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Abstract

Vision models often fail systematically on groups of
data that share common semantic characteristics (e.g.,
rare objects or unusual scenes), but identifying these
failure modes is a challenge. We introduce AdaVi-
sion, an interactive process for testing vision mod-
els which helps users identify and fix coherent fail-
ure modes. Given a natural language description of
a coherent group, AdaVision retrieves relevant im-
ages from LAION-5B with CLIP. The user then labels
a small amount of data for model correctness, which is
used in successive retrieval rounds to hill-climb towards
high-error regions, refining the group definition. Once
a group is saturated, AdaVision uses GPT-3 to sug-
gest new group descriptions for the user to explore. We
demonstrate the usefulness and generality of AdaVi-
sion in user studies, where users find major bugs in
state-of-the-art classification, object detection, and im-
age captioning models. These user-discovered groups
have failure rates 2-3x higher than those surfaced by
automatic error clustering methods. Finally, finetun-
ing on examples found with AdaVision fixes the dis-
covered bugs when evaluated on unseen examples, with-
out degrading in-distribution accuracy, and while also
improving performance on out-of-distribution datasets.

1. Introduction

Even when vision models attain high average per-
formance, they still fail unexpectedly on subsets of im-
ages. When low-performing subsets are semantically
coherent (i.e. unified by a human-understandable con-
cept), their identification helps developers understand
how to intervene on the model (e.g . by targeted data
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collection) and decide if models are safe and fair to de-
ploy [12, 25]. For example, segmentation models for
autonomous driving fail in unusual weather. Because
we have identified this, we know to deploy such systems
with caution and design interventions that simulate di-
verse weather conditions [37, 47]. Identifying coherent
failure modes helps developers make such deployment
decisions and design interventions.

However, discovering coherent error groups is dif-
ficult in practice, since most evaluation sets lack the
necessary visual or semantic annotations to group er-
rors. Prior work clusters evaluation set errors in differ-
ent representation spaces [8, 12, 17, 36, 43], but these
methods often produce incoherent groups, such that
it is hard for humans to assess their impact or fix
them. These methods are also limited by the cov-
erage of small evaluation sets, which underestimate
out-of-distribution vulnerabilities [26, 30, 33], and be-
come less useful as models approach near-perfect accu-
racy on benchmarks. An alternative approach for dis-
covering failures is open-ended human-in-the-loop test-
ing [13, 32, 33], which leverages interaction with users
to generate challenging data to test models on coherent
topics. While successful in NLP, there are no estab-
lished frameworks for open-ended testing in vision.

In this work, we present Adaptive Testing for Vi-
sion Models (AdaVision), a process and tool for
human-in-the-loop testing of computer vision models.
As illustrated in Figure 1 (left), a user first proposes a
coherent group of images to evaluate using natural lan-
guage (e.g. stop sign). This description is used to re-
trieve images from a large unlabeled dataset (LAION-
5B) using CLIP embeddings [27]. After users label a
small number of the returned images for model correct-
ness (pass / fail), the tool adapts to retrieve images
similar to the discovered failures (Figure 1C). AdaVi-
sion reduces the manual labor required for human-in-
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Figure 1: AdaVision is a human-in-the-loop tool for surfacing coherent groups of failures, which are indexed via natural
language topics. In the test generation loop (left), AdaVision generates challenging tests for a topic, hill-climbing on previous
failures. In the topic generation loop (right), AdaVision generates new topics to explore, hill-climbing on previously difficult
topics. Users steer testing by labeling a small number of images in the test generation loop and selecting which topics to
explore from the topic generation loop.

the-loop testing by automatically hill-climbing towards
high-error regions, while having a human-in-the-loop
ensures groups are coherent and meaningful for the
downstream application. AdaVision also leverages a
large language model (GPT-3 [5]) to adaptively help
users generate descriptions for challenging groups to
explore, as previously proposed by [32] and illustrated
in Figure 1 (right). After testing, users finetune their
models on discovered groups to fix the bugs, and they
can test again to verify improvement.

We demonstrate the usefulness of AdaVision in
user studies, where users found a variety of bugs in
state-of-the-art classification, object detection, and im-
age captioning models. AdaVision groups had failure
rates 2-3x higher than those found by Domino, an au-
tomatic error clustering baseline [12]. Further, users
found close to 2x as many failures with AdaVision,
when compared to a strong non-adaptive baseline using
the same CLIP backend. Finally, we show that finetun-
ing a large classification model on failures found with
AdaVision improves performance on held-out exam-
ples of such groups and on out-of-distribution datasets,
without degrading in-distribution performance: fine-
tuning an ImageNet-pretrained ViT-H/14 model [6, 10]

on user study data fixes the discovered groups (boost-
ing accuracy from 72.6% to 91.2%) without reducing
overall accuracy on ImageNet, while also improving the
accuracy of labeled classes (78.0% to 84.0%) on five
out-of-distribution (OOD) ImageNet evaluation sets.

2. Related Work

Automatic group discovery. To help humans find
low-performing coherent groups, one line of prior work
clusters errors in validation data, labeling each cluster
with a caption [8, 12, 17, 36, 43]. A desirable prop-
erty for these clusters is coherency : groups and cap-
tions that are semantically meaningful to humans aid
decisions about safe deployment and intervention (e.g .
collecting more data to fix the bugs). Further, clusters
should generalize: since each cluster is meant to repre-
sent a bug in the model, collecting more data matching
the caption should result in a high failure rate. Prior
work finds that automatic methods which cluster val-
idation set errors can fail this second criterion: clus-
ters can spuriously overfit to a few mispredicted exam-
ples [18]. Overfitting is particularly likely on small or
mostly-saturated evaluation sets. In contrast, AdaVi-
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sion leverages a human in the loop to iteratively test
models, encouraging descriptions which are coherent,
generalizable, and relevant for the users’ task.

Testing machine learning models. Human-aided
testing of models is an established practice in Natural
Language Processing [3, 13, 20, 32, 33]. This area ap-
plies insights from software engineering by having users
create test cases with templates [33], via crowdsourcing
[13, 20], or with help from a language model [32]. Tests
are organized into coherent groups and used to evalu-
ate a target model. This style of testing, which lever-
ages human steering to probe inputs beyond traditional
training / validation splits, has successfully unearthed
coherent bugs in state-of-the-art NLP models, even as
models saturate static benchmarks [13, 20, 32, 33].

In contrast, testing in computer vision has not
moved far from static evaluation sets, with testing lim-
ited to pre-defined suites of data augmentations [11,
37, 48], static out-of-distribution test sets [2, 15, 16,
31, 39], training specific counterfactual image genera-
tors [1, 7, 19], or using 3D simulation engines [4, 22].
All of these methods either restrict tests to a static
set of images, or along pre-specified axes of change
(e.g . blur augmentations), and many introduce syn-
thetic artifacts. In contrast, AdaVision enables dy-
namically testing models along unrestricted axes by
allowing users to specify tests using natural language.
Moreover, AdaVision can pull images from 5 billion
total candidates, orders of magnitude larger than typ-
ical evaluation datasets.

Our work shares motivations with prior work that
compares models via dynamically selected test sets
[23, 38, 42, 45] and with concurrent work by Wiles et
al. [43], who also leverage foundation models for open-
ended model testing of computer vision models. Like
other automatic methods, their approach involves clus-
tering evaluation set errors, captioning these clusters,
and then generating additional tests per cluster using
a text-to-image generative model [34]. AdaVision dif-
fers in that it is human-in-the-loop; as in prior work, we
find that a small amount of human supervision, which
steers the testing process towards meaningful failures
for the downstream application, is effective at identify-
ing coherent bugs [32] and avoids the pitfalls of auto-
matic group discovery from evaluation sets (our discov-
ered bugs have failure rates orders of magnitude higher
than Wiles et al. [43]).

3. Methodology

We aim to test vision models across a broad set of
tasks, including classification, object detection, image
captioning. Given a model m, we define a test as an

image x and the expected behavior of m on x [32, 33].
For example, in object recognition, we expect that
m(x) outputs one of the objects present in x, while
in captioning, we expect m(x) to output a factually
correct description for x. A test fails if m(x) doesn’t
match these expectations.

A coherent group, or topic [32], contains tests whose
images are united by a human-understandable concept
[12, 43]) and by a shared expectation [33]. AdaVi-
sion’s goal is to help users discover topics with high
failure rates, henceforth called bugs [32, 43]. Assum-
ing a distribution of images given topics P (X|T ), a bug
is t ∈ T such that failure rates are greatly enriched over
the baseline failure rate:

Ex∼P(X|t) [test(x) fails] � Ex∼P(X) [test(x) fails]

For a given topic, users start with a textual topic
description (e.g. stop sign in Figure 1 left), and then
engage in the test generation loop (Section 3.1), where
AdaVision generates test suggestions relevant to the
topic. At each iteration, AdaVision adaptively refines
the topic based on user feedback on topic images, steer-
ing towards model failures. While users can explore
whatever topics they choose (e.g. based on the task la-
bels, application scenarios, or existing topics from prior
testing sessions), AdaVision also includes a topic gen-
eration loop (Figure 1 right; Section 3.2) where a large
language model suggests topics that might have high
failure rate, based on existing topics and templates. At
the end of the process, users accumulate a collection of
topics and can then intervene on identified bugs, e.g . by
finetuning on the failed tests to improve performance
on fresh tests x ∼ P (X|t) from the topic (Section 4.4).

3.1. Test generation loop

In the test generation loop, users explore a candidate
topic t. At each iteration, users get test suggestions and
provide feedback by labeling tests, changing the topic
name, or both. This feedback adaptively refines the
definition of t, such that the next round of suggestions
is more likely to contain failures (Figure 1 left).

Initial test retrieval. Given a topic string q, AdaVi-
sion retrieves a warm-up round of tests (Figure 1A)
by using the text embedding qt (embedded with CLIP
ViT-L/14 [27]) to fetch nearest image neighbors from
LAION-5B [35], a 5-billion image-text dataset.1 We
note that LAION-5B can be replaced by or supple-
mented with any large unlabeled dataset, or even with
an image generator.

Adaptive test suggestions. We run the target

1We use https://github.com/rom1504/clip-retrieval
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Figure 2: In the test generation loop, AdaVision populates a topic with image tests, hill-climbing on previous failures
through embedding interpolations. To minimize user labeling effort, AdaVision also uses lightweight classifiers to automat-
ically sort and label returned tests. We provide additional technical details on these steps in Appendix A.1.

model on the warm-up images, obtaining (x,m(x)) tu-
ples. Users then label a small number of these tests as
passed, failed, or off-topic. A test is off-topic if it is a
retrieval error (e.g . not a stop sign in Figure 2C), or if
the test is not realistic for the downstream application.
When labeling, users prioritize labeling failures. We
incorporate these labeled tests in subsequent rounds
of retrieval, where we suggest tests based both on the
textual description (stop sign) and visual similarity to
previous failures. To do so (Figure 2A, B), we sample
up to 3 in-topic images (prioritizing failures), combine
their embeddings into a single embedding qi using a
random convex combination of weights, and generate
a new retrieval query by spherically interpolating each
qi with the topic name embedding qt, as done in [29].2

We automatically filter retrievals to prevent duplicate
tests. We provide more technical details in Appendix
A.1.

By incorporating images into retrieval, AdaVi-
sion adaptively helps users refine the topic to a coher-
ent group of failures. Each round can be seen as hill-
climbing towards a coherent, high-error region, based
on user labels. We evaluate the effectiveness of this
strategy in Section 4.1, where we observe that it sig-
nificantly improves retrieval from LAION-5B.

Automatically labeling tests. In order to minimize
user labeling effort, we train lightweight topic-specific

2q = slerp(qi, qt) =
sin((1−λ)α)

sinα
qi +

sin(λα)
sinα

qt, where
cosα = 〈qi, qy〉. We sample λ ∼ Uni(0, 1).

classifiers to re-rank retrieved results according to pre-
dicted pass, fail, or off-topic labels (Figure 2C). For
each topic, we take user pass/fail labels and train a
Support Vector Classifier (SVC) on concatenated CLIP
embeddings of each test’s input (image) and output
(e.g . predicted label). If off-topic labels are provided,
we train a second SVC model to predict whether a test
is in-topic or off-topic. The predictions of these two
models are used to rerank the retrievals such that likely
failures are shown first (sorted by the distance to the
decision boundary), and tests predicted as off-topic are
shown last. The user also sees a binary prediction of
pass / fail (Figure 2C), so they can skip tests predicted
as “pass” once the lightweight models seem accurate
enough. These models take less than a second to train
and run, and thus we retrain them after every round
of user feedback.

3.2. Topic generation loop

In the topic generation loop (Figure 1 right), users
collaborate with AdaVision to generate candidate
topics to explore. While labeling examples in the test
generation loop is easy for humans, generating new top-
ics is challenging, even when users are tasked with test-
ing m for a single concrete label (e.g. stop sign). Thus,
we offload this creative task to a large language model
(GPT-3, text-davinci-002), inspired by successes in re-
lated NLP tasks [32].

As illustrated in Figure 3, we start by using a col-
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Figure 3: In the topic generation loop, AdaVision lever-
ages GPT-3 to generate topics for users to explore. These
suggestions condition on previously explored topics with
high failure rates.

lection of prompt templates, such as “List some condi-
tions a {LABEL} could be in that would make it hard
to see” and “List some unusual varieties of {LABEL}”,
replacing {LABEL} at testing time with predefined la-
bel names or existing user topics (e.g. stop sign). We
combine completions of this prompt with existing user
topics (prioritizing topics with high failure rates) into
a new few-shot prompt, such that GPT-3 is “primed”
to return high-failure topic names [32]. The result-
ing topic name suggestions are presented to the user,
who chooses to explore topics they deem interesting
and important. These suggestions only need high re-
call (not precision), as users can disregard irrelevant
suggestions.

4. Evaluation

To evaluate AdaVision, we first quantify the value
of adaptive test suggestions (i.e. retrieving tests using
interpolated topics and images, Section 3.1) for find-
ing failures. Then, we verify that AdaVision helps
users find coherent bugs in state-of-the-art vision mod-
els across a diverse set of tasks in a set of user studies
(Section 4.2). These also demonstrate that AdaVi-
sion is more effective than a non-adaptive version re-
lying on an interactive CLIP search. In a separate ex-
periment, we compare AdaVision and Domino, an
automatic slice discovery method (Section 4.3). Fi-
nally, we use finetuning to patch the discovered bugs
(Section 4.4), improving performance in these topics.

Figure 4: Average number of failures accumulated within a
topic over the course of 100 retrievals, comparing AdaVi-
sion with a non-adaptive baseline. AdaVision is signifi-
cantly more effective at finding failed tests, because it is
able to quickly surface more failures once a few are found.
Standard error is over 12 topics.

4.1. Value of adaptive test suggestions

We ran a controlled experiment to understand the
value of the test generation loop’s adaptivity for find-
ing failures. We compared the number of failures found
within a topic when using adaptive test suggestions,
compared to retrieving based on topic name alone. To
do so, we fixed a set of broad topics from two tasks
(classification and object detection) and labeled the
top 100 retrievals found by each strategy.3 For clas-
sification, we created six broad topics with the tem-
plate a photo of a {y} with the labels {banana, broom,
candle, lemon, sandal, wine bottle}.4 For object detec-
tion, we use the template a photo of a {y} on the road

with labels {cyclist, motorcycle, car, stop sign, person,
animal}.

Figure 4 shows the number of failures found by
AdaVision compared toNonAdaptive over time, av-
eraged across topics. Once a small number of failures
have been found, AdaVision is able to quickly surface
more failures, outperforming retrieval that only uses
the topic string. Even though these broad initial topics
result in low baseline failure rates, AdaVision surfaces
coherent groups of failures within the broad topic by
hill-climbing on previous failures.

4.2. User study

We ran user studies to evaluate whether AdaVi-
sion enables users to find bugs in top vision models.
Users are able to find coherent bugs withAdaVision in
state-of-the-art models, even though these models have
very high in-distribution accuracy. We also show that

3One of the authors labeled all images in this experiment.
4We selected these classes because they overlap on various

ImageNet OOD datasets (ImageNet V2, ImageNet-A, etc.), dis-
cussed in Section 4.4.
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AdaVision’s adaptivity, i.e. its hill-climbing on pre-
vious failures (both test and topic), helps users find
nearly 2x as many failures than without adaptivity.

Tasks and models. To highlight the flexibility of
AdaVision, we had users test models across three vi-
sion tasks (classification, object detection, and image
captioning). We targeted models and categories with
high benchmark or commercial performance, where
failures are not easy to find, and we instructed users to
use stringent definitions for model failure. For classifi-
cation, users tested ViT-H/14 on two ImageNet cate-
gories banana and broom (chosen for their high top-1
accuracy of 90%), and were instructed that a predic-
tion that includes any object in the image is counted
as a valid prediction. For object detection, users tested
Google Cloud Vision API’s Object Detection on two
categories relevant for autonomous driving: bicycle and
stop sign (average precision 0.7-0.8 on OpenImages).5

Users were instructed to only mark as failures tests
where the model does not detect any bicycles or stop
signs present. For image captioning, users tested Al-
ibaba’s official checkpoint of OFA-Huge finetuned on
COCO Captions [41], which is state-of-the-art on the
benchmark, and were asked to explore scenes a visually
impaired user might encounter when inside a kitchen or
an elementary school. Users were instructed to consider
as failures only object and action recognition errors
which would egregiously mislead a visually impaired
user.

Participants and setup. We recruited 40 partici-
pants from academia and industry (with IRB approval)
who had taken at least a graduate-level course in ma-
chine learning, computer vision, or natural language
processing. We assigned 16 users to the classification
task, 16 to the detection task, and 8 users to the image
captioning task.

In these studies, we also aimed to ablate the im-
portance of AdaVision’s adaptivity over its benefits
as an interactive search interface with model scoring.
To do so, we asked each user to complete two rounds
of testing. In the AdaVision round, users had full
access to AdaVision as described in Section 3, while
in NonAdaptive round we disabled topic suggestions,
automatic test labeling, and adaptive test suggestions
(i.e. suggestions are always retrievals based solely on
the topic name). Users had a limited amount of time
for each round (15 to 20 minutes), and were instructed
to try to find as many failure-prone topics (bugs) for a
specific category as possible, switching topics whenever
they found 8-10 failures within a topic (more details in
Appendix B). Users tested different categories between

5https://modelcards.withgoogle.com/object-detection

Figure 5: User study results comparingAdaVision toNon-
Adaptive (baseline). Error bars are standard errors over
users. Results significant with p < 0.05 (*) or p < 0.005
(**), with more details in Appendix B.

rounds (to minimize learning between rounds), and cat-
egory assignments and round orderings were random-
ized.

Results. We present the number of failures found
(averaged across users) in Figure 5. Users were able
to find a variety of bugs with AdaVision, even in
strong models with strict definitions of failure. Fur-
ther, AdaVision’s adaptivity helped users find close
to twice as many failing tests than NonAdaptive,
with moderate to large (standardized) effect sizes in
classification (d = 0.588, p < 0.05), object detec-
tion (d = 0.882, p < 0.005), and image captioning (d =
0.967, p < 0.05). Using AdaVision helped users iden-
tify more diverse bugs than the baseline: while 12/40
users found 2 or more bugs with AdaVision, only 1/40
could match this level of diversity in the baseline round.

Qualitatively, users found bugs related to spuri-
ous correlations, difficult examples, and missing world
knowledge (we share samples in Figure 6). For ex-
ample, users discovered that ViT-H/14 strongly corre-
lates kitchen countertops with the label microwave and
witch hats with the label cauldron, leading to failure
on images where these correlations do not hold (e.g .
microwaves are absent). Users found that Cloud Vi-
sion misses detections when stop signs and bicycles are
partially obscured by snow, and users also discovered
object and action recognition errors in OFA-Huge, such
as with oven mitts and musical instruments held near
the mouth.

We surveyed users on whether AdaVision was in-
strumental in finding these bugs. 84.6% of users
marked said they “could not have found these bugs
using existing error analysis tools [they] have access
to.” We also asked users to rate the cognitive difficulty
of finding bugs in each round, on a scale of 1 to 5.
The average perceived difficulty with AdaVision was
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Figure 6: Sample of bugs found by users in studies. In each case, the model prediction (shown to the right of the corre-
sponding input image) is incorrect. These bugs span spurious correlations (e.g. ViT-H/14 associating a kitchen counter top
with a microwave), difficult examples (e.g. Cloud Vision API failing to detect stop signs partially obscured by snow), and
missing world knowledge (e.g. OFA-Huge misidentifying oven mitts).

3.05±1.07, in contrast with 4.10±0.91 for NonAdap-
tive. In a paired t-test, this gap was significant with
p < 0.001, reflecting that users felt testing was easier
with AdaVision than without.

4.3. Comparison with automatic slice discovery

Domino [12] is a state-of-the-art slice discovery
method that clusters validation set errors and describes
them with automatically generated captions. We com-
pare these to AdaVision topics on unseen data, noting
that if a topic or caption t genuinely describes a bug,
drawing new samples from x ∼ P (X|t) should yield a
high failure rate.

Setup. We compare bugs found in ImageNet classifi-
cation models with respect to six categories: {banana,
broom, candle, lemon, sandal, wine bottle}. Specifi-
cally, tests failed if they were false negatives: for class
y, the model fails if the image x contains object y, but
the model instead predicts an object that is not in the
image. We target the ViT-H/14 model from Section
4.2 [10], and a ResNet-50 [14].

For each category, Domino clusters ImageNet val-
idation examples using an error-aware Gaussian mix-

ture model in CLIP’s latent space, and then describes
each cluster with a caption.6 We use two variants,
Domino (BERT) and Domino (OFA), which differ in
how they caption clusters (template filling with BERT
[9] or captioning with OFA [40]). Appendix C contains
more details.

We used AdaVision topics from a user session in
the user studies for overlapping categories, and had an
author run additional sessions (i.e. use AdaVision
for 20 minutes) for the 2 remaining categories. While
Domino targets each model individually, we only tar-
get ViT-H/14, and directly transfer the discovered top-
ics to ResNet-50.

Both methods propose five topics per category (we
took the top-5 with most failures for AdaVision),
for a total of 30 topics each (listed in Appendix C).
To evaluate the failure rate of a topic on new data
that matches the topic description, we retrieve nearest
neighbors from LAION-5B using the topic name, and
label the first 50 in-topic retrievals (skipping over im-
ages that do not fit the topic description). We exclude
tests AdaVision users encountered during testing to

6We use the official implementation [12], available at
https://github.com/HazyResearch/domino
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avoid counting tests already reviewed in AdaVision’s
favor.

Results. We present average failure rates across co-
herent topics proposed by each method in Table 1. We
also present two baselines: the failure rate of a generic
topic description per category (a photo of {y}), and the
failure rate on the original ImageNet validation data
(noting that ImageNet has a looser definition of failure,
enforcing prediction on an arbitrary object on images
with multiple objects). AdaVision topics yield much
higher failure rates, while Domino shows rates close to
baselines. Interestingly, AdaVision topics generated
while testing ViT-H/14 transfer well to ResNet-50.

Further, while all AdaVision topics are unsurpris-
ingly coherent (as they are human-verified), we find
that 61.6% and 33.3% of topics from Domino (BERT)
and Domino (OFA) respectively are nonsensical (e.g .
a photo of setup by banana, a photo of skiing at sandal)
or fail to refer to the target category at all (e.g .
three oranges and an apple on a white background when
the target is “lemon”). These topics are excluded from
Table 1 and listed in Appendix C.

We believe these results illustrate some inherent dif-
ficulties of automatic slice discovery methods. Vali-
dation error clusters may not be semantically tied to-
gether, especially when models saturate in-distribution
benchmarks (ViT-H/14 and ResNet-50 are stronger
than models used in prior evaluation of automatic slice
discovery [12, 17]). Current slice captioning meth-
ods may also over-index into incorrect details or miss
broader patterns between images. Because of the
human-in-the-loop, AdaVision enables users to form
more coherent hypotheses about model failures. Fur-
ther, cluster captions can describe a group of failures
without including the cause of the model failure [18]
(e.g. “a woman sitting on a chair holding a broom”
is coherent, but ViT-H/14 has a failure rate of only
10% on additional data matching this description). In
contrast, users ofAdaVision iteratively form hypothe-
ses about model vulnerabilities: after selecting a topic,
users observe model behavior on additional data from
the topic, leading them to refine the topic definition.
This iterative process helps users identify topics which
consistently capture model failures.

4.4. Fixing bugs via finetuning

We evaluate whether users can fix bugs discovered
with AdaVision, by finetuning on failed tests. We
finetune ViT-H/14 on the 30AdaVision topics for cat-
egories {banana, broom, candle, lemon, sandal, wine
bottle} from Section 4.3, taking a sample of 20 tests
per topic for a total of 600 images. As a baseline
that just trains on images from a different distribution,

Model Method Avg failure rate

ViT-H/14

a photo of {y} 1.33

ImageNet 11.47

Domino (BERT) 8.6

Domino (OFA) 7.33

AdaVision 28.47

ResNet50

a photo of {y} 15.7

ImageNet 23.67

Domino (BERT) 20.44

Domino (OFA) 25.45

AdaVision 56.93

Table 1: Average failure rates across topics proposed by
AdaVision and two variants of Domino, an automatic
slice discovery method. AdaVision finds bugs that are 3x
more difficult for models, while automatic methods propose
groups that are close to baseline failure rates.

we finetune ViT-H/14 on an equal-size set of images
retrieved from LAION-5B using generic topics in the
form an image of {y}. We evaluate the finetuned mod-
els on held-out examples from AdaVision topics, on
the original domain (ImageNet [6]), and on five out-
of-distribution datasets: ImageNet V2 [31], ImageNet-
A [16], ImageNet-Sketch [39], ImageNet-R [15], and
ObjectNet [2]. Additional details are in Appendix D.

Finetuning improves performance on discovered
bugs. We use 50 held-out examples drawn from each
topic we attempted to fix (treatment topics) to ver-
ify if the bugs were patched. As shown in Table 2,
finetuning substantially increases performance on the
held-out data from the treatment topics (by 18.6 per-
centage points), making the accuracy on treatment top-
ics surpass average accuracy on ImageNet. These per-
formance gains also hold on in-topic images sourced
from outside of the LAION-5B distribution: for each
treatment topic, we collected 50 images from a Google
Image Search, deduplicated against both the finetun-
ing set and the LAION-5B evaluation set. Finetun-
ing on AdaVision images from a testing session using
LAION-5B also improves performance on in-topic im-
ages from Google by 13.9 percentage points.

Finetuning maintains in-distribution accuracy
and improves OOD accuracy. To ensure perfor-
mance gains are not due to the introduction of new
shortcuts, we check performance on the original in-
distribution data (ImageNet). Finetuning on the treat-
ment topics does not reduce overall ImageNet accuracy
(Table 2). Additionally, finetuning with AdaVision
improves overall average performance on the treatment
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AdaVision Topics ImageNet Avg across OOD Eval Sets

Model Treatment Topics Control Topics Overall Treatment Classes Overall
LAION-5B Google

Before finetuning 72.6 76.7 91.3 88.4 78.0 77.7
Finetuning with an image of {y} 82.5 (0.9) 82.9 (0.6) 90.8 (0.3) 88.5 (0.0) 82.1 (0.6) 78.0 (0.1)
Finetuning with AdaVision tests 91.2 (0.5) 90.6 (0.6) 91.9 (0.2) 88.4 (0.0) 84.0 (0.2) 78.2 (0.0)

Table 2: Accuracies on AdaVision topics, ImageNet [6], and five OOD ImageNet evaluation sets [2, 15, 16, 31, 39] before
and after finetuning on images accumulated from testing with AdaVision. Compared to a baseline of finetuning on the
same number of images pulled generically using the topic an image of {y} from LAION-5B, AdaVision improves accuracy
on held-out data from topics in the finetuning set (left two columns), regardless of whether images are sourced from LAION-
5B or Google Images. AdaVision also improves accuracy on OOD evaluation sets (right two columns). Finetuning maintains
overall performance on ImageNet (center) and held-out control topics (third column).

classes across out-of-distribution evaluation sets (from
78% to 84%). To check for shortcuts at a more fine-
grained level, we evaluate performance on 19 seman-
tically contrasting control topics with different labels.
For example, one treatment topic involved images of
lemons next to tea, which the model often predicted
as consomme. We added consomme as a control topic
to check that the model does improve performance
on lemons at the expense of the “consomme” con-
cept. Similarly, for topics banana on kitchen countertop

and witch riding a broom in Figure 6, we add the con-
trol topics microwave in kitchen and witch with cauldron;
see Appendix D for a list. Performance on the con-
trol topics does not decrease after finetuning. Our
results indicate users can fix specific bugs discovered
with AdaVision in ViT-H/14 without degrading per-
formance elsewhere.

5. Limitations

Retrieval limitations. While LAION-5B has good
coverage for everyday scenes, it may not be appropriate
to specialized domains such as biomedical or satellite
imagery, and CLIP’s representation power is also likely
to deteriorate on these domains [27]. Even for every-
day scenes, the quality of CLIP’s text-based retrieval
degrades as the complexity of the topic name increases,
particularly when several asymmetric relations are in-
troduced [24, 46]. Further work to improve image-text
models like CLIP could reduce off-topic retrievals dur-
ing testing, improving users’ testing speed.

Experiment limitations. We show that finetuning
a state-of-the-art classification model on AdaVision
bugs fixes them without degrading performance else-
where. While it is particularly encouraging that we
could improve performance on labels that had very
high accuracy to begin with, this experiment was done
with a limited set of labels and with only one round of
testing. Multiple rounds of testing / finetuning could

be more beneficial [32]. Models smaller than ViT-
H/14 may also be more prone to catastrophic forgetting
[28]. To preserve in-distribution performance when fix-
ing bugs for these models, robust finetuning techniques
like weight averaging [44] or adding in-distribution data
to the finetuning set may be necessary.

Fixing non-classification bugs. Classification tests
contain the expected label implicitly in pass/fail anno-
tations, and thus are easy to turn into finetuning data.
However, the same is not true for detection or caption-
ing tests, since we do not collect correct bounding boxes
or captions during testing (only pass/fail annotations).
Fixing such bugs would require an additional step of
labeling failing tests prior to finetuning, or using loss
functions that explicitly allow for negative labels [21].

6. Conclusion

We presentedAdaVision, a human-in-the-loop pro-
cess for testing vision models that mimics the life-cycle
of traditional software development [32]. By leveraging
human feedback for models on vision tasks, AdaVi-
sion helps users to identify and improve coherent vul-
nerabilities in models, beyond what is currently cap-
tured in-distribution evaluation sets. Our experiments
indicate the adaptive nature of AdaVision improves
the discovery of bugs, and that finetuning on bugs dis-
covered with AdaVision boosts performance on the
discovered failure modes. AdaVision is open-sourced
at https://github.com/i-gao/adavision.
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