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Abstract

Neural Radiance Fields have shown great potential to
synthesize novel views with only a few discrete image ob-
servations of the world. However, the requirement of ac-
curate camera parameters to learn scene representations
limits its further application. In this paper, we present
adaptive positional encoding (APE) for bundle-adjusting
neural radiance fields to reconstruct the neural radiance
fields from unknown camera poses (or even intrinsics). In-
spired by Fourier series regression, we investigate its re-
lationship with the positional encoding method and there-
fore propose APE where all frequency bands are trainable.
Furthermore, we introduce period-activated multilayer per-
ceptrons (PMLPs) to construct the implicit network for the
high-order scene representations and fine-grained gradi-
ents during backpropagation. Experimental results on pub-
lic datasets demonstrate that the proposed method with APE
and PMLPs can outperform the state-of-the-art methods in
accurate camera poses and high-fidelity view synthesis.

1. Introduction

Simultaneously localizing from the given camera frames
and reconstructing the scene from multi-view 2D images is
one of the crucial tasks in computer vision, which can carry
out self-localization as well as sense surroundings through
visual information as human beings do. Most classic meth-
ods, such as Structure from Motion (SfM) [35, 1] and Si-
multaneously Localization and Mapping (SLAM) [30, 10,
11], leverage the similarity of texture patterns to find the
correspondences. Then, all states are estimated, including
camera parameters (intrinsic and extrinsic parameters) and
a map in conventional representations (e.g., sparse 3D point
cloud [17]). However, the quality of the created map repre-
sentations depends on the correspondences, and the sparse
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Figure 1. Fourier Series Regression. Fitting 1D signal (blue
curve, duration T , period Tb) requires a Fourier series with proper
frequencies (bottom, green curve). Conversely, Fourier series re-
gression with improper frequencies (top, red curve) cannot fit well.

nature of common 3D point clouds limits downstream vi-
sion tasks that require dense geometric reasoning.

Different from explicitly reconstructing scenes from im-
ages, Neural Radiance Fields (NeRF) [28] present a contin-
uous function to parameterize the scene through an implicit
neural network [38, 25] mapping 3D point positions and di-
rection to color and volume density. By volume rendering
theorem [43, 19], NeRF can realize high-fidelity dense rep-
resentation results with a few observed images of the scene.
Although many follow-up works [2, 15, 26, 18, 32, 47, 49]
have improved the performance of NeRF in various aspects,
most require pre-provided accurate camera parameters, typ-
ically obtained through off-the-shelf SfM tools, limiting this
technique to realize simultaneous localization and recon-
struction in more practice scenarios.

There are some methods [6, 22, 40] jointly optimizing
implicit network parameters, camera poses (extrinsic pa-
rameters), and even camera intrinsic parameters to address
the solution of training radiance field representations with-
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out accurate camera parameters. They additionally optimize
the camera parameters with frequency encoding via back-
propagation of the NeRF model [45]. However, the second-
order derivatives of ReLU-activated MLPs, which make up
classic NeRF, are zero and thus incapable of modeling the
fine-grained information contained in higher-order deriva-
tives of radiance fields [37]. Therefore, it is difficult for
ReLU-activated MLPs to derive more fine-grained gradient
information to update camera parameters.

It should be noted that positional encoding (PE) [41]
plays a critical role in neural radiance field methods. PE
can embed the input (spatial position and direction in
NeRF) in a high-dimensional frequency space, similar to
the Fourier transform. However, since the information of
different scenes is distributed in different frequencies, dif-
ferent scenes require different Fourier series to better fit.
Therefore, PE in most methods with fixed handcraft fre-
quency parameters limits the performance of joint optimiza-
tion, and the frequency parameters of PE should be adaptive
to the scene and also optimized during simultaneous local-
ization and radiance field reconstruction.

In this paper, we address the problem of training neu-
ral radiance fields from unknown camera parameters (in-
trinsic and extrinsic) — the joint problem of reconstruct-
ing the 3D scene, registering the camera poses (extrinsics),
and updating the camera intrinsics. We propose adaptive
positional encoding (APE) for bundle-adjusting neural ra-
diance fields that can simultaneously optimize implicit net-
work parameters and camera parameters. Inspired by the
Fourier series, which shows that regression with proper fre-
quency parameters can produce better performance in fit-
ting the reference curve, as shown in Fig. 1, we propose
APE that can better fit the distribution of radiance informa-
tion in the field. After encoding the input, period-activated
multilayer perceptrons (PMLPs) are introduced to implic-
itly reconstruct the scene since PMLPs can represent com-
plex higher-order information hidden in nature signals [31]
and can yield more effective and fine-grained gradients for
updating camera and APE parameters. In the training step,
in addition to the photometric loss, a frequency diversity
loss function is designed for APE, preventing the adaptive
frequency parameters from converging to a single band and
thereby losing fine representation ability. In experiments,
the proposed method is compared to state-of-the-art meth-
ods to prove that the proposed method can learn the higher-
order representation of neural radiance fields and estimate
camera parameters. Finally, a comprehensive ablation study
is carried out to show the effectiveness of APE and PMLPs.

The main contributions of this work are as follows:

• We propose adaptive positional encoding for bundle-
adjusting neural radiance fields that can jointly recon-
struct the 3D scene, register the camera poses, and up-
date the camera intrinsics.

• We propose adaptive positional encoding that can
adaptively fit radiance fields with proper frequency pa-
rameters to realize a high-synthesis quality.

• We reconstruct the radiance fields using adaptive po-
sitional encoding and period-activated multilayer per-
ceptrons, that can represent complex scenes and pro-
vide more fine-grained gradients for updating APE and
camera parameters.

2. Related Work
SfM and SLAM. The main goal of SfM [52, 7] and
SLAM [48, 51] systems is to recover the 3D structure of
the scene and estimate the camera poses from the given im-
age sequences. Most of these systems can be classified as
feature-based methods or direct methods [3].

Feature-based methods associate images with visual fea-
tures [33, 24] to construct the cost function based on multi-
view geometry theory and then calculate the loss of projec-
tion to optimize the pose of the camera. Many feature-based
methods [5, 8] achieve great success under various condi-
tions, though they often suffer from texture-less, where fea-
tures are hard to detect and establish the correct data asso-
ciation. To overcome these effects, some studies [23, 34, 9]
propose to employ convolutional neural networks to asso-
ciate data between two-view images.

Direct methods define an objective function on the as-
sumption of photometric consistency [12]. Minimizing this
photometric consistency function contributed by each pixel
to estimate camera poses and the 3D structure, direct meth-
ods [36, 10] can utilize raw image information. Taking
this photometry consistency function as the reconstruction
loss, some direct methods [53, 42, 40] can thus integrate
the neural network into the system and realize dense real-
time reconstruction. Similar to direct methods, the pro-
posed method also supervises all parameters with the pho-
tometric loss. It is worth noting that some methods [53, 40]
can represent the scene as a continuous function via a neu-
ral network, while explicit 3D representations of traditional
methods are typically discrete and sparse.
Neural Radiance Fields. Novel view synthesis (NVS) [16,
20] is a long-standing issue in computer graphics. Although
many works [14, 4] indicate that the pixel colors of images
can be synthesized through geometric information or inter-
polation, there are still numerous restrictions involved since
NVS is inherently an elusive problem [46]. Recently, neu-
ral radiance field (NeRF) methods [26, 2, 29, 28] are pre-
sented to learn scene radiance fields using the neural net-
work, showing their impressive abilities to generate real-
istic images. However, these works require accurate cam-
era parameters obtained by SFM or SLAM techniques (e.g.,
COLMAP[35]).

By removing the requirement of the prior camera param-

3285



eters, NeRF-- [45] and BARF [22] propose a joint optimiza-
tion issue of camera parameters and the implicit network.
However, the positional encoding in most methods utilizes
fixed handcraft frequency parameters so that the perfor-
mance of the joint optimization is degraded. To solve this
problem, the proposed method proposes APE can dynami-
cally fit the proper frequency bands of the scene for better
simultaneously estimating accurate camera parameters and
radiance field reconstruction.

3. Method
The overview of our method is illustrated in Fig. 2. We

represent the neural radiance fields using adaptive posi-
tional encoding (Sec. 3.1) and an implicit network com-
posed of period-activated multilayer perceptrons (Sec. 3.2).
By sampling points along the ray generated by the estimated
camera parameters (Sec. 3.3) and putting them into the neu-
ral radiance fields, we can get predicted colors through vol-
ume rendering theorem (Sec. 3.4). To solve this joint op-
timization problem that involves the APE parameters Ω,
implicit network parameters Φ, and camera parameters Θ,
we supervise these parameters with observed colors C by
both types of the loss of photometric and frequency diver-
sity (Sec. 3.5).

Ω∗,Φ∗,Θ∗ = argmin
Ω,Φ,Θ

L(Ω,Φ,Θ | C) (1)

3.1. Adaptive Positional Encoding

We propose adaptive positional encoding (APE) to learn
the proper frequency bands corresponding to the scene rep-
resentation during the joint optimization.

For a clearer description of the frequency role in the po-
sitional encoding method, we first discuss the Fourier series
regression of a 1D signal f(t) lasting T seconds, which can
be defined as:

f(t) = [m1, n1, · · · ,mL, nL]


sin(ωt)
cos(ωt)

...
sin

(
2L−1ωt

)
cos

(
2L−1ωt

)

+ k (2)

where, L denotes the number of harmonics (sin and cos),
[m1, n1, · · · ,mL, nL] denotes the amplitude coefficients of
Fourier series, and k denotes the bias. Note that the Fourier
series regression usually considers the duration T as the pe-
riod and calculates ω = 2πf0 with the frequency f0 = 1

T .
As shown in Fig. 1, if the duration T does not match the
true base period Tb, it leads to improper frequencies and de-
grades the regression performance. To overcome this prob-
lem, additional Fourier series are required, but this may also
cause over-fitting.

The positional encoding method used in NeRF has a sim-
ilar formulation to the Fourier series, which can also refer
to a kind of Fourier encoding [13]. Supposing that activa-
tion functions are linear, the transformation of the network
can be represented using weights W and biases b, respec-
tively. Based on this assumption, the positional encoding
and neural network of NeRF can be simplified by

NeRF (x) = W


sin(πx)
cos(πx)

...
sin

(
2L−1πx

)
cos

(
2L−1πx

)

+ b (3)

By comparing Eq. (2) and Eq. (3), it can be observed that
the two calculations are similar. The difference between
the Fourier series regression and NeRF is the input dimen-
sion, resulting in different dimensions of the amplitude co-
efficients and biases. Therefore, the detailed variation of
the signal can be represented by the Fourier series at high
frequencies, indicating that additional high-frequency fea-
tures of positional encoding can contribute to fine represen-
tations of NeRF. Meanwhile, the positional encoding also
requires proper frequencies to fit the scene radiance distri-
bution, similar to Fourier series regression in Fig. 1.

To address this issue, the proposed APE consists of train-
able frequency parameters (pe1, pe2, · · · , peL)⊤, which
can be adjusted during training and converge to the proper
frequency bands of the scene representations. Assuming
that the input is a three-dimensional vector x = (x, y, z)⊤,
the process of applying APE to x can be defined as

γ(x) = [γ0(x),γ1(x), · · · ,γL−1(x)]
⊤ (4)

and the k-th APE γk(x) is

γk(x) = [sin(pekx), cos(pekx)]
⊤ (5)

APE can project the input into a proper frequency space
where the appropriate frequency band combination can be
searched for the current scene.

Moreover, the Jacobian of the k-th APE γk(x) is:

∂γk(x)

∂x
= pek · [sin(pekx), cos(pekx)]⊤ (6)

APE can adjust the gradients of frequency parameters to
predict effective updates for optimizing camera parameters.

3.2. Period-Activated Multilayer Perceptrons

Motivated by SIREN [37], we construct the implicit neu-
ral network with the period-activated multilayer percep-
tron (PMLP) for its capability of modeling information con-
tained in higher-order derivatives of natural signals and re-
trieve effective gradients for updating all parameters, which
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Figure 2. Overview of Our Method. The estimated states include APE parameters Ω, implicit network parameters Φ, and camera
parameters Θ. The 3D location xi is uniformly sampled along the ray r generated by the estimated camera parameters. Then, xi and the
2D viewing direction d are converted to γxi and γd by APE (Ex for location and Ed for direction) and then fed into the implicit network
composed of PMLPs, respectively. The predicted outputs are integrated into color values Ĉ(r) via volume rendering theorem. Finally, we
supervise all parameters with the photometric loss Lp between observed colors C(r) and predicted colors Ĉ(r). Additionally, we add the
frequency diversity loss Lfd to prevent Ω from degrading all to a single frequency band.

ω=30

…PMLP
×1

γ

γd

+

Scene encoder1

…PMLPs
×4

Scene encoder2

…PMLPs
×4

ω=30

…PMLP
×1

RGB decoder

…PMLP
×1

+

σi

ci

Density decoderxi

…PMLPs
×2

Figure 3. Implicit Network Architecture. We set the frequency
coefficient ω = 30 for the PMLPs marked by yellow and ω = 1
for the others. Our implicit network takes γxi and γd as input and
predicts the color ci and density σi.

can be formulated as follows:

xi 7→ ϕi (xi) = sin (ωi·Wixi + bi) (7)

where, ϕi : RMi 7→ RNi denotes ith PMLP layer. It applies
the sine function to each component of the output vector
after using the affine transform defined by the weight matrix
Wi ∈ RNi×Mi , the frequency coefficient ωi ∈ R, and the
biases bi ∈ RNi applied to the input xi ∈ RMi .

As shown in Fig. 3, the proposed implicit network takes
PMLPs as the basic unit to carry out the radiance field repre-
sentation. Since the derivative of the sine is a phase-shifted
sine, it is allowed for the derivative of a PMLP to inherit
the properties of PMLP [37]. Moreover, the implicit repre-
sentation fitted by PMLPs is a higher-order complex func-
tion that can contain richer information due to their deriva-
tive properties, whereas ReLU-activated MLPs are piece-
wise linear and can only learn incomplete features hidden
in the first-order derivatives. Therefore, PMLP can yield
more effective and fine-grained gradients for updating cam-
era and APE parameters. We also insert the input as com-
plementary features into the deeper layer with the skip con-

nection, which is beneficial for further acceleration of con-
vergence [21].

SIREN demonstrates that setting the first layer ω0 = 30
and the other ωi = 1 helps to perform implicit representa-
tions. Here we give the explanation that ω0 = 30 PMLP can
first map the input into a high-dimensional space contain-
ing rich features since higher-frequency signals are more
capable of distinguishing features. Then, the following
ωi = 1 PMLPs can gradually extract detailed information
from these high-frequency features.

3.3. Camera Parameters

Setting the pinhole camera as the default model, it is es-
sential to confirm the variables of camera intrinsics and ex-
trinsics to be optimized along with their specific formats.
Camera Intrinsics. We consider the image center as the
camera principle point, i.e., cx ≈ W

2 and cy ≈ H
2 , where H

and W denote the height and width of the image. Therefore,
the focal f is the only variable in the intrinsics of the camera
to be estimated.
Camera Extrinsics. The camera extrinsics contain rotation
R ∈ SO(3) and translation t ∈ R3. Since it is challenging
to directly optimize a rotation matrix R with 9 elements,
we choose to optimize translation t as well as rotation ma-
trix R of the axial-angle format represented by a 3D vector
ψ which can be recovered to a rotation matrix R through
Rodrigues’ rotation formula.

Therefore, there are three types of variables requiring to
be optimized in the camera parameters Θ including f , t,
and ψ.

3.4. Volume Render

In this work, we follow the volume rendering theorem
in NeRF to integrate the predicted color and density in
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Sec. 3.2. By confirming camera parameters in Sec. 3.3, we
can generate the ray r of a pixel. Without prior camera pa-
rameters, the volume distribution varies with each update of
the camera parameters. Therefore, we uniformly sample N
points along the ray r and feed these samples into the neural
radiance fields.

Given the predicted color ci and its density σi of samples
along the ray r, the color Ĉ(r) can be approximated with
the volume rendering theorem as

Ĉ(r) =

N∑
i=1

Ti (1− exp (−σiδi)) ci (7)

where Ti = exp
(
−
∑i−1

j=1 σjδj

)
denotes how much light is

transmitted on ray r up to sample i and (1− exp (−σiδi))
denotes how much light is contributed by sample i.

3.5. Reconstruction Loss

To solve the joint optimization problem involving the pa-
rameters mentioned in Sec. 3.1, Sec. 3.2, and Sec. 3.3, we
uniformly sample M rays from the image sets. Then, we
jointly optimize these parameters with photometric loss and
frequency diversity loss.
Photometric Loss. The photometric loss Lp is L2 loss
between the approximated color Ĉ(r) and observed color
C(r) of sampled rays,

Lp =
∑

r∈RM

∥∥∥C(r)− Ĉ (r)
∥∥∥2
2

(8)

where RM denotes the set of M sampled rays.
Frequency Diversity Loss. APE allows frequency bands to
be learned with the scene representation in parallel. How-
ever, the neural network always tends to recover the low-
frequency information at first [22], which may lead to a
trend of degradation toward a single frequency band. There-
fore, we propose the loss of frequency diversity to maintain
the standard deviation of APE at diversity,

Lfd = 1− 1

1 + β · e−Σfd
(9)

where β denotes the coefficient to shift the slope of the loss
function and Σfd denotes the standard deviation of APE,
which can be defined as

Σfd =

√√√√ 1

n

n∑
k=1

(pek − 1

n

n∑
k=1

pek)2 (10)

Since Σfd characterizes the frequency dispersion, we
maintain it at a high level by applying frequency diversity
loss, thus ensuring that the high-frequency weights are not

Figure 4. Comparison of Optimization Efficiency. We visual-
ize the training PSNR curves including our method (green), our
method without the positional encoding (orange), and BARF with
20k iterations (purple) in Fern scene.

lost during training. Though the simpler function (e.g. min-
imizing −Σfd to −∞) has the similar effect on maintain-
ing frequency diversity, converging to −∞ makes Lfd con-
sistently increase frequency dispersion throughout training,
leading to unstable frequency diversity. However, Eq 9 can
drop rapidly to a relatively low value during training as
compared to photometric loss and has a less impact on fre-
quency dispersion in the later stage of training, thus achiev-
ing stable frequency diversity.

Finally, we optimize APE Ω, implicit network Φ of
PMLPs, and camera parameters Θ using these two recon-
struction losses, which can be formulated as the following
minimization problem,

min
Ω,Φ,Θ

(Lp + λfd(Lx
fd + Ld

fd)) (11)

where Lx
fd and Ld

fd denote the frequency diversity loss of
Ex and Ed. λfd denotes the weighting factor between pho-
tographic loss and frequency diversity loss.

4. Experiments
We mainly validate the proposed method using the chal-

lenging real-world LLFF dataset [27], which consists of 8
forward-facing scenes with sequentially captured images by
hand-held cameras. We also use nerf real 360 dataset [28]
to evalute the performance of our method on a more com-
plex scene with a wider range of camera viewpoints. Ex-
periments are conducted under different prior situations to
illustrate that the proposed method can solve the joint op-
timization issue of training neural radiance fields from un-
known camera parameters. Moreover, we investigate the ef-
fectiveness of each part of our method through the ablation
study.

4.1. Experiment Setup

Evaluation Metrics. We evaluate the performance in two
aspects: camera parameter errors and view synthesis qual-
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Figure 5. Qualitative Comparison of Evaluation w/o Camera Extrinsics. We compare the fine details of our method (20k iterations,
unknown camera poses) with other methods including BARF (20k and 200k iterations, unknown camera poses), GARF (200k iterations,
unknown camera poses) and ref.NeRF (200k iterations, known camera poses). It should be noted that the qualitative results of GARF are
taken directly from their paper.

Scene

Camera parameter estimation View synthesis quality
∆rot(°) ↓ ∆trans(m)(10−2) ↓ PSNR ↑ SSIM ↑ LPIPS ↓

Ours GARF BARF Ours GARF BARF Ours GARF BARF ref.NeRF∗ Ours GARF BARF ref.NeRF∗ Ours GARF BARF ref.NeRF∗

(20k iters) (200k iters) (200k iters) (20k iters) (200k iters) (200k iters) (20k iters) (200k iters) (200k iters) (200k iters) (20k iters) (200k iters) (200k iters) (200k iters) (20k iters) (200k iters) (200k iters) (200k iters)

Fern 0.05 0.47 0.19 0.17 0.25 0.19 24.63 24.51 23.79 23.72 0.75 0.74 0.71 0.73 0.27 0.29 0.31 0.26
Flower 0.21 0.46 0.25 0.19 0.22 0.22 26.32 26.40 23.37 23.24 0.73 0.79 0.70 0.67 0.15 0.11 0.21 0.24
Fortress 0.17 0.03 0.48 0.21 0.27 0.36 29.16 29.09 29.08 25.97 0.84 0.82 0.82 0.78 0.13 0.15 0.13 0.19
Horns 0.08 0.03 0.30 0.09 0.21 0.22 24.27 22.54 22.78 20.35 0.76 0.69 0.73 0.62 0.29 0.33 0.30 0.42
Leaves 0.24 0.13 1.27 0.28 0.23 0.25 19.42 19.72 18.78 15.33 0.59 0.61 0.54 0.31 0.28 0.27 0.35 0.53
Orchids 0.26 0.43 0.63 0.32 0.41 0.40 20.02 19.37 19.45 17.34 0.60 0.57 0.57 0.52 0.25 0.26 0.29 0.31
Room 0.12 0.42 0.32 0.10 0.32 0.27 32.09 31.90 31.95 32.42 0.95 0.94 0.94 0.95 0.10 0.13 0.10 0.08
T-rex 0.12 0.66 1.14 0.18 0.48 0.72 23.88 22.86 22.55 22.12 0.82 0.80 0.77 0.74 0.18 0.19 0.21 0.24

Mean 0.16 0.33 0.57 0.19 0.30 0.33 24.95 24.54 23.97 22.56 0.76 0.75 0.72 0.67 0.21 0.22 0.24 0.28

Table 1. Quantitative Comparison of Evaluation w/o Camera Extrinsics. The best is in bold. 10−2 denotes ∆trans are scaled by 100.
∗ denotes that ref.NeRF is trained with known camera poses. Conducted with unknown camera poses and fewer iterations, the proposed
method can achieve better view synthesis quality and camera parameter estimation in most scenes even compared to ref.NeRF.

Scene

Camera parameter estimation View synthesis quality
∆rot(°) ↓ ∆trans(m)(10−2) ↓ PSNR ↑

Ours BARF Ours BARF Ours BARF ref.NeRF∗

(20k iters) (200k iters) (20k iters) (200k iters) (20k iters) (200k iters) (200k iters)

vasedeck 0.64 87.23 0.23 152.41 20.85 14.74 18.81
pincone 0.25 114.47 0.74 161.39 22.56 13.17 19.76

Mean 0.45 100.85 0.49 156.90 21.71 13.96 19.29

Table 2. Quantitative Comparison over nerf real 360 Dataset.
The best is in bold. 10−2 denotes ∆trans are scaled by 100. Con-
ducted with unkown camera poses with a wider range of view-
points, the proposed method can reconstruct radiance fields and
estimate camera poses but BARF fails.

ity. For evaluating camera parameter errors, we take camera
poses and intrinsic parameters estimated by COLMAP as
the ground truth (provided by dataset). We measure the ab-
solute error in the metric of pixels on focal length (∆focal).

We compute the rotation angle error (∆rot) and the absolute
translation error (∆trans) by aligning the optimized camera
poses with the ground truth with a similarity transformation
Sim(3) [39]. To evaluate the quality of the view synthesis,
we perform an additional pose-only optimization step on the
trained model in case misaligned poses may contaminate
the novel view synthesis results [45, 22]. PSNR, SSIM [44]
and LPIPS [50] are used to measure view synthesis quality.
Implement Details. We set the dimensions of Ex and Ed to
10 and 4, respectively. All axis angles and translations are
initialized with zero vectors. We use the Adam optimizer
with a learning rate of 1 × 10−3 exponentially decaying to
1× 10−4 for Ex as well as Ed, a learning rate of 1× 10−3

exponentially decaying to 1×10−5 for the implicit network,
and a learning rate of 1 × 10−3 exponentially decaying to
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1 × 10−6 for all camera parameters. We uniformly sample
N = 128 points for numerical integration along each ray.
We set β = 0.01 and the loss weighting factor λfd = 0.005.

For fair evaluation without camera extrinsics, we resize
the images to 480 × 640 pixels and assume known camera
intrinsics. We train the framework for 20k iterations and
uniformly sample M = 2048 rays from the whole scene in
each iteration. We follow the same train/test splits as BARF,
i.e., the last 10% images are used as test images. All these
configurations except the training iterations are consistent
with BARF and GARF. Note that there is no official source
code for GARF, so only part of its results are available.

For fair evaluation without camera extrinsics and intrin-
sics, we resize the images to 756×1008 pixels. We initial
the focal length f with image width (provided by dataset)
and add it to the optimization as well. The hidden units of
all PMLPs in the implicit network are cut in half to check
the limits of our method under challenging conditions. We
train the framework for 10k epochs and uniformly sample
M = 1024 rays from every image during one epoch. We
follow the same train/test splits as NeRF--, i.e., every 8-th
image is used as a test image.

For the ablation study on APE and β, we use ref.NeRF
as the baseline method. For the ablation study on APE and
PMLPs, we follow the same implementation details as eval-
uation without camera extrinsics and intrinsics to investi-
gate the performance under full-size and half-size network.

4.2. Evaluation w/o Camera Extrinsics

We investigate the joint optimization problem involv-
ing camera extrinsics (poses) and neural radiance field
parameters to evaluate the proposed method, similar to
the bundle adjustment. We mainly compare the perfor-
mance of the proposed method with the current state-of-
the-art method, BARF [22] and GARF [6]. Reference
NeRF (ref.NeRF) [22] is also introduced to show the lim-
its of view synthetic quality by training the neural radiance
field with the given camera poses. Furthermore, we remove
the APE (Ours w/o APE) and directly train the implicit net-
work to represent the neural radiance fields to demonstrate
the optimization efficiency of PMLP.

Fig. 4 shows the optimization efficiency in Fern scene.
Training these frameworks for 20k iterations, it can be ob-
served that the implicit network consisting of PMLPs pro-
posed in our method converges faster than BARF consisting
of ReLU-activated MLPs. However, it is difficult for the im-
plicit network to learn fine details with the lack of APE, thus
leading to a lower PSNR than BARF. By adding APE to the
framework, the proposed method can better represent the
fine details of the scene and achieve a higher PSNR during
the training accelerated by the implicit network.

Fig. 5 presents the qualitative results of the synthetic im-
ages. Both trained for 20k iterations, the proposed method

can reach a better neural radiance field representation than
the results of BARF. Even compared with baselines trained
for 200k iterations, the proposed methods still preserve
more fine details in the neural radiance field representation.
Importantly, the adjusted high-frequency terms of APE can
realize more fine detail representations than ref.NeRF with
fixed high-frequency items. These results prove that the
proposed method can perform better with fewer iterations.

Tab. 1 shows the quantitative results of camera param-
eter estimation and view synthesis quality. The proposed
method outperforms the other methods on average for solv-
ing the joint optimization problem of training neural radi-
ance fields from unknown camera poses (extrinsics). As we
discuss in Sec. 3.1 and Sec. 3.2, the APE parameters can
be adjusted with the fine-grained gradients of PMLPSs to
effectively predict accurate camera parameters (with 0.16°

rotation error and 0.0019(m) translation error on average).
Moreover, the different scenes should be represented by
proper frequency bands. APE can search the proper fre-
quency bands during training and synthesize images of
more complete and fine details (with PSNR=24.95 on av-
erage).

Tab. 2 shows the quantitative results over a wider range
of camera viewpoints. The camera poses estimated by our
method highly agree with those estimated by COLMAP,
indicating that the proposed APE can improve the perfor-
mance of the implicit representation to better identify the
image details in different camera viewpoints. Therefore,
the proposed method can train the scene implicit represen-
tation with the unknown camera poses even in real-world
360° camera viewpoints.

4.3. Evalution w/o Camera Extrinsics and Intrinsics

We investigate the challenging problem of training the
neural radiance fields with both unknown camera extrinsics
and intrinsics. To increase the experimental difficulty and
test the limits of the proposed method, the hidden units of
all PMLPs are cut in half. We mainly compare the perfor-
mance of the proposed method with NeRF--, which can also
estimate the extrinsics and intrinsics of the camera. The
baseline NeRF (colmap.NeRF) [45] is introduced to show
the view synthetic quality for training the neural radiance
field representation on the given known camera extrinsics
and intrinsics (provided by the LLFF dataset) in the case
where the size of original NeRF network is also reduced.

Fig. 6 shows some qualitative comparison of Leaves
scene. Fig. 6(a) shows the comparison of 3D camera tra-
jectories after training. Both trained for 10k epochs, the
camera trajectory of our method more closely matches
the ground truth (estimated by COLMAP) rather than
NeRF--, especially at the corners (marked with red ellipses).
Fig. 6(b) shows the comparison of synthetic details. In the
same challenging situation where the hidden units of the
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(a) Comparison of Trajectories.

Ground truth

NeRF--

Ours

(b) Comparison of Synthetic Details.

Figure 6. Qualitative Comparison of Evaluation w/o Camera Extrinsics and Intrinsics (Scene: Leaves). We compare the 3D trajecto-
ries and fine details with the ground truth and NeRF--. Both results show that the proposed method can provide better performance.

Scene

Camera parameter estimation View synthesis quality
∆rot(°) ↓ ∆trans(m) ↓ ∆focal(pixel) ↓ PSNR ↑ SSIM ↑ LPIPS ↓

NeRF-- Ours NeRF-- Ours NeRF-- Ours NeRF-- Ours
colmap.

NeRF-- Ours
colmap.

NeRF-- Ours
colmap.

NeRF∗ NeRF∗ NeRF∗

Fern 1.78 0.72 0.009 0.003 153.5 135.3 21.67 22.94 22.22 0.61 0.66 0.64 0.50 0.45 0.47
Flower 4.84 0.91 0.005 0.004 13.2 6.8 25.34 26.66 25.25 0.71 0.78 0.71 0.37 0.31 0.36
Fortress 1.36 1.17 0.013 0.011 144.1 130.6 26.20 28.14 27.60 0.63 0.73 0.73 0.49 0.38 0.38
Horns 5.55 2.21 0.031 0.010 156.2 132.1 22.53 24.20 24.25 0.61 0.67 0.68 0.50 0.45 0.44
Leaves 3.90 0.47 0.003 0.002 59.0 39.9 18.88 19.77 18.81 0.53 0.59 0.52 0.47 0.46 0.47
Orchids 4.96 2.38 0.020 0.009 199.3 153.3 16.73 19.32 19.09 0.39 0.49 0.51 0.55 0.50 0.46
Room 2.77 1.25 0.019 0.013 331.8 309.9 25.84 27.42 27.77 0.84 0.85 0.87 0.44 0.41 0.40
T-rex 4.66 1.63 0.015 0.003 89.3 86.2 22.67 22.83 23.19 0.72 0.74 0.74 0.44 0.40 0.41

Mean 3.73 1.34 0.014 0.007 143.3 124.3 22.48 23.91 23.52 0.63 0.69 0.68 0.47 0.42 0.42

Table 3. Quantitative Comparison of Evaluation w/o Camera Extrinsics and Intrinsics. The best are in bold. ∗ denotes that
colmap.NeRF is conducted under known camera parameters. Without known camera extrinsics and intrinics, the proposed method outper-
forms other methods in all scenes and the view synthesis quality is comparable to the reference results from colmap.NeRF.

implicit network are cut in half, the proposed method can
still preserve some fine details, while the rendering results
of NeRF-- are coarse and incomplete.

Tab. 3 shows the quantitative results of camera param-
eter estimation and view synthesis quality. The proposed
approach outperforms NeRF-- or even colmap.NeRF in all
scenes for training neural radiance fields from unknown
camera extrinsics and intrinsics. Shrunking the size of the
network degrades its performance in presenting a scene, and
its corresponding frequency bands also shift. APE can ad-
just the frequency bands to fit the current scene, which the
implicit network can represent and improve the view syn-
thesis quality (with an average PSNR=23.91). The excel-
lent scene representation can also additionally improve the
camera parameter estimation performance (with 1.34° rota-
tion error and 0.007(m) translation error on average).

4.4. Ablation Study

To investigate the effectiveness of each part of the pro-
posed method, we conduct the ablation study on APE and
β using ref.NeRF as the baseline method, as well as the
ablation study on APE and PMLPs by following the same

Configures Camera parameter estimation View synthesis quality
PSNR

ref.NeRF
Known

(Estimated from SfM)

22.56
ref.NeRF w APE w Lfd (β = 1) 23.65
ref.NeRF w APE w Lfd (β = 0.1) 23.70
ref.NeRF w APE w Lfd (β = 0.01) 23.72

Table 4. Ablation Study on APE and β. The best is in bold.
ref.NeRF is served as a baseline to evaluate the effect of APE
and Lfd under known camera parameters estimated from SfM.
ref.NeRF with APE and lower β can further improve the view syn-
thesis quality as compared to ref.NeRF.

implementation details as the experiment without camera
extrinsics and intrinsics. Note that all metrics in all tables
are mean values from the evaluation on the LLFF dataset.
Ablation study on APE and β. Since the scene is jointly
represented with APE and network, it is hard to compute the
accuracy of APE parameters with frequency values. How-
ever, as presented in Fig. 1, where the influence of improper
frequencies can be verified from the regression accuracy,
we can validate the effectiveness of APE through the im-
provement on view synthesis quality. Tab. 4 illustrates that
ref.NeRF with APE can learn more proper frequency pa-
rameters for the scene representations and thus achieve bet-
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Configures
Camera parameter estimation View synthesis quality

∆rot(°) ∆trans(m) ∆focal(pixel) PSNR

half-size full-size half-size full-size half-size full-size half-size full-size

Ours w/o APE w/o PMLP 3.33 4.23 0.015 0.019 149.9 177.0 22.68 22.93
Ours w/o APE w PMLP 2.43 2.16 0.013 0.013 145.9 138.5 23.63 23.91
Ours w APE w/o PMLP 1.75 1.03 0.010 0.006 131.5 120.1 23.08 23.97
Ours w APE w PMLP 1.34 0.86 0.007 0.004 124.3 109.8 23.91 24.52

Table 5. Ablation Study on APE and PMLPs. The best is in bold. The study is conducted under unknown camera parameters with half-
size (the numbers of hidden units in all layers are reduced to half) and full-size (unchanged) network. We investigate the contribution of
the proposed APE and PMLPs. We compare the performance in the four cases of using APE with ReLU-activated MLPs (Ours w APE w/o
PMLP), PE with PMLPs (Ours w/o APE w PMLP), PE with ReLU-activated MLPs (Ours w/o APE w/o PMLP) or APE with PMLPs (w
APE w PMLP).

ter synthesis quality than ref.NeRF with PE. Moreover, β
denotes a factor that can adjust the dropping rate of Lfd and
achieve stable frequency diversity. Though all Lfd with var-
ious β converge to a low value, lower β can make Lfd drop
faster, leading to a slight improvement in synthesis quality.
Ablation study on APE and PMLPs. Tab. 5 shows the
quantitative comparison results. As compared with the po-
sitional encoding (PE) of handcraft frequency bands, our
proposed APE can adjust the frequency bands to make
these frequency bands proper to the current scene, improv-
ing the performance of scene representations and the cam-
era pose estimation accuracy. As also shown in the re-
sults, the method with PMLPs can provide fine-grained
gradients for reconstructing the neural radiance fields and
thus improve both camera pose estimation accuracy and
view synthesis quality. We also note that APE can reduce
about 47% and 75% rotation error while PMLP can reduce
27% and 47% rotation error in half-size and full-size net-
work, respectively. Furthermore, APE can exploit the richer
representation capability of the full-size network to learn
more proper frequency parameters and thereby achieves
better view synthesis quality (PNSR=23.97) as compared
to PMLP (PNSR=23.91).

5. Conclusion

We present adaptive positional encoding for bundle-
adjusting neural radiance fields to train the scene radiance
field representation from unknown camera parameters. The
proposed APE can fit the proper frequency bands for better
scene representation. Meanwhile, the PMLPs can recon-
struct neural radiance fields as a high-order implicit func-
tion and yield fine-grained gradients. The experimental re-
sults demonstrate that the proposed method can solve the
proposed joint optimization problem involving unknown
camera parameters, frequency bands of APE, and implicit
network parameters with the results of high-fidelity syn-
thetic images and accurate camera parameters.

It should be noted that proper number of frequencies can
also improve the performance of Fourier series regression.
Since different scenes are distributed in different frequency

bands, we should also represent different scenes with fre-
quency parameters of proper values and numbers. However,
the number of frequencies is not adaptive in our method and
the performance can be further improved by implementing
it. In the future work, we will follow these ideas and focus
on implementing visual SLAM systems with neural radi-
ance fields.
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