
loss to mimic the earth mover distance. Xiang et al. [47]
proposed a snowflake point deconvolution for point cloud
completion. More recently, Yu et al. [52] reformulated
point cloud completion as a set-to-set translation problem
and applied transformer for missing point clouds prediction.
Wang et al. [39] achieved feature extraction by matching
the point features to a set of pre-trained local descriptors and
designed neighbor-pooling operation that relies on adopting
the feature vectors with the highest activations.

Existing methods pay more attention to designing more
discriminative global features and more efficient refinement
modules to recover high-quality coarse predictions and the
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detailed structures of objects, respectively. Among them,
[55, 13, 42, 43] are highly related to our work as they aim
to do the completion along the scanning viewpoint. In [55],
the ground-truth viewpoint was explicitly combined with
the partial point cloud to achieve completion along the scan-
ning viewpoint. Although it achieves better performance
than previous methods, additional ground-truth viewpoints
are required. In contrast to [55], [42] and [43], we pro-
pose to implicitly extract viewpoint information based on
contrastive learning to get rid of the requirement of ground-
truth viewpoints. We also propose a viewpoint-aware point
cloud completion network by using the viewpoint represen-
tation, achieving better performance than [55, 42, 43] (see
Sec. 4.2).

2.2. Contrastive Learning

In the unsupervised representation learning field, con-
trastive learning has demonstrated its effectiveness. Previ-
ous methods [6, 56, 11, 27] conduct representation learning
by using auto-encoders to reconstruct the input itself. On
the contrary, contrastive learning aims to maximize the mu-
tual information within a representation space. Namely, the
representation of a query sample should be more similar to
positive counterparts while be more dissimilar to negative
counterparts. The positive counterparts can be transformed
versions of the input [2, 20, 46], multiple views of the input
[35] and neighboring patches in the same image [21, 28].

Inspired by the success of contrastive learning in the 2D
field, numerous related works [50, 58, 36, 53, 48] have been
explored for 3D point cloud understanding. PointContrast
[50] performs point-level invariant mapping on two trans-
formed views of the given point cloud. Zhang et al. [58]
proposed the DepthContrast to learn representations from
depth scans. Wang et al. [36] proposed an encoder-decoder
mechanism to reconstruct the occluded point clouds. In-
spired by MAE [19] presenting a masked auto-encoder
strategy for image representation learning, Yu et al. [53]
proposed Point-BERT to recover the original point tokens
at the masked locations under the supervision of point to-
kens. In this paper, we propose to learn viewpoint represen-
tation of incomplete point clouds using contrastive learn-
ing. To clarify, the partial point cloud generated with the
same viewpoint (annotated with an red box in Fig. 1) is con-
sidered as positive counterpart and the partial point clouds
generated from other viewpoints (annotated with an black
boxes in Fig. 1) are considered as negtative counterparts.

3. Methodology
3.1. An Overview

The proposed point cloud completion framework con-
sists of a viewpoint representation encoder and a viewpoint-
aware completion network, as illustrated in Fig. 2. First, the

partial scan is fed to the viewpoint representation encoder
(Fig. 2(a)) to obtain a viewpoint representation. Then, this
representation is incorporated in the viewpoint-aware com-
pletion network (Fig. 2(b)) to produce the complete object.

3.2. Viewpoint Representation Learning

The goal of viewpoint representation learning is to derive
a discriminative representation from the partial point cloud
objects in an unsupervised way, as depicted in Fig. 1. In
this study, we assume that the viewpoint representation r of
a partial scan is similar to its rotated version r+ and differs
for various viewpoints r−.

In the context of viewpoint representation learning (re-
fer to Fig. 1), a partial object is scanned from a specific
viewpoint (marked by an orange box). This scan acts as
the query sample, and its rotated version (indicated by a red
box) is regarded as a positive sample. On the other hand,
partial objects scanned from different viewpoints (repre-
sented by black boxes) are considered negative samples. To
extract viewpoint representations, we employ a feature ex-
tractor to encode these query, positive, and negative sam-
ples. Drawing inspiration from SimCLR [2] and MoCo
v2 [3], the resulting representations are further processed
through a two-layer multi-layer perceptron (MLP) projec-
tion head to derive r, r+ and r−. In line with MoCo [20],
we apply an InfoNCE loss to promote similarity between r
and r+ while maintaining dissimilarity with r−. That is,

Lr = −log
exp(r · r+/τ)∑M

m=1 exp(r · r
−
m/τ) + exp(r · r+/τ)

, (1)

where M is the number of negative samples, τ is a tem-
perature hyper-parameter and · represents the dot product
between two vectors.

Each object is scanned from B viewpoints to form B par-
tial point cloud objects (i.e., B different viewpoints). Dur-
ing the unsupervised training, one partial point cloud object
is randomly sampled from these B partial point cloud ob-
jects as the query sample and then the remaining B − 1
ones are selected as negative samples. The positive sample
is produced by randomly rotating the query sample. Next,
the query sample and these B samples are encoded into
pq ∈ R512 and pk ∈ RB×512 using the feature extractor.
For pq , p1k ∈ R512 is the latent representation of the positive
sample and the remaining B − 1 latent representations are
used as negative samples. The overall loss is defined as:

Lview = −log
exp(pq · p1k/τ)∑B

j=2 exp(p1 · p
j
k/τ) + exp(pq · p1k/τ)

,

(2)
where pjk represents the jth negative sample.
Discussion. Most existing point cloud completion methods
ignore the influence of viewpoints to shape completion task.
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(a) Viewpoint encoder (b) Viewpoint-Aware Point cloud Completion Network (VAPCNet) 
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Figure 2. An overview of the proposed VAPCNet.

In this paper, we aim at learning a “good” abstract repre-
sentation to distinguish a specific viewpoint representation
from others rather than explicitly estimating the viewpoint.
In Sec. 5, we demonstrate that our viewpoint representation
learning scheme can obtain discriminative representations.
Moreover, our unsupervised learning scheme does not re-
quire the supervision using ground-truth viewpoints.

3.3. Viewpoint-aware Point Cloud Completion

With unsupervised viewpoint representation learning,
a Viewpoint-Aware Point cloud Completion Network
(VAPCNet) is proposed to complete the incomplete object
using the resultant representation. Our VAPCNet has an
encoder-decoder structure, as shown in Fig. 2 (b).
Encoder-Decoder Architecture. The encoder is composed
of a feature extractor and a seed generator. The decoder is
composed of three up-sample and refinement modules.

Given the incomplete input point cloud P ∈ RN×3,
the feature extractor uses three layers of set abstraction
from [32] to aggregate point features from local to global,
along which a point transformer [59] is applied to incor-
porate local shape context. Then, max-pooling is used to
extract a shape code fc of size 1 × C from point features
pfe ∈ R32×C generated by the feature extractor. The aim
of the seed generator is to produce a coarse but complete
point cloud P0 of size N0 × 3 that captures the geometry
and structure of the target shape. More specifically, the ex-
tracted shape code fc is integrated with the point features
pfe ∈ R32×C through a MLP to combine the global shape
information and the visible local information. Then, a trans-
posed convolution is used to split these aggregated features
into N0 point features f0, which are fed to MLP to generate
a coarse point cloud P0 of size N0 × 3.

The decoder recovers high-resolution complete point

clouds in a hierarchical manner. In the up-sample and re-
finement module (as shown in Fig. 2(c)), to preserve the
detailed structure of input point cloud, we first concatenate
the previous low-resolution complete point cloud Pi−1 and
the input point cloud P , and then adopt the Farthest Point
Sampling (FPS) to select Ni (Ni>Ni−1) points P

′

i from the
concatenated point cloud Pc ∈ R(N+Ni−1)×3. Next, given
the previous complete point cloud Pi−1, the up-sampled
point cloud P

′

i and previous point features fi−1, we use the
trilinear interpolation [32] to obtain Ni point features f

′

i for
the up-sampled point cloud P

′

i . Subsequently, f
′

i is fed to
the Viewpoint-Aware module (VA module) to produce re-
fined point features fi. Finally, the refined point features fi
concatenated with the shape code fc are fed to the MLP to
predict the corresponding residual coordinates ∆P

′

i , which
are summed up with P

′

i to obtain the refined point cloud
Pi = P

′

i +∆P
′

i .
VA Module. Motivated by [59] and [36], our VA module
learns to predict the kernel of a depth-wise convolution and
modulated self-attention conditioned on the viewpoint rep-
resentation VR ∈ R1×C , as shown in Fig. 2(d). In the VA
module, the inputs are composed of the point features f

′

i ,
the viewpoint representation R and the up-sampled point
cloud P

′

i . To be specific, the viewpoint representation R is
fed to two parts. In the first part, the viewpoint represen-
tation R is fed to three branches (the blue lines) with two
full-connected (FC) layers and a sigmoid activation layer in
each branch, aiming to generate channel-wise modulation
coefficients v1, v2, v3. Then, v1, v2, v3 are used to rescale
different channel components of f

′

i , resulting in V,Q,K.
Next, N nearest neighbour is used to select a set of points
(n) and point features in a local neighborhood for each point
of p

′

i and each point feature of K. Afterwards, self-attention
[59] is used to aggregate local information for each point
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feature to produce point features F1. For the second part
(the red line), the viewpoint representation R is fed to an-
other two full-connected (FC) layers and a reshape layer to
produce a convolutional kernel w ∈ RM×Ni×n. Then, the
point feature V is processed with a 1 × 1 depth-wise con-
volution (using w) and MLP to produce F2. Next, F1 is
summed up with F2 and fed to the subsequent layers to pro-
duce the refined point features fi.
Discussion. The direct concatenation of viewpoint repre-
sentation and point cloud features may not fully utilize the
viewpoint information due to the domain gap between them.
To more effectively integrate viewpoint information for 3D
completion, we tailor a depth-wise convolutional kernel and
predict channel-wise modulation coefficients (within the
self-attention unit) for feature adaptation. By employing
the VA module, the viewpoint representation is effectively
incorporated, enhancing shape completion (as discussed in
Sec. 5).

3.4. Loss Functions

Chamfer Distance (CD) and Earth Mover’s Distance
(EMD) are introduced [8] to measure the differences be-
tween two point clouds (P , Q). We choose the Chamfer
distance due to its efficiency over EMD.

LCD(P,Q) =
1

P

∑
x∈P

min
y∈Q

∥x−y∥2+
1

Q

∑
y∈Q

min
x∈P

∥y−x∥2,

(3)
where P and Q are the predicted complete point clouds and
corresponding ground truth.

To explicitly constrain point clouds generated in the
seed generator and the subsequent up-sampling process, we
down-sampled the ground truth point clouds to the same
sampling density as P0, P1, P2, P3. We define the sum
of the four CD losses as the completion loss, denoted by
Lcompletion.

Lcompletion = LCD(P0, gt0) + LCD(P1, gt1)

+LCD(P2, gt2) + LCD(P3, gt3),
(4)

where gt0, gt1, gt2, gt3 are down-sampled ground truth
point clouds corresponding to P0, P1, P2, P3.

We also exploit the partial matching loss from [40] to
preserve the shape structure of the input point cloud. It is
an unidirectional constraint which aims to match one shape
to another without constraining the opposite direction. The
partial matching loss only requires the output point cloud to
partially match the input, denoted as the preservation loss
Lpreservation. The total training loss is formulated as

L = Lcompletion + λLpreservation, (5)

where λ is set to 0 and 1 for MVP dataset and PCN dataset,
respectively. This ensures fair comparison with other meth-
ods.

4. Experiments
4.1. Datasets and Implementation Details

We tested the effectiveness of the proposed VAPCNet on
MVP and PCN datasets.
MVP Dataset [30]. The MVP dataset is composed of
16 categories of 4000 CAD models. 26 camera loca-
tions are sampled for each model to simulate partial scans.
In our experiments, each complete point cloud contains
2048, 4096, 8192, 16384 points and each incomplete point
cloud comprises 2048 points. Following [30], we use 62400
partial-complete point cloud pairs for training and 41600
pairs for testing. For evaluation, we also adopt the L2 ver-
sion of Chamfer distance.
PCN Dataset [54]. The PCN dataset [54] is developed
based on a subset of the ShapeNet dataset [1]. In our exper-
iments, each complete point cloud contains 16, 384 points
and each incomplete point cloud comprises 2048 points.
The training set includes 28, 974 different models from 8
categories. Each model has a complete point cloud with 8
partial point clouds taken from different viewpoints for data
augmentation. The validation set contains 100 models. The
testing set contains 1200 models with 150 models in each
of the 8 categories. For evaluation, we adopt the L1 version
of Chamfer distance following [54].
Implementation Details. For the viewpoint representation
encoder, we adopt three layers of set abstraction from [32]
to aggregate point features from local to global, along which
point transformer [59] is applied to incorporate local shape
context. For the pre-training, the Adam method [23] with
β1 = 0.9 and β2 = 0.999 was used for optimization. We
first trained the viewpoint representation encoder by opti-
mizing Lview for 40 epochs. The learning rate was initially
set to 1 × 10−3 and then decreased to 1 × 10−4 after 20
epochs. Then, we froze the pre-trained viewpoint represen-
tation learning architecture and trained the whole network
for 80 epochs and 400 epochs for MVP dataset and PCN
dataset, respectively. To generate high-resolution complete
point clouds, we combined the proposed VAPCNet with the
Snowflake Point Deconvolution (SPD) module from [47].
The learning rate was initially set to 1× 10−4 and then de-
creased to half after every 40 epochs. All experiments were
run on NVIDIA 2080Ti GPUs.

4.2. Completion on the MVP Dataset

For a fair comparison, we trained all methods using the
same training strategy on the MVP dataset.
Quantitative comparison. The CD loss and F-score for all
evaluated methods are reported in Table 1 and Table 2, re-
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Table 1. Shape completion results (CD loss multiplied by 104) on the multi-view partial (MVP) point cloud dataset (16,384 points). The
lower, the better.

Method airplane cabinet car chair lamp sofa table watercraft bed bench bookshelf bus guitar motorbike pistol skateboard Avg.

PCN [54] 2.95 4.13 3.04 7.07 14.93 5.56 7.06 6.08 12.72 5.73 6.91 2.46 1.02 3.53 3.28 2.99 6.02
TopNet [34] 2.72 4.25 3.40 7.95 17.01 6.04 7.42 6.04 11.56 5.62 8.22 2.37 1.37 3.90 3.97 2.09 6.36
MSN [24] 2.07 3.82 2.76 6.21 12.72 4.74 5.32 4.80 9.93 3.89 5.85 2.12 0.69 2.48 2.91 1.58 4.90

Wang et. al. [38] 1.59 3.64 2.60 5.24 9.02 4.42 5.45 4.26 9.56 3.67 5.34 2.23 0.79 2.23 2.86 2.13 4.30
ECG [29] 1.41 3.44 2.36 4.58 6.95 3.81 4.27 3.38 7.46 3.10 4.82 1.99 0.59 2.05 2.31 1.66 3.58

GRNet [49] 1.61 4.66 3.10 4.72 5.66 4.61 4.85 3.53 7.82 2.96 4.58 2.97 1.28 2.24 2.11 1.61 3.87
NSFA [57] 1.51 4.24 2.75 4.68 6.04 4.29 4.84 3.02 7.93 3.87 5.99 2.21 0.78 1.73 2.04 2.14 3.77

VRCNet [30] 1.15 3.20 2.14 3.58 5.57 3.58 4.17 2.47 6.90 2.76 3.45 1.78 0.59 1.52 1.83 1.57 3.12
Our VAPCNet 0.78 3.19 2.10 3.05 3.16 3.14 3.26 2.15 5.36 1.92 3.08 1.68 0.33 1.39 1.34 0.95 2.40

Table 2. Shape completion results (F-Score@1%) on the multi-view partial (MVP) point cloud dataset (16,384 points). The higher, the
better.

Method airplane cabinet car chair lamp sofa table watercraft bed bench bookshelf bus guitar motorbike pistol skateboard Avg.

PCN [54] 0.861 0.641 0.686 0.517 0.455 0.552 0.646 0.628 0.452 0.694 0.546 0.779 0.906 0.665 0.774 0.861 0.638
TopNet [34] 0.798 0.621 0.612 0.443 0.387 0.506 0.639 0.609 0.405 0.680 0.524 0.766 0.868 0.619 0.726 0.837 0.601
MSN [24] 0.879 0.692 0.693 0.599 0.604 0.627 0.730 0.696 0.569 0.797 0.637 0.806 0.935 0.728 0.809 0.885 0.710

Wang et. al. [38] 0.898 0.688 0.725 0.670 0.681 0.641 0.748 0.742 0.600 0.797 0.659 0.802 0.931 0.772 0.843 0.902 0.740
ECG [29] 0.906 0.680 0.716 0.683 0.734 0.651 0.766 0.753 0.640 0.822 0.706 0.804 0.945 0.780 0.835 0.897 0.753

GRNet [49] 0.861 0.641 0.686 0.517 0.455 0.552 0.646 0.628 0.452 0.694 0.546 0.779 0.906 0.665 0.774 0.861 0.638
NSFA [57] 0.903 0.694 0.721 0.737 0.783 0.705 0.817 0.799 0.687 0.845 0.747 0.815 0.932 0.815 0.858 0.894 0.783

VRCNet [30] 0.928 0.721 0.756 0.743 0.789 0.696 0.813 0.800 0.674 0.863 0.755 0.832 0.960 0.834 0.887 0.930 0.796
Our VAPCNet 0.942 0.762 0.758 0.786 0.844 0.759 0.845 0.824 0.736 0.892 0.808 0.854 0.978 0.845 0.902 0.944 0.829

Table 3. Shape completion results (CD loss multiplied by 104) on
multi-view partial point cloud (MVP) dataset with various point
cloud resolutions.

#Points 2048 4096 8192 16384
CD↓ F1↑ CD↓ F1↑ CD↓ F1↑ CD↓ F1↑

PCN [54] 9.77 0.320 7.96 0.458 6.99 0.563 6.02 0.638
TopNet [34] 10.11 0.308 8.20 0.440 7.00 0.533 6.36 0.601
MSN [24] 7.90 0.432 6.17 0.585 5.42 0.659 4.90 0.710

Wang et. al. [38] 7.25 0.434 5.83 0.569 4.90 0.680 4.30 0.740
ECG [29] 6.64 0.476 5.41 0.585 4.18 0.690 3.58 0.753

GRNet [49] 7.61 0.353 5.73 0.493 4.51 0.616 3.54 0.700
VRCNet [30] 5.96 0.499 4.70 0.636 3.64 0.727 3.12 0.791
PoinTr [52] 5.79 0.499 4.29 0.638 3.52 0.725 2.95 0.783

PMP-Net++[43] - - - - - - 3.38 0.687
Zhang et. al.[55] - - - - - - 2.42 0.800
Wang et. al [39] - - - - - - - 0.816

SnowflakeNet[47] 5.71 0.503 4.45 0.648 3.48 0.743 2.69 0.796
Our VAPCNet 5.40 0.521 3.96 0.658 3.02 0.763 2.40 0.829

spectively. The proposed VAPCNet outperforms all existing
competitive methods in terms of CD and F-score@1%. We
also compare our method with existing approaches that sup-
port multi-resolution completion in Table 3. Our VAPCNet
outperforms all the other methods. Specifically, our method
using unsupervised viewpoint representation learning out-
performs [55] which uses the ground-truth viewpoint as in-
put. This demonstrates the effectiveness of our viewpoint
representation learning in terms of extracting accurate view-
point information.
Qualitative comparison. The qualitative comparison re-
sults are shown in Fig. 3. The proposed VAPCNet can
generate better complete shapes with finer details than other
methods. In particular, we can clearly observe the effective-
ness of the proposed VA module in our complete shapes.
For example, the missing legs of the chairs (the second row

in Fig. 3) are recovered based on the observed legs with
the awareness of the scanned viewpoint. In the third row of
Fig. 3, the lamp base is reconstructed with a better shape
of lampstand than other methods. With additional view-
point information provided by the viewpoint representation,
VAPCNet can effectively reconstruct complete shapes by
learning structural relations using the proposed VA module
from the incomplete point cloud.

4.3. Completion on the PCN Dataset

We also compare our network on the PCN dataset with
several state-of-the-art baseline methods. We use the L1

Chamfer Distance as the evaluation metric. For the baseline
methods, the results of [29, 57] are produced from the codes
and pre-trained models released in their official projects at
Github. The results of the other methods are copied from
[47, 49, 42] and their original papers [39, 52].
Quantitative comparison. The quantitative results are
shown in Table 4. Note that, our network achieves the low-
est L1 CD on average. In the categories of cabinet and car,
our method achieves comparable performance compared
to SnowFlakeNet [47] on CD. In the other categories, our
method gets better performances. Specifically, our method
achieves significant improvement in the category of lamp
compared to SnowFlakeNet [47], reaching 8.6%. Although
[39] achieves better performance than SnowFlakeNet [47]
on MVP dataset, it gets worse performance than SnowFlak-
eNet [47] on PCN dataset. In contrast, our method achieves
consistently better performance on these two datasets.
Qualitative comparison. Fig. 4 shows qualitative compar-
ison results. We can see that our results predict a more accu-
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Figure 3. Visual comparisons on MVP dataset. Note that, the partial point clouds (2048 points) are sparse and self-occluded, as opposed to
the reconstructed and ground truth point clouds (16,384 points) which are dense and complete.

Table 4. Quantitative comparison on PCN dataset with state-of-the-art methods in terms of L1 Chamfer Distance ×103. The lower, the
better.

Models Avg. airplane cabinet car chair lamp couch table watercraft

AtlasNet [15] 10.58 6.37 11.94 10.10 12.06 12.37 12.99 10.33 10.61
FoldingNet [51] 14.31 9.49 15.80 12.61 15.55 16.41 15.97 13.65 14.99

PCN [54] 9.64 5.50 22.70 10.63 8.70 11.00 11.34 11.68 8.59
TopNet [34] 12.15 7.61 13.31 10.90 13.82 14.44 14.78 11.22 11.12
GRNet [49] 8.83 6.45 10.37 9.45 9.41 7.96 10.51 8.44 8.04

Wang et. al. [38] 8.51 4.79 9.97 8.31 9.49 8.94 10.69 7.81 8.05
PMP-Net [42] 8.73 5.65 11.24 9.64 9.51 6.95 10.83 8.72 7.25

ECG [29] 8.63 5.23 10.12 8.36 9.43 8.53 10.94 7.98 8.16
NSFA [57] 8.32 5.03 10.51 9.11 9.16 7.45 10.46 7.56 7.28

SK-PCN [26] 8.49 5.09 9.98 8.22 9.29 8.39 10.80 7.84 8.02
PoinTr [52] 8.38 4.75 10.47 8.68 9.39 7.75 10.93 7.78 7.29

SnowflakeNet[30] 7.21 4.29 9.16 8.08 7.89 6.07 9.23 6.55 6.40
Wang et. al [39] 7.96 - - - - - - - -
Our VAPCNet 7.02 4.10 9.28 8.15 7.51 5.55 9.18 6.28 6.10

rate shape with detailed patterns. For instance, in the second
and third row in Fig. 4, our method can better recover the
detailed back of the chair and the couch. In contrast, results
from other methods are very noisy. This demonstrates the
ability of our network to efficiently enhance the shape with
local details.Table 5. Ablation studies for the proposed VA module, including
convolutional kernels and modulated self-attention. “CD” denotes
L2 Chamfer Distance (multiplied by 104) and “F1” represents F
Score @1%.

Model VA module CD ↓ F1 ↑Kernel modulated self-attention

1 ✗ ✗ 7.12 0.493
2 ✓ ✗ 5.53 0.513
3 ✗ ✓ 5.54 0.514
4 ✓ ✓ 5.40 0.521

5. Ablation Study

In this section, we test the effectiveness of viewpoint rep-
resentation and the proposed VA module.
Viewpoint Representation Learning. Our viewpoint rep-
resentation aims at extracting viewpoint information from
incomplete objects. To demonstrate this, we conducted ex-
periments to study the effect of different viewpoints of each
CAD model on our viewpoint representations. Specifically,
there are 26 camera poses that are uniformly distributed on
a unit sphere for each CAD model for training set. Dur-
ing testing, we randomly generated two rotation angles to
rotate the incomplete objects and thus there are three in-
complete objects for each viewpoint (78 incomplete objects
for each CAD model). We pre-trained the viewpoint repre-
sentation architecture on the training set and evaluated it on
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Figure 4. Visual comparisons on PCN dataset. Note that, the partial point clouds (2048 points) are sparse and self-occluded, as opposed to
the reconstructed and ground truth point clouds (16,384 points) which are dense and complete.

（1） （2） （3）

Figure 5. Examples of unsupervised viewpoint representation
learning. (1), (2) and (3) represent three different CAD models.
For each example, there are 26 partial objects scanned from dif-
ferent viewpoints for each CAD model. Each symbol represents a
viewpoint representation.

the testing set. Fig. 5 shows that these 26 latent representa-
tions (three representations for each viewpoint) are far away
from each other, indicating that 26 viewpoints are learned
into different latent representations. This means that the
pre-trained viewpoint representation architecture enables to
learn a discriminative viewpoint representation, which ben-
efits VAPCNet.
Effectiveness of the VA module. In order to evaluate the
efficactiveness of the proposed VA module, which includes
convolutional kernels and modulated self-attention, we car-
ried out ablation studies on the MVP dataset (consisting of
2048 points), as presented in Table 5. In Model 1, viewpoint
representation learning is omitted and MLPs are utilized to
substitute the VA module in the up-sample & refinement
module. Consequently, this model experiences limited ac-
curacy. However, the inclusion of the convolutional ker-
nel and modulated self-attention enhances the performance
from 7.12 to 5.53 and 5.54, respectively. With both modules
incorporated, Model 4 delivers the best outcome, thereby
validating the effectiveness of our viewpoint representation

learning and VA module.

6. Conclusion

In this paper, we proposed an unsupervised viewpoint
representation learning scheme to achieve detailed 3D point
cloud completion. Instead of explicitly estimating the view-
points of scanned incomplete objects, we use contrastive
learning to extract discriminative representations to distin-
guish different viewpoints. We also introduce a Viewpoint-
Aware Point cloud Completion Network (VAPCNet) based
on the learned representations to deal with partial objects
scanned from different viewpoints. It is demonstrated that
our viewpoint representation learning scheme can extract
discriminative representations to obtain accurate viewpoint
information and the proposed VAPCNet can recover de-
tailed and accurate complete point clouds. Reported exper-
imental results show that our VAPCNet achieves state-of-
the-art performance on both MVP and PCN datasets. The
future work will focus on generating more discriminative
shape code to further improve the performance of point
cloud completion for more object categories.
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