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Abstract

Recent studies have investigated how to achieve robust-
ness for unsupervised domain adaptation (UDA). While
most efforts focus on adversarial robustness, i.e. how the
model performs against unseen malicious adversarial per-
turbations, robustness against benign common corruption
(RaCC) surprisingly remains under-explored for UDA. To-
wards improving RaCC for UDA methods in an unsuper-
vised manner, we propose a novel Distributionally and Dis-
cretely Adversarial Regularization (DDAR) framework in
this paper. Formulated as a min-max optimization with a
distribution distance, DDAR1 is theoretically well-founded
to ensure generalization over unknown common corrup-
tions. Meanwhile, we show that our regularization scheme
effectively reduces a surrogate of RaCC, i.e., the perceptual
distance between natural data and common corruption. To
enable a abetter adversarial regularization, the design of
the optimization pipeline relies on an image discretization
scheme that can transform ”out-of-distribution” adversar-
ial data into “in-distribution” data augmentation. Through
extensive experiments, in terms of RaCC, our method is su-
perior to conventional unsupervised regularization mech-
anisms, widely improves the robustness of existing UDA
methods, and achieves state-of-the-art performance.

1. Introduction
Although Deep Neural Networks have achieved impres-

sive performance for various applications [15, 19, 14, 39,
27, 34], they may not generalize well on new data due to
the data distribution shift problem. One of such shift is

*Majority of the work was done at Duke Kunshan University.
†Corresponding author.
1The codes are available at https://github.com/gzqhappy/DDAR.

called domain shift where data may come from a new tar-
get domain.Unsupervised Domain Adaptation (UDA) aims
to address this domain shift with access to labeled source
domain data and unlabeled target domain data. The funda-
mental objective is to infer the domain-invariant representa-
tions [9, 63] from data.

The vanilla UDA task assumes the data of the target do-
main is all clean without any corruption, which is unfortu-
nately impractical in most cases. In other words, the tar-
get domain not only faces the label scarcity problem but
also may suffer from the data corruption problem, includ-
ing common corruption [16] and adversarial attack [30].
As such, recent studies have investigated how to achieve
robustness for UDA. While most efforts [59, 3, 11] fo-
cus on applying Adversarial Training (AT) [29] to improve
UDA’s robustness against the malicious adversarial pertur-
bations [48, 13] (i.e. small perturbations imperceptible to
humans which can however easily fool the model), robust-
ness against benign common corruption (RaCC)[16] sur-
prisingly remains under-explored.

Common corruptions such as noise, blur, and digital
defects that may occur in the real world are more rel-
evant to practical applications [16]. For instance, au-
tonomous cars should be able to identify pedestrians in un-
usual weather that would incur heavy noise from their sen-
sors [45]. In recent studies, one of the main interests has fo-
cused on investigating data-dependent regularization meth-
ods [17, 62, 54, 6, 12, 40, 46, 22, 31].

However, conventional methods are not directly applica-
ble to UDA. The primary reason is that most of the previ-
ous methods rely on supervised learning, while labels are
not available in UDA tasks. Therefore, an unsupervised
approach needs to be explored. On the other hand, data
augmentation methods commonly come up with trade-offs
between robustness and standard accuracy during or after
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training. For instance, some heuristic transformations im-
prove performance on some types of corruptions but reduce
significantly the performance on clean images [42]; AT with
conventional adversarial data (in pixel-space) suffers from
over-smoothed decision boundary [56] and sharper train-
ing loss landscape [26], since strong ”attack” introduced by
augmented Out-of-distribution data in maximization stage.

Despite the importance of RaCC, only a few studies have
investigated it in UDA. The pioneered study [57] reveals
that adversarial data enlarging the domain shift can be a
surrogate of common corruption. Since the adversarial data
are generated in the pixel space, the training process has
to rely on strong supervision provided by a noisy teacher,
a pre-trained UDA model. As a result, an effective unsu-
pervised regularization mechanism for UDA has not been
investigated.

This paper investigates an unsupervised adversarial reg-
ularization framework to improve RaCC for UDA, named
Distributionally and Discretlly Adversarial Regulariza-
tion (DDAR). Different from conventional classifier-tailored
method [31, 51, 64, 37, 25, 24, 4], DDAR formulates a
min-max optimization by using a distribution distance. The
generated adversarial data are considered as the worst-case
w.r.t. the latent distribution of natural data so that some
other perturbed data (not only the worst ones w.r.t. classi-
fier but those crucial for common corruptions) are also im-
plicitly considered. As such, minimizing the distribution
distance between natural data and adversarial data enables
the model to generalize well on unknown types of common
corruptions that share similar distribution with adversarial
data. Moreover, to enable a abetter adversarial regulariza-
tion, leveraging the insight from [31], we integrate an image
discretization (ID) scheme into our optimization pipeline.
ID transforms the pixel-space adversarial data into an ”in-
distribution” data augmentation which alleviates problem-
atic regularization of AT.

To further improve the regularization performance, we
update the distribution distance measurement to the Wasser-
stein distance on semantic space. Theoretically, we demon-
strate that the proposed adversarial regularization certifies a
tighter upper bound than previous methods by encouraging
a better-estimated hypothesis-induced distribution distance.
Empirically, compared with the previous unsupervised ap-
proach, such as the virtual adversarial training (VAT) [33]
and adversarial feature desensitization (AFD) [4], our ap-
proach achieves much better generalization to unknown
common corruptions by reducing the perceptual distance
[32] between natural data and common corruptions, which
can be considered as an effective indicator for RaCC.

In a nutshell, our key contributions are listed as follows:
1) We propose an unsupervised adversarial regulariza-

tion method, working as a plug-in component, to enable ro-
bustness against common corruptions for UDA methods.

2) While it is theoretically well-founded, our novel reg-
ularization mechanism empirically certifies a better gener-
alization over the multiple types of common corruptions,
compared with previous unsupervised methods.

3) Through extensive experiments on UDA benchmarks,
our method consistently improves RaCC of various UDA
methods, achieving new state-of-the-art.

2. Related Work
2.1. Unsupervised Domain Adaptation

Among the current UDA methods, the adversarial do-
main adaptation methods not only achieve state-of-the-art
performance but also offer a theoretical guarantee to reduce
domain shift. The domain adversarial learning method ap-
proximates the H∆H-Divergence by using a domain clas-
sifier [9], which motivates a large body of heuristic learn-
ing algorithms of UDA. Recent studies devoted to learn-
ing a discriminative distribution alignment, which is to ap-
proximate a joint distribution alignment by conditioning the
domain classifier on both features and corresponding pre-
dictions [35, 28, 49, 18]. The hypothesis adversarial learn-
ing method certifies a better distribution distance estimation
by introducing two classifiers to measure the distribution
discrepancy between two domains. The disagreement be-
tween two classifiers’ predictions is used to detect the non-
discriminative features which do not clearly belong to some
categories. By playing the mini-max game with a feature
extractor, two classifiers optimize the decision boundaries
for alleviating intra-class domain discrepancy [43, 63].

2.2. Adversarial Training

The conventional adversarial training (AT) [30, 13]
method has been widely studied as a promising approach
to defending against adversarial attacks. It formulates a
min-max optimization with the classification loss, where
the adversarial examples are generated to maximize the loss
to confuse the classifier, and then minimize the loss over
the adversarial examples for robust learning. On the other
hand, some successful methods can leverage the unlabeled
data and have been applied to semi-supervised learning and
UDA tasks [7, 1], such as Virtual Adversarial Training [33]
that aims to smooth the output distribution around input data
through AT. Moreover, generating adversarial examples by
considering the inter-sample relationships, i.e. Feature-
Scattering [60], or training with adversarial data by mini-
mizing the distribution distance [4] also achieves promising
performance for adversarial robustness.

2.3. Robustness against Common Corruption

Some studies focus on developing data augmentation
techniques for implicit regularization. Augmix [17] is pro-
posed to improve robustness against common corruption
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and relies on a diverse set of predefined data augmenta-
tion methods. Borrowing the idea from AT, adversarial
augmentation approaches propose to search augmentations
adversarially, such as learning the random mixing factors
for augmentation operation [54] employing augmentation
policy network to produce hard augmentation policies [62],
optimizing an image-to-image model to generate corrupted
images [6]. Few studies investigate the supervised adver-
sarial regularization (AR) method on intermediate feature
layer [22], BatchNorm layer [46], and discrete visual cod-
ing space [31]. We further investigate an unsupervised AR
method on the basis of image discretization in [31].

3. Methodology
3.1. Preliminaries

In UDA, ns labeled examples denoted as Ds =
{(xsi , ysi )}

ns

i=1 are drawn from the source distribution S,
and nt unlabeled samples Dt =

{
xtj
}nt

j=1
are drawn from

the target distribution T . Both S and T are defined on
X × Y , where X is the feature set and Y is the label
in {1, . . . ,K} in multi-class classification. The goal of a
learning algorithm is to find a hypothesis h : X 7→ Y
in the hypothesis space H with a low target risk ϵT (h) =
E(xt,yt)∼T [ℓ (h (xt) , yt)] with no access to the labels of T ,
where ℓ : Y ×Y → R+ is a loss function. Additionally, the
hypothesis is instantiated by a neural network: h = gϕ ◦ fψ
with parameter θ, where fψ is the feature extractor and gϕ
is a classifier. f = fψ(x) and z = gϕ(f) represent the
produced feature and logits vector respectively.

According to the learning theories [5] of UDA, for any
hypothesis h ∈ H, the bound of target risk is given by

ϵT (h) ≤ ϵS(h) +
1

2
dH∆H(S, T ) + λ, (1)

where λ = min [ϵS(h) + ϵT (h)] , and

dH∆H(S, T ) = 2 sup
(h,h′)∈H2

∣∣∣ E
x∼S

I [h(x) ̸= h′(x)]−

E
x∼T

I [h(x) ̸= h′(x)]
∣∣∣ , (2)

is H∆H-Divergence to measure the distribution distance.
ϵS(h) and ϵT (h) represent the error of hypothesis h on the
source and target domain respectively. I[a] is the indicator
function, which is 1 if predicate a is true and 0 otherwise.

3.2. Distributionally Adversarial Regularization

Images destroyed by common corruptions will be sig-
nificantly different from the original ones in contour and
texture. These corrupted images will show significant dis-
tribution shifts compared to the original counterpart and are
considered as out-of-distribution samples [42, 55]. How-
ever, the types and properties of common corruption are un-
known during the training process. Therefore, it is essential

to improve the generalization ability of the UDA model over
unseen corruptions.

The classifier-tailored adversarial regularization (AR)
method may not be the optimal strategy in our case. These
methods only minimize the entropy-based loss on the adver-
sarial data that are generated by worsening the classifier’s
predictions [51, 64, 37, 25, 24]. They ignore more kinds of
adversarial data that might be effective surrogates for com-
mon corruption. Moreover, when a better generalization is
achieved, the distribution distance between these adversar-
ial data and the natural samples should be small.

Here, the proposed AR method takes advantage of the
latent distribution information of the target domain to im-
prove the generalization over unseen corruption. Specif-
ically, we leverage the notion of distribution distance in
UDA to define the optimization form of AR, such as H∆H-
Divergence in Eq. 2, empirically estimated by a domain dis-
criminator [9].

The process of generating adversarial data by maximiz-
ing a given loss function (inner optimization) can be con-
sidered as a sampling procedure. If the worst-case data of
the entire distribution, not just those that fool the classifier,
are sampled in this process, more kinds of adversarial data
can be implicitly attained. Here, we define a distribution
distance Dθ (·, ·) on the latent space. Given the clean tar-
get domain data, i.e. xt ∼ T , and initially sampled possi-
ble adversarial data, i.e. xt,0 ∼ T 0, Dθ

(
T , T 0

)
measures

their distribution distance. By further sampling data that are
more distant from T , or dissimilar with xt (determined by
domain discriminator), the worst-case adversarial data with
respect to the entire latent distribution are obtained by

T adv = arg max
T 0∈Q

[
Dθ

(
T , T 0

)]
, (3)

where T adv is the adversarial data distribution, i.e. xt,adv ∼
T adv , the initialized xt,0 can be obtained by perturbing
the natural data with Gaussian or uniform random noise,
and T 0, T adv ∈ Q is a feasible region of all possible per-
turbed adversarial data where Q ≜ {r : r ∈ B(x, ϵ)} with
B(r, ϵ) ≜ {r : ∥xt − r∥p ≤ ϵ} being the lp-ball at center xt

with radius ϵ.
Correspondingly, in order to further obtain better robust

generalization over unseen corruption, the model is regu-
larized by minimizing the distribution distance between the
natural data and the adversarial data. The key insight is to
enable the model to generalize well to the new distribution
where the adversarial data are located, rather than only con-
sidering the error rate at a particular data point (commonly
used in the classifier-tailored AR method). The optimiza-
tion problem of the proposed AR is shown as follows:

min
θ

Dθ

(
T , T adv

)
s.t. T adv = arg max

T 0∈Q

[
Dθ

(
T , T 0

)]
,

(4)
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Figure 1. Overview of our Distributionally and Discretely Adversarial regularization (DDAR) method considering RaCC. During training,
commonly occurring corruptions in the real world cannot be attained, instead only clean source and target data are available. In testing, the
trained model is evaluated on common corruptions defined in [16], which includes 15 types of corruptions, and each corruption contains
5 severity. Our DDAR, working as a plug-in component, effectively improves the RaCC of UDA methods. Formulated as a min-max
optimization with a distribution distance, DDAR generates adversarial data by maximizing the loss value of Dθ(·, ·) and then regularizing
the model by minimizing Lar

t , which enables the model to generalize well on unknown corruptions. Meanwhile, in order to enable a
better adversarial regularization method, an image discretization (ID) method [31] is leveraged to transform generated adversarial data into
”in-distribution” data augmentation.

which can be used as a plug-in regularization term and
jointly optimized with learning objects of UDA methods.

As such, our AR forms a min-max optimization by em-
ploying a distribution distance as a criterion. By consider-
ing the worst-case adversarial data w.r.t. natural data dis-
tribution as proxies for the unknown corruption, when the
distribution distance between proxies and the natural data is
reduced, our method allows the model to generalize better
to the unknown corruption. We will demonstrate that our
optimization goal is theoretically well-founded in Section
3.5. Empirically, this min-max optimization process can be
guaranteed based on one crucial observation. Although T 0

and T adv are sampled from a small local region of T in
B(x, ϵ), previous studies show that these distributions can
be identified clearly. For instance, a model tends to overfit
to the standard deviation of Gaussian noise used for training
[22], and the adversarial attacks can be detected accurately
by using maximum mean discrepancy [10].

3.3. Wasserstein Metric on Latent Space

Through the lens of UDA, widely investigating and im-
proving the distribution distance promotes the performance
of the learning algorithm. In our case, though there is an
observed distribution shift between them, natural and ad-
versarial data are paired, which is different from unpaired
source and target domain samples. Furthermore, the per-
ceptual distance [22, 32] on latent space has been shown as

an effective indicator for RaCC. These observations moti-
vate us to investigate a more advanced distance to the latent
space for our adversarial regularization.

Wasserstein distance, a metric on the space of probabil-
ity distributions, has been engaged to constrain the distribu-
tion distance between classifier-tailored adversarial data and
natural data [47, 52]. The Wasserstein distance in the latent
space considers the transportation cost c which quantifies
the cost of transferring mass from (z, y) to (zadv, yadv):

c((z, y), (zadv, yadv)) =
1

2
∥z−zadv∥22+∞·1{y ̸= yadv}.

The transportation cost assumes an infinite value for data
points with distinct labels, as our focus is solely on pertur-
bation to the marginal distribution of Z. When the distance
metric is defined in the semantic space by employing feature
of last hidden layer, for inputs originating from the original
space X × Y , the transportation cost cθ is denoted by

cθ((x, y), (x
adv, yadv)) = c

(
(gϕ(fψ(x)), y), (gϕ(fψ(x

adv)), yadv)
)

so as to assesses distance concerning the feature mapping
z = gϕ(fψ(x)).

For probability measures like T and T adv , both defined
over X ×Y , we denote Π(T , T adv) as their couplings, rep-
resenting measures M satisfying M(A,X × Y) = T (A)
and M(X × Y, A) = T adv(A). Consequently, we define
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our distance metric as follows:

Dθ(T , T adv) = inf
M∈Π(T ,T adv)

EM
[
cθ((x, y), (x

adv, yadv))
]
.

3.4. Discretely Adversarial Regularization

The image discretization (ID) scheme [31] is employed
to improve visual representation and alleviate the trade-off
between robustness and accuracy. ID builds upon the in-
sight that the adversarial data in Natural Language Process-
ing tasks surprisingly will not hurt the accuracy and even
improve the model generalizations [65, 20]. To achieve this
goal, the perturbed images will be first transformed into dis-
crete text-like inputs, i.e. visual words, which are then used
for regularization.

VQGAN [8] is employed to perform the ID procedure.
Specifically, given a continuous image x ∈ RH×W×3, VQ-
GAN consists of an encoder Encϕ(·), a decoder Decψ(·),
and a quantization function qE(·). The encoder Encϕ(·),
which is a convolutional model, maps the input image x
to intermediate latent vectors v = Encϕ(x) ∈ R(h×w)×d,
where h and w are the height and width of the intermediate
feature map, and d is the latent dimension.

The quantization function qE(·) learns a codebook E =
{ek | ek ∈ Rd}Kk=1, where each latent vector vij ∈ Rd is
quantized to its nearest codebook entry ek as follows:

vq = qE(v) :=

(
argmin
ek∈E

∥vij − ek∥
)

∈ Rh×w×d,

where i, j represent each position in the feature map. The
decoder Decψ(·) then reconstructs the image x̂ from the
quantized vectors vq:

x̂ = Decψ(vq).

Training VQGAN can be conducted by minimizing the
difference between the reconstructed image x̂ and the orig-
inal image x. Thus far, for a given continuous image x, we
can obtain its corresponding discrete reconstruction x̂. For
simplicity, we denote the image discretization process as V ,
resulting in x̂ = V(x).

Intuitively, this discretization process weakens the ”at-
tack” of the generated adversarial data. It transforms adver-
sarial data into ”in-distribution” data augmentation. In de-
tail, when adversarial data, e.g. xadv , is transformed into the
latent vector vadv , vadv is likely to be far from v of the orig-
inal sample x0. However, when vadv is further transformed
into vadvq after the quantization step, the visual codes qadv

and q, found by vadv and v separately, will not be as far
apart as vadv and v. As result, during training stage, em-
ploying the V(xadv) reconstruct from vadv by using ID may
alleviate the over-smooth and sharper training loss problem
of conventional AR methods.

Leveraging the above insight, we employ ID as a prede-
fined transformation for data augmentation. The detailed
pipeline is shown in Fig. 1. First, we aim to transform
the initial data distribution T 0. This operation makes T 0

more dissimilar from T , leading to a better adversarial data
generalization process. Consequently, x̂t,adv ∼ T̂ adv and
x̂t,0 ∼ T̂ 0 are sampled from a new discretely transformed
initialization region Q̂ that is centered at x̂t = V(xt).
Specifically, x̂t,adv is derived from x̂t,0, and its detail for-
mulation is shown in Eq. 5 and 7. More importantly, dis-
cretization of all adversarial data leads to a discretely trans-
formed adversarial data distribution V(T̂ adv), where V(·)
also represents a discretization function for a distribution.
Here, VQGAN, as a preprocessor, will not be jointly trained
with the regularization method. The detailed configuration
can be seen in Section 4.1.

3.5. Model Analysis

3.5.1 Theoretical Analysis

We first establish the theoretical bound for robustness
against common corruption for UDA in Theorem 1. We
then analyze the relationship between our method and
the previous classifier-tailored method and show that our
method leads to a tighter upper bound in Proposition 1.

Theorem 1. Let Dθ(·, ·) be a distribution distance, S be
a source distribution, and T be a target distribution, T adv

be an adversarial data distribution representing a worst-
case distribution of T with respect to Dθ(·, ·). For every
h ∈ H,

ϵccT (h) ≤ ϵS(h) + dH∆H(S, T ) + λ

+Dθ

(
T ,V(T̂ adv)

)
+ λ∗ (5)

s.t. T̂ adv = arg max
T 0∈Q̂

[
Dθ

(
T , T̂ 0

)]
,

Q̂ ≜ {r : r ∈ B̂(x̂, ϵ)}, B̂(r, ϵ) ≜
{
r : ∥V(xt)− r∥p ≤ ϵ

}
,

where ϵccT (h) is the robust error against common corrup-
tion on the target domain, ϵS(h) is source error, dH∆H(·, ·)
is H∆H-Divergence to measure the distribution distance,
both λ and λ∗ are small constants. Q̂ represents a feasi-
ble region of generated adversarial data transformed by im-
age discretization, and T̂ 0, T̂ adv ∈ Q̂, V(T̂ adv) represents
the adversarial data distribution transformed by image dis-
cretization.

Proof Sketch: Borrowing the adversarial error learning
bound from [4] the and generalization bound of UDA in [5],
as shown in Eq. 1, we have

ϵccT (h) ≤ ϵT (h) + dH∆H(T , T aa) + λ∗

≤ ϵS(h) + dH∆H(S, T ) + λ

+ dH∆H(T , T aa) + λ∗,

(6)
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where the dH∆H(T , T aa) measures the distribution dis-
tance between natural data and adversarial attacks. By re-
placing the dH∆H(T , T aa) with our Dθ

(
T ,V(T̂ adv)

)
, a

bound in Theorem 1 can be achieved.
Compared with the generalization bound of UDA in

Eq. 1, Theorem 1 shows that the RaCC for UDA is upper
bounded by additional two terms, a distribution distance
term (the penultimate term), and a constant term (the last
term). Armed with our distribution distance D and adver-
sarial data distribution, our method certifies a tighter upper
bound to improve RaCC for UDA than classifier-tailored
[31] and distribution distance-based regularization [4].

Proposition 1. Let T aa be a data distribution of adver-
sarial attacks of the target domain,

Dθ

(
T ,V(T̂ adv)

)
≤ dH∆H

(
T ,V(T̂ adv)

)
≤ dH∆H (T , T aa) ,

where Dθ(·, ·) is Wasserstein distance on latent space, and
T̂ adv is an adversarial data distribution that is a worst-case
of T̂ with respect to Dθ(·, ·).

Our approach enjoys two essential practices to certify
a tighter bound of RaCC. First, the introduced adversarial
regularization method leads to a better hypothesis-induced
distribution distance dH∆H. Since dH∆H(·, ·) is induced
from the difference between two hypotheses h and h′, the
adversarial attacks drawn from T aa increase the sample
complexity for learning good hypothesis [44] which en-
larges the supremum. On the contrary, our method progres-
sively augments the latent distribution without sacrificing
the learning ability of hypotheses. As a result, the supre-
mum in dH∆H becomes tighter and at the same time a more
accurate distribution distance estimation is achieved. On the
other hand, upgrading the distribution distance metric from
H∆H-Divergence to Wasserstein distance on latent space
also leads to a better distance estimation. A similar solu-
tion has also been investigated in Wasserstein Generative
Adversarial Networks [2].

3.5.2 Empirical Analysis

To demonstrate the effectiveness of our method, we employ
two widely studied methods, a classifier-tailored, i.e. VAT
[33], and a distribution distance-based regularization, i.e.
AFD [4], where detailed information will be given in Sec-
tion 4.5. Meanwhile, we leverage the perceptual distance
(PD) [32], an effective indicator for RaCC, for evaluation.

In [32], PD between data augmentation and common
corruption is calculated to evaluate the heuristic data aug-
mentation methods. In our case, we aim to evaluate the
performance of the different regularization methods. More
directly, we employ PD between natural data and common
corruption as a metric, which is approximately estimated by

dPD (T , T cc) ≈
∥∥Ext∼T [h(x

t)]− Ext,cc∼T cc [h(xt,cc)]
∥∥
2
,

Figure 2. Illustration of Perceptual Distance (between natural and
common corruption) and corruption error (mCE) of DDAR, VAT,
and AFD under different levels of corruption severity. The models
are evaluated on the A→D task in the Office-31 dataset.

where xt,cc represents the image with common corruptions
in the target domain, which is drawn from the true corrupted
target distribution T cc.

We compare dPD and corruption error (i.e. mCE as
shown in Section 4.1) among our DDAR, AFD, and VAT
under different levels of corruption severity. As shown in
Fig. 2, dPD is positively correlated with mCE, where mCE
increases with dPD. Meanwhile, both DDAR and AFD re-
duce dPD and perform better than VAT, since they regular-
ize the model by reducing the distribution distance between
natural and adversarial data. It can be observed that our
method can significantly reduce dPD, thus certifying a bet-
ter RaCC for UDA.

3.6. Implementation and Learning Objective

Practically, we observe that the adversarial data gener-
ated by a discriminator achieve better performance than
using the Wasserstein distance. Thus, we implement our
method with the design shown in Fig. 3. The purpose is
to ensure a min-mix optimization when a discriminator, Dd

parameterized by θd, is involved in adversarial data gener-
alization.

In order to engage a discriminator to generate adver-
sarial data, the optimization for maxT̂ 0∈Q̂ Dd

(
T , T̂ 0

)
is necessary. Meanwhile, two steps need to be re-
solved: 1) optimization for adversarial regularization (i.e.,
maxT̂ 0∈Q̂ Dθ

(
T , T̂ 0

)
and minθDθ

(
T ,V

(
T̂ adv

))
in

Figure 3. Illustration of the exchangeable min-max optimization
objective, when a discriminator is introduced to generate adversar-
ial data.
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red dash line), and 2) adversarial learning for a discrimina-
tor (i.e., maxθd Dd

(
T , T̂ 0

)
and minθDd

(
T ,V

(
T̂ adv

))
in green dash line). Assuming that Wasserstein dis-
tance is approximately equal to distribution divergence
measured by a discriminator, the adversarial regulariza-
tion can be done by optimizing maxT̂ 0∈Q̂ Dd

(
T , T̂ 0

)
and minθDθ

(
T ,V

(
T̂ adv

))
(linked by red arrow), and

training of discriminator can be done by optimizing
maxθd Dd

(
T , T̂ 0

)
.

As a result, the adversarial data are generated by

x̂t,advj = arg max
x̂t,0
j ∈B̂(x̂t,ϵ)

[logDd(fψ(x
t
j))

+ (1− logDd(fψ(x̂
t,0
j )))].

(7)

The adversarial regularization loss Lar is denoted as

Lar =
1

nt

nt∑
j=1

cθ

((
xtj , y

t
j

)
,
(
V(x̂t,advj ), yt,advj

))
. (8)

Meanwhile, the discriminator is trained with Ld loss:

Ld =
1

nt

nt∑
j=1

[− logDd(fψ(x
t
j)))−(1−logDd(fψ(V(x̂t,advj ))))].

(9)
Additionally, since promoting discriminative feature

learning is crucial for regularization, the minimum class
confusion (MCC) [21] is introduced in our framework to
enable discriminative learning which is crucial for unsu-
pervised regularization. In summary, the learning object is
given as:

L = λ1L
src + Ldd + λ2L

ar + Lmcc + Ld, (10)

where Lsrc is the supervised learning loss on the source do-
main, Ldd denotes distribution divergence loss between the
source and target domain for UDA, λ1 and λ2 are balancing
parameters of the loss.

4. Experiments
This section illustrates the experimental settings and re-

sults to evaluate our method. The detailed results for Ta-
ble 1-6, sensitivity analysis for λ1 and λ2 in Eq. 10 and ϵ
in Eq. 5, and detail information of datasets are shown in
supplementary file.

4.1. Experimental Setup

Datasets and Corruption. For fair comparison, we adopt
the commonly used benchmarks of UDA for evaluation,

including Office-31 [41], Office-Home [50], and VisDa-
2017 [36]. We create the corrupted datasets by using the
corruption types defined by ImageNet-C [16], a widely used
benchmark for corruption robustness. For each image, 15
corruption types exist with five levels of severity.

Implementation Detail. Following standard evaluation
protocols for UDA, all labeled source and unlabeled target
instances are used as training data. The trained classifica-
tion model employs ResNet [15] as the backbone, followed
by a bottleneck layer and a classifier. When combining our
DDAR with given UDA methods, i.e. CDAN, the train-
ing parameter, and schedule follow the original setting of
the particular UDA method. The discriminator, Dd used
for generating adversarial data, is a simple three-layer neu-
ral network where each hidden layer is composed of a fully
connected layer with the ReLu activation function, and the
BatchNorm layer. The labels for the clean and adversarial
data are set to 1 and 0 respectively. Dd will be trained 1 to
3 times in each iteration. Our method is a one-step adver-
sarial regularization method with step size 0.5, where p = 2
and ϵ = 0.5 in Eq. 5. The balance parameters, λ1 and λ2 in
Eq. 10 are empirically set to 0.6 and 0.4 respectively for all
datasets.

Image Discretization Configuration. As discussed in
the original discrete adversarial training [31], the larger
codebook size can achieve better generalization, while types
of pre-training datasets have little impact. As such, we
use a VQGAN model pre-trained on OpenImages [23] and
will not fine-tune the model on the new dataset, where the
codebook size is K = 16384 and the rest of the hyper-
parameters of VQGAN model follow the setup in its pre-
training stage [31].

Metrics for Corruption Robustness. The commonly
used performance measure for robustness against common
corruption is corruption error (CE) [16], which can be com-
puted by the following:

CEfT =

(
5∑
t=1

Ef
t,T

)
/

(
5∑
t=1

EAlexNet
t,T

)
,

where Ef
t,T denotes the error rate of model f on the tar-

get domain data transformed by corruption T with severity
t. The averaging of the CE values of the 15 corruptions,
such as CEfGausian Noise, .., ,CE

f
Glass Blur is named as mean CE

(mCE) [16] which quantifies the robustness of a model. No-
tably, in UDA, AlexNet is trained on a clean source domain
and tested on a corrupted target domain.
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4.2. Main Results

The performance over different corruptions and severity
levels are shown in Table 1 and 2. These results validate
the effectiveness of our method and set up a new baseline
for unsupervised methods. In Table 1, models, trained with
standard UDA methods, i.e. CDAN+TN and DCAN, under-
perform on corrupted samples as reported in [58]. By em-
ploying the pre-trained UDA model as a reference, heuristic
data augmentation Augmix [17] and conventional adversar-
ial data augmentation in pixel-space produced by DDG [58]
can improve the RaCC. In contrast, our DDAR is an un-
supervised adversarial regularization method that achieves
better RaCC than DDG, yielding 10.8% and 3.4% improve-
ment on Office-31 and Office-Home respectively. In Ta-
ble 2, the accuracy and mCE of standard models and ro-
bust models trained by our method are shown on three
datasets. Our method consistently improves the robustness
of the standard model without hurting the standard accu-
racy significantly, especially on Office-31 and Office-Home
datasets.

Method Office-31 Office-Home
CDAN+TN 75.4 63.2
+ Augmix [17] 61.6 62.1
+ DDG [58] 59.8 56.7
DCAN 47.4 57.9
+ Augmix [17] 48.1 56.3
+ DDG [58] 41.3 53.5
MCC + DDAR 33.9 50.9
MCC + CDAN + DDAR 30.5 49.9
MCC + MDD + DDAR 34.0 54.1

Table 1. mCE (↓) on Office-31 and Office-home Dataset Under
Common Corruptions (ResNet-50)

Office-31 Office-Home VisDa-2017
Acc mCE Acc mCE Acc mCE

MCC 88.4 47.2 71.8 57.9 77.0 79.2
+DDAR 86.8 33.9 69.6 50.9 66.8 65.8
MCC+CDAN 89.6 43.7 72.4 55.8 81.8 65.8
+DDAR 88.9 30.5 71.4 49.9 75.1 55.6
MCC+MDD 89.3 46.8 71.6 59.6 81.9 63.1
+DDAR 88.6 34.0 67.4 54.1 76.8 47.8

Table 2. Standard accuracy (Acc) and mCE (↓) on Office-31,
Office-Home, VisDa-2017 dataset (ResNet-50).

4.3. Ablation Study

Both training with data augmentation produced by ID
(w/o adversarial perturbation) and our AR (w/o ID) im-
prove the standard UDA model (CDAN+MCC). Integrating
them together (DDAR) leads to a better performance. Ad-
ditionally, as corruptions include the Gaussion noise which
is commonly used for random start in AR methods [22, 20],

we remove Gaussion noise to rule out the suspicion of hav-
ing seen the test set. Empirically, perturbations on adversar-
ial data are dominated by gradients generated in maximiza-
tion step. As shown in Table 3, removing these noises (w/o
random start) will not hurt the performances significantly.

.

Method Avg.(↓)
CDAN+MCC 43.7
CDAN+MCC+DDAR 30.5

w/o random start 31.7
w/o ID 36.8
w/o adversarial perturbation 33.8

Table 3. mCE (↓) on corruptions of Office-31 dataset (ResNet-50)

4.4. Comparing with Orthogonal Methods

We further compare and combine DDAR with orthog-
onal methods, as shown in Table 4. Overall, our DDAR
shows the superior performance to the comparison methods.
Tent (finetune BN layers by entropy minimization) [53]
is one representative Test-time adaptation (TTA) method
which achieves comparable results with DDAR at epoch
1. However, since Tent is prone to collapse during train-
ing, its performances degrade significantly on some dif-
ficult transfer tasks. Furthermore, applying DDAR be-
fore conducting Tent produces better performances. On
the other hand, DDAR outperforms AugMix (+KL) and
DeepAugment (+KL) methods obviously. Moreover, com-
bining with our regularization scheme (’W’) and DDAR
improves their performances significantly. Here, training
hyper-parameters of Tent, AugMix and DeepAugment fol-
lows those of ImageNet in original paper.

Method Avg.(↓)
CDAN+MCC+Tent (epoch 10) 40.2

+DDAR 32.7
CDAN+MCC+Tent (epoch 1) 30.5

+DDAR 25.4
CDAN+MCC+AugMix+KL 41.1
CDAN+MCC+AugMix+W 27.5

+DDAR 26.8
CDAN+MCC+DeepAugment+KL 38.4
CDAN+MCC+DeepAugment+W 26.0

+DDAR 23.2
Table 4. mCE (↓) on corruptions of Office-31 dataset (ResNet-50)

4.5. Comparing with Regularization Methods

By exchanging the adversarial data generation loss
(Adv.) and regularization loss (Reg.), we conduct a com-
parison and ablation analysis which is shown in Table 5.
Notably, the UDA learning method used in this section is
CDAN+MCC.
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Method Adv. Reg. λ2 1 2 3 4 5 Avg. (↓)
VAT KL KL 0.4 20.2 28.8 37.2 49.8 62.1 39.6
TRADES-1 KL KL 1 19.5 27.5 36.0 49.1 61.9 38.8
TRADES-6 KL KL 6 22.4 30.3 37.7 49.5 61.4 40.3
AFD CE CDAN 1 19.2 26.1 33.1 45.6 58.6 36.5
D+KL D KL 6 20.7 28.4 36.0 48.5 61.0 38.9
D+CDAN D CDAN 1 19.0 26.2 33.1 45.5 58.1 36.4
CE+W CE W 0.4 15.9 21.1 26.8 39.2 50.4 30.7
KL+W KL W 0.4 15.7 20.9 26.6 38.7 49.8 30.3
DAAR D W 0.4 15.6 20.9 26.1 37.4 49.2 29.8

Table 5. mCE (↓) of different level of severity on Office-31 Dataset (ResNet-50)

For a fair comparison, all the implemented methods are
combined with our image discretization pipeline. VAT [33],
TRADES-1, and TRADES-6 [61] rely on Kullback-Leibler
divergence (KL) loss for adversarial data generation and
regularization, where the main difference lies at the co-
efficients of regularization loss to control the strength of
smoothness. In the original AFD [4], the adversarial data
are produced by using cross-entropy (CE) loss, and the
regularization follows the learning paradigms of DCGAN
[38] and Wasserstein GAN [2]. In our unsupervised case,
CE means the loss calculated with an online pseudo-label
produced by the model itself. Meanwhile, CDAN, which
is more powerful under the UDA task, is used to replace
ADF’s regularization loss. Additionally, λ2 is the coeffi-
cient of regularization loss. Comparing the above imple-
mented unsupervised methods, the performance of DDAR
outperforms them significantly.

For an ablation study, ’D’ and ’W’ means using our ad-
versarial data generation mechanism and regularization loss
respectively. Comparing ‘D’-based methods with DDAR,
the results show that using ‘W’ in DDAR (‘D’+‘W’) for
regularization outperforms the one using KL (‘D’+KL) and
CDAN (‘D’+CDAN) significantly. Meanwhile, a similar
conclusion can be obtained from CE+‘W’ vs. AFD and
KL+‘W’ vs. TRADES-6. Comparing ‘W’-based methods
with DDAR, we observe that our adversarial data generated
by using the distribution distance in DDAR (‘D’+‘W’) is
better than the one using CE (CE+‘W’) and KL (KL+‘W’).
Meanwhile, a similar conclusion can be obtained from
‘D’+KL vs. TRADES-6 and ‘D’+CDAN vs. AFD.

4.6. Pixel-Space vs. Image Discretization

We compare all AR methods based on pixel-space per-
turbations and image discretization respectively in Ta-
ble 6. These methods are implemented on the basis of the
MCC+CDAN method and share the same setup with the
methods in Section 4.5. The methods in ’Pixel-Space Per-
turbations’ remove the ID and employ the generated adver-
sarial data in pixel space for regularization directly. It can
be observed that our methods both with or without using ID
can outperform the other AR methods.

Pixel-Space Perturbations Image Discretization
Acc mCE Acc mCE

VAT 88.2 40.8 88.9 40.4
AFD 88.4 39.0 87.5 37.3
DDAR 89.1 36.8 88.9 30.5

Table 6. Standard accuracy (Acc) and mCE (↓) for adversarial reg-
ularization methods based on pixel-space perturbations and image
discretization on the Office-31 dataset (ResNet-50).

5. Conclusion

In this paper, we investigate how to achieve robustness
against common corruption for UDA methods. A novel un-
supervised method, called Distributionally and Discretely
Adversarial Regularization (DDAR), is proposed to achieve
a better generalization on unknown common. Our method
defines a min-max optimization by leveraging a distribu-
tion distance as the criterion. It allows more types of pos-
sible adversarial data to be generated and then constrains
the distribution distance between the natural and adversar-
ial data to promote the generalization to unknown common
corruptions. In addition, image discretization, which trans-
forms adversarial data into “in-distribution” data augmenta-
tion, is introduced to enable a better adversarial regulariza-
tion. Through comprehensive experiments and analysis, we
show that our method is theoretically well-founded. It also
empirically exceeds the previous unsupervised methods by
a large margin.
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