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Abstract

Domain Adaptive Object Detection (DAOD) aims to im-
prove the detection performance of target domains by mini-
mizing the feature distribution between the source and tar-
get domain. Recent approaches usually align such distri-
butions in terms of categories through adversarial learn-
ing and some progress has been made. However, when ob-
jects are non-uniformly distributed at different scales, such
category-level alignment causes imbalanced object feature
learning, refer as the inconsistency of category alignment at
different scales. For better category-level feature alignment,
we propose a novel DAOD framework of joint category and
scale information, dubbed CSDA, such a design enables ef-
fective object learning for different scales. Specifically, our
framework is implemented by two closely-related modules:
1) SGFF (Scale-Guided Feature Fusion) fuses the cate-
gory representations of different domains to learn category-
specific features, where the features are aligned by discrim-
inators at three scales. 2) SAFE (Scale-Auxiliary Feature
Enhancement) encodes scale coordinates into a group of
tokens and enhances the representation of category-specific
features at different scales by self-attention. Based on the
anchor-based Faster-RCNN and anchor-free FCOS detec-
tors, experiments show that our method achieves state-of-
the-art results on three DAOD benchmarks.

1. Introduction
Benefiting from the training of large numbers of high-

quality labeled data, object detection algorithms have been
significantly advanced in recent years [15, 20, 24, 25, 33].
However, when dealing with new scenarios with unlabeled
data, the detector suffers from severe performance degrada-
tion. To tackle this problem, the domain adaptive object de-
tection is proposed, where the trained detector is transferred
from a scenario with labeled data (i.e., source domain) to a
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Figure 1. Illustration of the difference between our method and the
category-level alignment methods. It is worth noting that we only
depict one category in the figure for brevity. Our method learns
category-level features jointly with scales for more effective fea-
ture alignment. SGFF: scale-guided feature fusion module. SAFE:
scale-auxiliary feature enhancement module.

new scenario without labeled data (i.e., target domain).
The large difference in data distribution between the

source and target domain is an essential factor affecting
the performance. To improve the generalization ability of
detectors, most existing methods align feature distribution
from three aspects: 1) DAF [3] uses adversarial learning [8]
to align the feature distribution of pixel- and instance-
level with the help of the gradient reverse layer (GRL). 2)
EPM [11] and CFFA [43] weaken the negative impact from
the background and focus on the cross-domain alignment of
the foreground. 3) KTNet [32], GPA [37], DBGL [1], and
SIGMA [17] achieve adaptation at category-level by align-
ing cross-domain class-conditional distributions and make
significant progress. However, these works above ignore the
impact of object scale in transferring and aligning category-
level features, as shown in Fig. 1, which prevents them from
satisfactory results.

In our view, there are still two challenges existing in cur-
rent category-level DAOD works. The first challenge is
the large variance in category features at different scales,
which negatively affects the category-level feature align-
ment. Commonly, category features of small objects lack
texture details or even category-specific features with dis-
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criminative ability. This makes it difficult to directly align
features of small and large objects in the same category.
Recent US-DAF [28] separately aligns features at different
scales by assigning more fine-grained scale labels (small,
medium, and large) for each category. OADA [38] intro-
duces the bounding box offsets to conditionally align the
feature distributions based on FCOS [33]. Although these
algorithms above optimize feature learning for objects at
different scales to some extent, they ignore the category-
level feature consistency intra-/inter-domain with the same
scale, resulting in inefficient learning of domain-invariant
features for each category.

The second challenge is the weak perception of small ob-
jects. For humans, if we know what a “near car” looks like,
then we can easily recognize the “far car”. That is, when the
detector can detect a large object, it also has the potential to
detect the small one. Inspired by this, it is necessary to facil-
itate learning between objects at different scales. In DAOD,
although MGADA [44] proposes an omni-scale gated fu-
sion module consisting of convolution with different sizes
to learn multi-scale features, it cannot be removed during
inference, increasing the parameters.

To overcome these challenges, we propose a DAOD
framework of joint category and scale information (CSDA)
for more advanced cross-domain feature alignment and
enhancement. In particular, as shown in Fig. 1, we pro-
posed a Scale-Guided Feature Fusion module (SGFF) to
promote feature learning and alignment for each category.
It pulls objects of the same scale closer while pushing
objects of different scales away in an adversarial learning
manner. Such a design significantly alleviates the model
degradation due to the large variance between features at
different scales. Then, to improve the perceptive capability
in multi-scale scenarios, especially for small objects, we
design a Scale-Auxiliary Feature Enhancement module
(SAFE) to enhance feature interactions at different scales.
It encodes the category features and scale information of
objects as a set of tokens to learn the relations between
different scales through self-attention [34].

To be summarized, our contributions are as follows.

• We propose a joint category and scale feature frame-
work for DAOD, dubbed CSDA, which achieves more
effective cross-domain feature alignment and feature
enhancement for different scale objects.

• We propose a scale-guided feature fusion module
(SGFF), which eliminates the negative impact of ex-
cessive differences in features at different scales, and a
scale-auxiliary feature enhancement module (SAFE),
which enhances the perceptive capability of small ob-
jects in multi-scale scenarios.

• Extensive experiments demonstrate that the proposed

CSDA can significantly outperform existing SOTA
methods in three widely-used benchmarks.

2. Related Work
2.1. Object Detection

CNN-based object detection methods can be grouped
into anchor-based and anchor-free frameworks. Anchor-
based object detectors set anchor boxes with different scales
and aspect ratios on each cell, and then obtain the cate-
gory and location of each object by regression. Faster-
RCNN [25] is a classical anchor-based detector. It utilizes
RPN to obtain the region proposals by filtering out and ad-
justing the pre-defined anchors and then uses the classi-
fication and regression branch to obtain the categories of
proposals and make further adjustments for their locations.
YOLO [24] and SSD [22] are also anchor-based detectors
with faster speeds. Anchor-free object detectors directly
use full convolutional layers to complete object localization
and classification without relying on anchor boxes. As a
typical anchor-free object detection method, FCOS [33] di-
rectly predicts the category and offset of each pixel on the
feature map. Based on different regression targets, other re-
lated detectors are CornerNet [15] and CenterNet [7]. In
this paper, we use the Faster-RCNN [25] and FCOS [33] to
build our DAOD framework for more representation.

2.2. Domain Adaptive Object Detection

DAOD trains a model with labeled source domain data
and unlabeled target domain data, so as to achieve sat-
isfactory performance on the target domain. Recently,
many works solve the DAOD task by Mean Teacher frame-
work [2, 6, 18, 40] and domain-alignment [3, 11, 26, 42,
44]. The methods based on Mean Teacher [31] guide the
training of the student model by the high-quality pseudo
labels generated from the teacher model and update the
teacher model by temporally copying the weights of the
student model [2, 6, 18, 40]. Domain-alignment meth-
ods are applied in three levels, including pixel-level [11,
26, 44], instance-level [3, 42], and category-level [17, 32,
37, 43, 44]. Typically, DAF [3] firstly proposes pixel-
and instance-level domain discriminators to implement fea-
ture alignment in an adversarial learning [8] manner. SW-
DA [26] proposes a strong-weak alignment strategy that
pays more attention to images that are globally similar
while ignoring dissimilar ones. MGADA [44] incorpo-
rates multi-scale information and proposes a unified multi-
granularity alignment-based object detection framework,
including pixel-, instance-, and category-levels. PT [2]
treats the anchors as learnable ones for more suitable toward
the target domain and introduces strong augmentation to al-
leviate the intra-domain gap from a data augmentation per-
spective. SIGMA [17] aligns the category-level features in

11422



 

Backbone

Backbone

R

P

N

R

P

N

Head

Head

Shared Shared𝐷𝑝𝑖𝑥𝐷𝑝𝑖𝑥𝐷𝑝𝑖𝑥 𝐷𝑖𝑛𝑠𝐷𝑖𝑛𝑠𝐷𝑖𝑛𝑠

Assigner𝐷𝑠𝐷𝑠𝐷𝑠

𝐷𝑚𝐷𝑚𝐷𝑚

𝐷𝑙𝐷𝑙
Assigner

Category-guided

Scale-guided

Scale 

Encoder

𝑊𝑞  𝑊𝑞  𝑊𝑞  

𝑘𝑘𝑊𝑘𝑊𝑘𝑊

Scaled 

dot

𝑊𝑠𝑊𝑠𝑊𝑠

𝑣𝑊𝑊𝑣𝑊

Softmax

Mix Flow

Source Flow

Target Flow

Target ImagesTarget ImagesTarget Images

Source ImagesSource ImagesSource Images

𝐺𝐶𝑁𝑖𝑛𝑡𝑟𝑎_𝑠𝐺𝐶𝑁𝑖𝑛𝑡𝑟𝑎_𝑠𝐺𝐶𝑁𝑖𝑛𝑡𝑟𝑎_𝑠

𝐺𝐶𝑁𝑖𝑛𝑡𝑒𝑟𝐺𝐶𝑁𝑖𝑛𝑡𝑒𝑟𝐺𝐶𝑁𝑖𝑛𝑡𝑒𝑟

Scale-Guided Feature Fusion (SGFF) Scale-Auxiliary Feature Enhancement (SAFE)
ROI Align Matrix Multiplication Element-wise Addition

Region 

proposals

Region 

proposals

Pseudo 

labels

Ground 

truth

𝐺𝐶𝑁𝑖𝑛𝑡𝑟𝑎_𝑡𝐺𝐶𝑁𝑖𝑛𝑡𝑟𝑎_𝑡𝐺𝐶𝑁𝑖𝑛𝑡𝑟𝑎_𝑡

Figure 2. Overview of our proposed DAOD framework (CSDA) based on Faster-RCNN detector. Images from the source and target
domain are fed into a shared backbone and RPN to extract domain-invariant features on pixel- and instance-level. Then, based on the region
proposals, SGFF conducts the category relation graph and performs scale-separated feature alignment. Finally, SAFE is used to enhance
the category-specific feature representation at different scales through the self-attention mechanism. Notably, for source and target input,
we use ground truth and pseudo label from a shared detection head as supervision of our modules, respectively.

a graph-matching perspective. TIA [42] uses multiple aux-
iliary classifiers and localizers to align features separately
and effectively guarantees the accuracy of detectors.

However, most recent DAOD works [17, 32, 37, 43, 44]
mainly explore cross-domain alignment between category-
level features, while ignoring the challenges caused by large
variances in object scales for category-level alignment and
intra-/inter-domain knowledge transfer. In this paper, we
propose a domain adaptive framework that unifies category
and scale information to achieve better cross-domain fea-
ture alignment and enhancement.

3. Method

It is worth noting that our method can be applied in dif-
ferent detectors, such as anchor-based Faster-RCNN [25]
and anchor-free FCOS [33]. Without loss of generality, we
mainly take Faster-RCNN as an example and annotate the
difference with the implementation of FCOS.

As shown in Fig. 2, images from source domain s and
target domain t are firstly fed into the backbone to compute
pixel-level feature maps, followed by RPN with ROI Align
to generate instance-level features. Then, the instance-level
features are passed to the scale-guided feature fusion mod-
ule (SGFF) to facilitate the learning of features at each
scale. Benefiting from the robust spatial modeling capa-
bility of GCN [14], we model the category relations intra-
/inter-domain while guaranteeing the feature consistency on
each scale through three discriminators. Finally, the fea-
tures are delivered to the scale-auxiliary feature enhance-
ment module (SAFE) for enhancing the feature representa-
tion by transferring category-specific knowledge at different
scales. Specifically, we encode the category features and
scale information as tokens. Then the features are learned
by self-attention mechanism [34].

3.1. Baseline Model

We use VGG16 [29] as our backbone. For Faster-
RCNN [25], we extract the last stage C5 as the pixel-level
feature. For FCOS [33], we extract the last three stages
of VGG16 [29] and combine them into multi-level feature
maps as pixel-level features including P3, P4, P5, P6, and
P7 by FPN. Similar to the previous works [3, 11], pixel-
and instance-level discriminators, Dpix(·) and Dins(·), are
used to perform pixel- and instance-level alignment of fea-
ture maps, respectively. Their loss function Lpix and Lins

are similar, which can be defined as:

Lpix = −
∑
(i,j)

[L(Dpix(F s(i, j)), ysi,j)

+ L(Dpix(F t(i, j)), yti,j) ],

(1)

where L is a binary cross-entropy function. F s(i, j) and
F t(i, j) denote the feature at pixel (i, j) in the pixel-level
feature map from the source and target domain, respec-
tively. ysi,j = 1 and yti,j = 0 are the ground truth labeled
according to which domain the pixel comes from.

Lins = −
n∑
i

[L(Dins(F s
i ), y

s
i )+L(Dins(F t

i ), y
t
i) ], (2)

where n is the number of region proposals. Similarly, Fi

denotes the instance-level feature map from the ith region
proposal, and yi is the ground truth labeled according to
which domain the ith proposal comes from.

Since we have the label of the source domain, we can
use it to supervise the training of the detectors. About the
detection loss, we exactly follow existing works [25, 33].
Specifically, for Faster-RCNN [25], there are two stages of
output, i.e., the RPN and RoI, each with a cross-entropy loss
and a smooth L1 loss for classification Lcls and localization
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Lloc, respectively. The detection loss can be defined as:

Ldet = Lrpn
cls + Lrpn

loc + Lroi
cls + Lroi

loc . (3)

In summary, the total loss of the baseline model in Faster-
RCNN [25] can be defined as:

Lbaseline = Ldet + Lpix + Lins. (4)

For FCOS [33], the detection heads consist of classification,
centerness, and regression branches, which are supervised
by the focal loss [20] Lcls, cross-entropy loss Lctr, and IoU
loss [39] Liou, respectively. The object detection loss can
be defined as:

Ldet = Lcls + Lctr + Liou. (5)

Notably, since FCOS [33] belongs to the anchor free-based
detection method, the total loss of the baseline model does
not include the instance-level loss, which can be defined as:

Lbaseline = Ldet + Lpix. (6)

3.2. SGFF

Most of the existing domain adaptation methods [1, 32,
36, 37, 43] focus on the alignment of category-level, ig-
noring the effect of scales. However, feature variance at
different scales within categories may be larger than that at
similar scales across categories, which fails to achieve ad-
vanced alignment [30]. To solve this problem, as shown in
Fig. 2, we use GCN [14] to model intra-/inter-domain rela-
tions and align the inter-domain category-level features at
the same scale by discriminators.
Graph-based feature fusion. We construct the proposals
outputted from the RPN 1 as a graph Gk = (V k, Ek), k ∈
{s, t}, where V k = {vki }n

k

i=1 and Ek = {eki,j}n
k

i,j=1 repre-
sent the set of proposals and edges (relations among propos-
als), respectively. nk, k ∈ {s, t} is the number of sampling
proposals. We obtain the category labels Ck = {cki }n

k

i=1

of the proposals according to the ground truth of the source
domain and the pseudo-label of the target domain. Each el-
ement eki,j in the adjacency matrix Ek can be obtained by:

eki,j =

{
1 if cki = ckj
CosineSim

〈
vki , v

k
j

〉
if cki ̸= ckj

, (7)

where k ∈ {s, t}, vki and vkj is defined as the ith and jth

proposal, cki and ckj is the category label of the ith and jth

proposal (1 ≤ i, j ≤ nk).
In terms of formula, the proposals of source and target

domain are fed into GCNintra s and GCNintra t to struc-
ture the relations intra-domain separately. Then, GCNinter

1We sample the category-level features from the output of FPN [19] for
the implementation of FCOS [33]

Source

Target

Small 

Object

Medium 

Object

Large 

Object
Source

Target

Small 

Object

Medium 

Object

Large 

Object

Classifier Space

Discriminator Space

Original Space

Domain 

Boundary

Domain 

Boundary

Category 

Boundary

Category 

Boundary

Scale 

Boundary

Figure 3. Illustration of the difference of scale alignment between
classification [28] and discrimination method on a specific cate-
gory. The purple arrow and brown arrow represent classification
and discrimination methods respectively.

is applied to achieve knowledge transfer inter-domain. This
process can be formulated as:

O = GCNinter [GCNintra s(V
s, Es)

c⃝GCNintra t(V
t, Et), E ],

(8)

where, similar as the Es and Et, the adjacency matrix E of
all proposals can be obtained from Eq.(7) and c⃝ represents
concatenation operation. O = {oi}n

s+nt

i=1 is the generated
fusion proposals.
Category-guided alignment. To ensure the GCN mod-
els the correct intra-/inter-domain relations, we configure
a classifier fcls(·) consisting of two fully connected layers
to supervise its training equipped with cross-entropy. The
loss function Lcg of it can be formulated as:

Lcg = −
ns+nt∑
i=1

yi log (softmax(fcls(oi))), (9)

where yi, i ∈ {1, 2, . . . , ns + nt} denotes the label of out-
put oi, which comes from the truth-valued label of vsi , i ∈
{1, 2, . . . , ns} in source domain and the pseudo-label of
vti , i ∈ {1, 2, . . . , nt} in target domain.
Scale-guided alignment. As mentioned above, in addition
to using GCN [14] to sufficiently learn intra-/inter-domain
knowledge, we further align features at different scales.
Following COCO [21], the size of proposals can be divided
into three categories: small ([0, 322]), medium((322, 962]),
and large((962,+∞)), which is defined as the “Assigner” in
Fig. 2. Based on this, we divide the O above into different
scale ranges, represented as oi,j , i ∈ {s,m, l} and j is the
jth feature in corresponding scales.

Specifically, inspired by the adversarial learning [8]
mechanism, we use three discriminators Ds(·), Dm(·), and
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Dl(·) (corresponding to small, medium, and large) to pull
together inter-domain features with the same scales, which
helps the GCN pay more attention on the feature fusion be-
tween the same scales. Therefore, the loss function Lsg of
scale alignment can be defined as:

Lsg =
∑

i∈{s,m,l}

∑
j

λiL(D
i(oi,j), yi,j), (10)

where L denotes the binary cross-entropy function, Di(·)
denotes the discriminator of different scales, λi is the bal-
ancing factors, and yi,j is the ground truth according to
which domain the oi,j comes from, i ∈ {s,m, l}.

Notably, our scale alignment method is distinct from the
US-DAF [28], which aligns proposal features at different
scales within a category by a multi-label classification. Our
proposed discriminator-based scale alignment method out-
performs the above multi-label classification method [28].
In particular, as shown in Fig. 3, without scale alignment,
there will be a large gap between proposal features of the
same category across domains. Scale classifiers can divide
features into different scale spaces, but fail to distinguish
features of different domains. Unlike classifiers, the dis-
criminator makes the network generate more similar fea-
tures in scale through GRL [8]. Therefore, the distribution
of features with the same scale is more concentrated near
the domain boundaries. Meanwhile, the features with dif-
ferent scales are also distinguishable.

3.3. SAFE

To further explore the network’s ability to perceive
objects at different scales, inspired by [12], we design
the SAFE for further feature representation enhancement
through interaction learning between different scale fea-
tures. As shown in Fig. 2, it consists of a scale encoder
for encoding region proposal scales into high-dimensional
features and a feature enhancement module for interactively
learning features across scales.
Scale encoder. Large-size objects contain rich and fine-
grained category information. Therefore, for two groups of
objects with different scales, if the scale difference within
each group is the same, the difference between features in
the group with the smaller scale is larger than the group with
the larger scale. In brief, the difference between objects
of size 10 × 10 and 20 × 20 is greater than the difference
between objects of size 200 × 200 and 210 × 210, despite
the fact that their scale difference has the same 10 pixels.
Based on the above considerations, we propose a new scale
mapping function fsm(·) to encode object scales as vectors
that can be embedded in high-dimensional features, which
is formulated as:

fsm(x) = α
1− e−

x
β

1 + e−
x
β
, (11)

where x is the width or height of proposals, α and β are
adjustable factors. We adjust the value of β, then encode
the centroid offset by logarithmic operation and width or
length by fsm(·) to generate a 4-d feature. Following the
method in [34], which computes cosine and sine functions
of different wavelengths, this 4-d feature is embedded in a
high-dimensional representation and encoded to scale simi-
larity matrix, denoted as Ss, via the FC layers Ws.
Feature enhancement. We use transformer-based [34]
self-attention mechanism to achieve interaction learning
among features. Specifically, we first use FC layers Wq ,
Wk, and Wv to encode all proposals as query Q =

{qi}n
s+nt

i=1 , key K = {ki}n
s+nt

i=1 , and value V = {vi}n
s+nt

i=1 .
Notably, to avoid confusion, the symbols q, k, and v in this
section refer to the tokens in query, key, and value. ns and
nt are the number of proposals in the source domain and
target domain, respectively.

Then, based on Q and K, we can calculate the feature
similarity matrix, denoted as Sf , among all proposals. We

combine the feature similarity matrix Sf =
{
qik

T
j

}ns+nt

i,j=1

and scale similarity matrix Ss = {si,j}n
s+nt

i,j=1 obtained

above to generate the potential relations A = {ai,j}n
s+nt

i,j=1

among proposal features by a weighted formulation of soft-
max, formulated as:

ai,j =
si,j · exp(qikTj )∑ns+nt

m=1 si,m · exp(qikTm)
, (12)

where ai,j refers to affinity score between ith proposal and
jth proposal.

Finally, we obtain the residuals by weighting the values
V according to the affinity score A, and sum the residuals
with the output O = {oi}n

s+nt

i=1 of SGFF as the output of

SAFE Õ = {õi}n
s+nt

i=1 , formulated as:

õi = oi +

ns+nt∑
j=1

ai,jvj . (13)

Similarly, the loss function Lfe of this module can be cal-
culated with the same as Eq. (9).

3.4. Overall Training Loss Function

As discussed above, the loss of the baseline part is su-
pervised by Lbaseline. Besides, the SGFF is optimized in
category and scale, indicated as Lcg and Lsg , respectively,
and the SAFE is constrained by Lfe. In general, the overall
training loss function is defined as:

L = Lbaseline + ω1 · (Lcg + Lsg) + ω2 · Lfe, (14)

where ω1 and ω2 are the balancing factors.
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Method Arch. person rider car truck bus train mbike bicycle mAP
Source Only

Faster-RCNN+VGG16

17.8 23.6 27.1 11.9 23.8 9.1 14.4 22.8 18.8
DAF [3] 25.0 31.0 40.5 22.1 35.3 20.2 20.0 27.1 27.6
SW-DA [26] 29.9 42.3 43.5 24.5 36.2 32.6 30.0 35.3 34.2
SW-Faster-ICR-CCR [36] 32.9 43.8 49.2 27.2 45.1 36.4 30.3 34.6 37.4
CFFA [43] 43.2 37.4 52.1 34.7 34.0 46.9 29.9 30.8 38.6
RPNPA [41] 33.6 43.8 49.6 32.9 45.5 46.0 35.7 36.8 40.5
UMT [6] 33.0 46.7 48.6 34.1 56.5 46.8 30.4 37.4 41.7
MeGA-CDA [35] 37.7 49.0 52.4 25.4 49.2 46.9 34.5 39.0 41.8
TIA [42] 52.1 38.1 49.7 37.7 34.8 46.3 48.6 31.1 42.3
PT [2] 40.2 48.8 59.7 30.7 51.8 30.6 35.4 44.5 42.7
TDD [10] 39.6 47.5 55.7 33.8 47.6 42.1 37.0 41.4 43.1
MGADA [44] 43.9 49.6 60.6 29.6 50.7 39.0 38.3 42.8 44.3
CSDA(Ours) 43.1 58.4 44.7 50.0 33.3 37.3 42.9 50.5 45.0
Oracle Faster-RCNN+VGG16 44.7 63.9 37.3 47.6 32.1 37.2 40.8 48.2 44.0
Source Only

FCOS+VGG16

29.6 26.3 37.1 7.9 14.1 6.3 12.9 28.1 20.3
EPM [11] 41.9 38.7 56.7 22.6 41.5 26.8 24.6 35.5 36.0
KTNet [32] 46.4 43.2 60.6 25.8 41.2 40.4 30.7 38.8 40.9
SSAL [23] 45.1 47.4 59.4 24.5 50.0 25.7 26.0 38.7 39.6
MGADA [44] 45.7 47.5 60.6 31.0 52.9 44.5 29.0 38.0 43.6
SIGMA [17] 46.9 48.4 63.7 27.1 50.7 35.9 34.7 41.4 43.5
OADA [38] 47.3 45.6 62.8 30.7 48.0 49.4 34.6 39.5 44.8
CSDA(Ours) 46.6 46.3 63.1 28.1 56.3 53.7 33.1 39.1 45.8
Oracle FCOS+VGG16 48.3 44.6 66.9 33.4 50.2 43.6 32.3 38.2 44.7

Table 1. Experimental results(%) on Cityscapes to Foggy Cityscapes.

4. Experiments

4.1. Evaluation and Datasets

Following the same DAOD setting in [3, 11], we con-
duct extensive experiments on three benchmarks. We use
the mean average precisions (mAP) at the IoU threshold of
0.5 to compare with state-of-the-art methods.
Cityscapes→Foggy Cityscapes. The Cityscapes [4] is a
street scene dataset collected from 50 cities, which contains
eight categories: person, rider, car, truck, bus, train, motor-
cycle, and bicycle. It consists of 2,975 images for training
and 500 images for validation. Foggy Cityscapes [27] is a
synthesized dataset based on the Cityscapes with three lev-
els of foggy weather (0.05, 0.01, 0.02) and shares the same
annotations with it. For the adaptation scenario from nor-
mal to foggy, we set Cityscapes as the source domain and
Foggy Cityscapes (0.02 level) as the target domain.
Sim10k→Cityscapes. Sim10k [13] is a synthesized dataset
collected from the computer game Grand Theft Auto V
(GTA5). It covers 10,000 images and their annotated
bounding boxes in the car category. For the adaptation sce-
nario from synthetic- to real-world, we set Sim10k as the
source domain and Cityscapes as the target domain.
KITTI→Cityscapes. KITTI [9] is a real-world traffic
scene dataset collected from an autonomous driving plat-
form, which covers 7,481 images in the training set. In
addition to the difference in camera setup, it’s similar to
Cityscapes [4]. For cross-camera adaptation, we set KITTI

as the source domain and Cityscapes as the target domain
with only the car category.

4.2. Implementation Details

We apply VGG16 [29] pre-trained on ImageNet [5] as
our backbone and conduct our DAOD framework based
on two different detectors (i.e., Faster-RCNN [25] and
FCOS [33]). For the input size, we scale all images by re-
sizing the shorter side of the image to 600 for Faster-RCNN
and 800 for FCOS, following the default settings in [3, 11].
We only use random horizontal flip as data augmentation
for FCOS and add additional multi-scale augmentation for
Faster-RCNN. Our model is trained with the SGD optimizer
with a 0.0025 learning rate, 4 batch-size, momentum of 0.9,
and weight decay of 5 × 10−4. The balancing factors in
Eq. (10) are set as λs = 0.01, λm = 0.05, λl = 0.1, β in
Eq. (11) is set as 20, and ω1 = 1.0, ω2 = 0.2 in Eq. (14).
All experiments are implemented in PyTorch.

4.3. Comparison with SOTA

As presented in Tab. 1 and Tab. 2, we compare 18 state-
of-the-art domain adaptive detectors on three widely-used
benchmarks. Besides, we also train the detectors without
DAOD methods using only source domain data, as well as
the annotated target data, and their performance is referred
to as Source Only and Oracle, respectively.
Cityscapes→Foggy Cityscapes. In Tab. 1, we achieve
45.0% and 45.8% based on Faster-RCNN [25] and
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Method Arch.
Sim10k KITTI

mAP(car) mAP(car)
Source Only 30.1 30.2
DAF [3] 39.0 38.5
SW-DA [26] 40.1 37.9
SC-DA [45] 43.0 42.5
CFFA [43] 43.8 -
SAPNet [16] 44.9 43.4
RPNPA [41] FR+VGG16 45.7 -
MeGA-CDA [35] 44.8 43.0
TIA [42] - 44.0
MGADA [44] 49.8 45.2
TDD [10] 53.4 47.4
CSDA(Ours) 56.9 48.6
Oracle FR+VGG16 66.9 66.9
Source Only 39.8 34.4
EPM [11] 49.0 43.2
KTNet [32] 50.7 45.6
SSAL [23] 51.8 45.6
MGADA [44] FCOS+VGG16 54.6 48.5
SIGMA [17] 53.7 45.8
OADA [38] 56.6 46.3
CSDA(Ours) 57.8 48.6
Oracle FCOS+VGG16 73.0 73.0

Table 2. Experimental results(%) on Sim10k/KITTI to Cityscapes.

FCOS [33], and we obtain the highest mAP overall com-
pared methods. By using Faster-RCNN, we achieve 0.7%
gain over the second-best MGADA [44]. Taking into
account that we don’t add additional parameters during
model inference, the performance improvement (+0.7%)
we achieve is quite considerable. Besides, we surpass
MGADA [44], SIGMA [17] , and OADA [38] with 2.2%,
2.3%, and 1.0% mAP using the same FCOS detector. No-
tably, our method performs better (+1.0% for Faster-RCNN
and +1.1% for FCOS) than the Oracle results.

Sim10k→Cityscapes. As shown in the left part of Tab. 2,
our method achieves the best mAP of 56.9% and 57.8%.
Compared with the same Faster-RCNN [25] detector, it
can be observed that our method outperforms the previous
SOTA by 3.5%. Besides, our method acquires 3.2%, 4.1%,
and 1.2% gains compared with MGADA [44], SIGMA [17],
and OADA [38] on FCOS [33] detector.

KITTI→Cityscapes. The comparison results are shown
in the right part of Tab. 2. Based on Faster-RCNN [25],
our method achieves the best result of 48.6%, which ob-
tains 3.4% and 1.2% gains compared with MGADA [44]
and TDD [10]. Compared to recent methods SIGMA [17]
and OADA [38], our method achieves 2.8% and 2.3% gains
separately. Even for the FCOS [33] implementation of
MGADA [44] which adds additional multi-scale data aug-
mentation during training, our performance is still better.

(a) (b) (c)

(d) (e) (f)

Figure 4. Ablation studies on Sim10k (Row 1) / KITTI (Row 2)
to Cityscapes (%). (a) to (c) and (d) to (f) represent the AR/AP of
small, medium, and large objects, respectively. For each subplot,
the vertical axis represents the relative value (AR and AP) with
baseline.

4.4. Ablation Study

To verify the effectiveness of each proposed module and
the superiority of discriminator-based scale alignment in
multi-scale scenarios, we constructed ablation studies on
the three benchmarks mentioned above in Tab. 3, Tab. 4,
Tab. 5, and Fig. 4. Following MGADA [44] and COCO [21]
metrics, we adapt APS/ARS, APM/ARM, and APL/ARL

which denotes the mAP/mAR of the object area in the range
[0, 322], (322, 962], and (962,+∞) respectively. All the ab-
lation studies are applied on FCOS [33].

As shown in Fig. 5, we also visualize the results of
Source only, EPM [11], CSDA, and the ablation studies on
Cityscapes to Foggy Cityscapes to demonstrate the superi-
ority of CSDA and the effectiveness of SGFF and SAFE.
Effectiveness of SGFF. To analyze the effectiveness of
SGFF and the superiority of discriminator-based scale
alignment over the classifier-based [28], we conduct two ex-
periments “+SGFF (w/ scale discriminator)” and “+SGFF
(w/ scale classifier)” in Tab. 3. Specifically, “+SGFF (w/
scale discriminator)” can achieve 44.6% with 5.7% gains
compared with the baseline. Compared with “+SGFF (w/
scale discriminator)”, the performance of “+SGFF (w/ scale
classifier)” is reduced by 1.1%. As shown in Tab. 4, we
design more detailed ablation studies to validate the effec-
tiveness of each component of SGFF. Each component can
improve the performance of the detector. And the addi-
tion of the scale-guided constraint promotes a significant
improvement in detector performance (2.3%) compared to
GFF only. Moreover, we also conduct experiments on
Sim10k/KITTI to Cityscapes to validate the generalization
ability of the SGFF in different scenarios. As shown in
Fig. 4, we can find that the SGFF can significantly improve
mAP at different scales regardless of the scenario.
Effectiveness of SAFE. As shown in Tab. 3, our CSDA fur-
ther improves the mAP (+1.2%) with the help of SAFE
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(c) CSDA (Ours) (d) Ground truth   (a) Source only (b) EPM

(g) CSDA (Ours) (h) Ground truth  (e) Baseline (f) CSDA w/o SAFE (g) CSDA (Ours) (h) Ground truth  (e) Baseline (f) CSDA w/o SAFE

carcar riderrider trucktruck bicyclebicycle busbusperson car rider truck bicycle busperson

Figure 5. Visual comparison of the detection results on Cityscapes to Foggy Cityscapes scenario among (a) source only, (b) EPM [11], (c)
CSDA(Ours), and (d) Ground truth in 1st row and (e) Baseline, (f) CSDA w/o SAFE, (g) CSDA, and (h) Ground truth in the 2nd row.

Method mAP APS APM APL

EPM [11] 36.0 8.3 36.7 61.6
MGADA [44] 43.6 10.1 43.1 72.5
Baseline 38.9 8.1 39.1 64.8
+SGFF (w/ scale classifier) 43.5 10.8 41.8 71.2
+SGFF (w/ scale discriminator) 44.6 11.1 43.5 71.8
+SAFE 41.4 11.0 40.7 68.4
CSDA (+SGFF+SAFE) 45.8 11.3 45.0 72.8
Oracle 44.7 12.3 42.6 70.9

Table 3. Ablation studies of CSDA on Cityscapes to Foggy
Cityscapes. Both SGFF and SAFE can bring performance gains.
Cascading SAFE after SGFF leads to further performance gains.

Method SGFF
APS APM APL mAPs m l GFF

Baseline - - - - 8.1 39.1 64.8 38.9

Proposed

✓ 10.3 40.8 65.5 40.1
✓ 9.9 42.1 66.3 41.0

✓ 9.7 40.5 68.5 40.7
✓ 10.1 41.7 68.1 42.3

✓ ✓ ✓ 10.5 41.1 69.0 41.8
+SGFF ✓ 11.1 43.5 71.8 44.6

Table 4. Effectiveness of each component in our SGFF. “s”,
“m”, and “l” correspond to three discriminators: Ds(·), Dm(·),
and Dl(·). “GFF” represents the graph-based feature fusion.

and performs better than Oracle. Besides, As shown in
Fig. 4, our model significantly improves the perception of
small and medium objects in both Sim10k and KITTI to
Cityscapes scenarios. In particular, the SAFE has more sig-
nificant effects on small objects than on medium objects on
AP and AR. It fully validates that SAFE can effectively fa-
cilitate feature learning and improve the perception of ob-
jects at different scales.

Besides, we also notice that our method has more ad-
vanced performance than EPM [11] and MGADA [44] at
all scales. Although MGADA [44] are reaching the upper
bound of the FCOS [33] detector performance, our method
can also acquire 2.2%, 1.2%, 1.9%, 0.3% gains on mAP,

β 5 10 15 20 25 30 40
mAP 44.1 44.9 45.4 45.8 45.0 45.0 44.6

Table 5. Sensitivity analysis of β on Cityscapes to Foggy
Cityscapes.

APS, APM, and APL.
Sensitivity Analysis of β. As shown in Tab. 5, we compare
the different values of β in Eq. (11). The results for dif-
ferent β are all above 44.0%, which demonstrates that our
CSDA can also achieve satisfactory results regardless of the
effect of β. In particular, as the value of β increases, the
performance of our model achieves the maximum mAP of
45.8% when β = 20, and then it starts to degrade.

5. Conclusions
In this work, we investigate the impact of object scale

in existing category-level alignment-based DAOD meth-
ods and then analyze the challenges of large feature vari-
ance in different scales as well as the weak perception of
small objects. To avoid feature degradation due to the ef-
fect of object scales, we propose a novel DAOD frame-
work of joint category and scale feature learning, dubbed
CSDA. It includes 1) a scale-guided feature fusion module
(SGFF) for learning scale-separated category-specific fea-
tures, which eliminates the negative impact of excessive
differences in features at different scales, and 2) a scale-
auxiliary feature enhancement module (SAFE) for facilitat-
ing the feature interaction between different scales, avoid-
ing the weak perception for small objects. On three widely-
used benchmarks, experimental results show significant su-
periority of the proposed CSDA compared with the existing
SOTA methods on different detectors.
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