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Abstract

Panoptic segmentation methods assign a known class
to each pixel given in input. Even for state-of-the-art ap-
proaches, this inevitably enforces decisions that system-
atically lead to wrong predictions for objects outside the
training categories. However, robustness against out-of-
distribution samples and corner cases is crucial in safety-
critical settings to avoid dangerous consequences. Since
real-world datasets cannot contain enough data points to
adequately sample the long tail of the underlying distri-
bution, models must be able to deal with unseen and un-
known scenarios as well. Previous methods targeted this
by re-identifying already-seen unlabeled objects. In this
work, we propose the necessary step to extend segmenta-
tion with a new setting which we term holistic segmen-
tation. Holistic segmentation aims to identify and sepa-
rate objects of unseen, unknown categories into instances
without any prior knowledge about them while performing
panoptic segmentation of known classes. We tackle this new
problem with U3HS, which finds unknowns as highly un-
certain regions and clusters their corresponding instance-
aware embeddings into individual objects. By doing so,
for the first time in panoptic segmentation with unknown
objects, our U3HS is trained without unknown categories,
reducing assumptions and leaving the settings as uncon-
strained as in real-life scenarios. Extensive experiments on
public data from MS COCO, Cityscapes, and Lost&Found
demonstrate the effectiveness of U3HS for this new, chal-
lenging, and assumptions-free setting called holistic seg-
mentation. Project page: https://holisticseg.github.io.

1. Introduction

Since neural networks have achieved unprecedented per-
formance in perception tasks (e.g., object detection and se-
mantic segmentation), there has been a growing interest
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Figure 1. State-of-the-art panoptic segmentation methods [13]
cannot deal with unseen classes from [52] (top right). Instead, our
U3HS addresses the proposed holistic segmentation setting. U3HS
finds unseen unknowns (bottom left) and separates them into in-
stances (bottom right) without prior knowledge about unknowns.

in ensuring their safe deployment, especially important for
safety-critical scenarios, such as autonomous driving and
robotics [25]. Recently, several works have been proposed
to improve robustness and generalization by addressing cor-
ner cases and out-of-distribution data [0, 65, 22], via do-
main adaptation [70], adversarial augmentations [44], sim-
ulations [1], and uncertainty estimation [54].

Due to the difficulty of collecting corner cases from the
long tail of the underlying data distribution, current datasets
cannot fully represent the diversity of the world, leaving
its vast majority as difficult out-of-distribution (OOD) sam-
ples [32, 8]. In safety-critical applications, considering
them during development and deployment is of utmost im-
portance [3, 44], or they could cause severe damage.

Furthermore, since the powerful and popular softmax
highly promotes the probability of the highest logit, state-
of-the-art methods tend to be overly confident even on
wrong predictions [58, 25]. In safety-critical settings, re-
liable confidence together with interpretability techniques
[20, 77] increases trust for downstream tasks [25], e.g., tra-
jectory prediction and path planning. Towards this end, es-
timating the uncertainty of a model’s output is commonly
considered a key enabler for its safe applicability [39, 25].
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While several works addressed some of these problems
for image classification [58, 46, 54, 61] and object detec-
tion [48, 21], they remain primarily unexplored for dense
tasks such as semantic and panoptic segmentation [5, 66].
Compared to object detection, the problem is more severe
for dense tasks, where a model needs to provide a predic-
tion for every input unit (e.g., each pixel). So unseen ob-
jects (i.e., of new, unseen categories) are systematically and
wrongly assigned to one of the limited number of known
classes (closed-set), as shown in Figure 1. This has led
researchers towards designing new methods that work not
only with the available data distribution but also with OOD
samples that are not available (open-set), thereby improving
robustness against unseen scenarios [38, 46, 5, 44].

Open-set panoptic segmentation [66] segments instances
of unlabeled objects in addition to panoptic segmentation
of known areas, i.e., the combination of semantic and in-
stance segmentation [41]. Unlike OOD segmentation [38],
segmenting unknown instances enables tracking and trajec-
tory prediction. Prior works [66, 36, 72] tackled this prob-
lem by relying on seeing unlabeled categories during train-
ing. They learned these categories through the void class
(i.e., unlabeled) and assumed unknowns to be within ground
truth void regions at training time and inside void predic-
tions at test time. By doing so, unknowns are transformed
into learned unlabeled instances (i.e., essentially known ob-
jects) [36], constraining the open-set task. Mainly intended
to segment already-seen unlabeled objects [36, 72], current
works cannot deal with the wide variability of unknowns
and corner cases outside the training data.

In this paper, we propose the necessary next step for
panoptic segmentation to include object categories outside
the training data (i.e., unseen unknowns). We term the new
setting holistic segmentation. The aim is to identify and
segment unseen unknowns into instances while segmenting
known classes in a panoptic fashion without any external
nor prior knowledge about unknowns. Unseen categories
pose new challenges compared to already-seen unlabeled
ones [36], requiring new solutions. Estimating the uncer-
tainty is a key step towards finding the knowledge bound-
aries of a model, leaving the problem unconstrained and
reducing assumptions on the training data. Therefore, we
propose U3HS: Unseen Unknowns via Uncertainty estima-
tion for Holistic Segmentation. The main contributions of
this paper can be summarized as follows:

* We introduce the setting of holistic segmentation,
which highlights the importance of not using prior
knowledge about unknown objects (e.g., text), and
leaves the setup unconstrained as in real scenarios.

* We tackle this new setting with U3HS: the first panop-
tic framework to deal with unseen, unknown object
categories, able to segment and separate them.

e We provide uncertainty measures for the output of
U3HS to further improve its safe applicability.

2. Related Work

Closed-set panoptic segmentation Combining seman-
tic and instance segmentation, panoptic segmentation [41]
distinguishes things (countable classes) from stuff (amor-
phous). The vast majority of methods are top-down [71,

, 53,40, 34, 50]: two-stage exploiting box proposals and
thing masks from Mask R-CNN [30], and filling up stuff ar-
eas with a semantic branch. Bottom-up are proposal-free,
e.g., Panoptic-DeepLab [13]: they segment semantically
and cluster instances within thing regions [13, 64]. A dif-
ferent line of work proposed end-to-end solutions [23, 63]
where instance and semantic segments are delivered di-
rectly by treating instance segmentation as a class-agnostic
classification task. Others explored self-attention [34],
videos [67, 11, 47], scene graphs [69, 68], multi-task learn-
ing [16, 28], neural fields [43], or text descriptions [18&].
Our U3HS framework deals with unseen unknowns and ex-
tends [13] via instance-aware embeddings.

Zero-shot learning aims to predict unseen classes out-
side the training set [4, 78, 75] with the help of external
knowledge [10, 26], e.g., a language model [76], used to
build semantic spaces common between seen and unseen
classes [74]. While zero-shot methods detect only unseen
classes at inference time, generalized zero-shot approaches
also detect seen ones [9, 56], similarly to the proposed holis-
tic segmentation. Also open-vocabulary methods are zero-
shot [35, 27, 73, 18]. They exploit language models such as
CLIP [57] to describe unknowns. CLIP has been trained
on unknown classes and is treated as an oracle, as it is
assumed to be able to describe every unknown, allowing
open-vocabulary and zero-shot approaches to identify them.
However, this implies that unknown classes are known, e.g.,
to CLIP. Moreover, CLIP is not immune to corner cases and
long tail samples [57]. This limits the pool of objects that
these methods can recognize. As shown in Figure 2, holis-
tic segmentation segments unseen objects too, but unlike
zero-shot and open-vocabulary, it does not use any external
support (e.g., text descriptions of unknowns), such that ob-
jects of unseen categories are segmented solely by learning
on known ones. More recent than this work, SAM [42] is
a strong foundation model. Unlike SAM, ours does not use
any prompts and outputs semantic classes.

Uncertainty estimation Epistemic uncertainty is caused
by the model itself, while aleatoric is due to the input [39,

]. OOD data typically results in high epistemic due
to a knowledge gap. Single deterministic approaches are
sampling-free and provide predictions and uncertainty esti-
mates with the same model [25]. Among these, DUQ [61]
learns class representatives and compares them with input
features. SNGP [46] improves the awareness to domain
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Figure 2. Comparison between closed-set (top right) [41] and
open-set [30] panoptic segmentation, zero-shot learning [78], and
the proposed holistic segmentation setting. While zero-shot and
open-set panoptic methods commonly leverage knowledge about
unknown objects, holistic segmentation does not use any priors.

shifts via weight normalization and a Gaussian process.
DPN [58] predicts the parameters of a Dirichlet distribu-
tion, and uses a Dirichlet density function for each probabil-
ity assignment and its uncertainty. Various works estimated
uncertainty for object detection [49, 48, 21], and segmen-
tation [55, 5, 59], improving robustness and generalization.
While most compute uncertainty only to provide it as ex-
tra output [25, 59], our U3HS can be paired with any of
the above techniques to find unknown objects, which it then
separates into instances for holistic segmentation.

Open-set perception Open-set tasks are similar to gen-
eralized zero-shot learning [9], with the fundamental differ-
ence that here no external knowledge on the unseen classes
is used [75]: inference is based only on what was learned
from the training data. Uncertainty estimation helps to iden-
tify knowledge boundaries [49]. Bayesian SSD [49] uses
Dropout sampling for open-set object detection. MLUC [6]
tackles this for LiDAR point clouds via metric learning
and unsupervised clustering. Open world recognition [2, 7]
labels detected unknowns and adds them to the training
set. Pham et al. [5]] grouped regions perceptually to
known and unknown instances, exploiting edges, boxes, and
masks. Recently, several works tackled open-set seman-
tic segmentation, telling apart unknown areas from known
classes [38, 33, 29]. Among those not learning from OOD
data, DML [5] uses metric learning and SML [38] acts as
post-processing, standardizing the max logits, improving
the class distributions. Instead, our work separates unseen,
unknown objects into instances and segments known areas,
addressing the proposed holistic segmentation.

Open-set panoptic segmentation The pioneering
OSIS [66] was the first in this direction. Applied to LIDAR
data, it exploits 3D locations to cluster unlabeled points into
instances. Later, EOPSN [36] extended Panoptic FPN [40]
and grouped its proposals into clusters. At training time,
EOPSN clusters similar unlabeled objects across multiple

inputs. When surrounded by known segments, it labels
an unlabeled object and uses it to learn to segment its in-
stances. Instead, DDOSP [72] uses a known-unknown class
discriminator and class-agnostic proposals. However, as
these approaches were intended to re-identify already-seen
unlabeled objects, they all rely on seeing unknown data at
training time [66, 36, 72]. They all cluster into instances
what falls in the predicted void class, learned as a fallback
(i.e., must be in the training samples) and assumed to con-
tain all unknowns. Since datasets are limited [44], by re-
quiring to learn from unknowns and the void class, existing
works are not designed to deal with any completely unseen
object, as their pool of identifiable unknowns is also lim-
ited [36, 72]. For these reasons, they solve only part of the
problem. Instead, by using no OOD data at training time
and preventing learning priors for unknowns, the proposed
holistic segmentation differs from the way open-set panop-
tic segmentation has been tackled so far [66, 36, 72]. As
shown in Figure 2, our setting allows to segment without
constraints and separate even unseen unknown objects. In
contrast to all existing approaches, the proposed U3HS nei-
ther relies on seeing unknowns at training time nor learns
the void class. U3HS is the first method to solve this uncon-
strained, assumptions-free holistic segmentation setting.

3. Proposed Setting: Holistic Segmentation

As shown in Figure 2, the proposed setting of holistic
segmentation is a logical extension of open-set panoptic
segmentation [66, 36]. To make the setting unconstrained
as real-life scenarios, we aim to identify and separate any
unseen, unknown object into instances while segmenting
known classes. Other settings allow to include unknowns in
the training data [66, 36, 72] (e.g., within the void class)
or use information about them [78], and only re-identify
already-seen unlabeled objects [36]. Instead, we focus on
the case where no information is available about un-
knowns. Therefore, holistic segmentation is more challeng-
ing, makes no assumptions about the training data (e.g., the
presence of void, with unknowns in it), leaves the problem
unconstrained to any object, and simplifies data collection
as no unknowns need to be in the training data. Formal
definition and metrics follow open-set panoptic segmenta-
tion [66, 36]. As shown in Figure 2, the outputs are compa-
rable, but the definition of unknowns differs (here unseen),
as well as the inability to learn from unknowns. Unknown
instances can then be used for downstream tracking, trajec-
tory prediction, path planning, or active learning.

4. Proposed Framework: U3HS

In Figure 3, we show a representation of U3HS, targeting
holistic segmentation. U3HS outputs instances of unseen
unknowns by clustering instance-aware embeddings corre-
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Figure 3. The proposed U3HS framework. Uncertainty is estimated in the semantic branch, and with the instance-aware embeddings, it
determines unknown instances. Known instances are found via center regression and formed by grouping embeddings with their prototypes.

sponding to highly uncertain regions (Section 4.2). We use
uncertainty estimation to distinguish known classes from
unknowns, while embeddings are learned solely on known
objects with panoptic segmentation (Section 4.1).

4.1. Panoptic Segmentation for Known Classes

Our approach for closed-set panoptic segmentation
builds upon learning instance-aware embeddings. As shown
in Figure 3, an encoder extracts features from an input im-
age and propagates them to different decoders: 1) a seman-
tic branch performing semantic segmentation and uncer-
tainty estimation to identify unknown regions (Section 4.2);
2) a detection branch identifying object centers similarly to
Panoptic-DeepLab [13]; and 3) an embeddings branch, with
two separate heads, for prototypes and embeddings.

We make the embeddings instance-aware via discrim-
inative loss functions (Section 4.3) and by concatenating
the detection branch features to prototype and embeddings
heads. Embeddings and detections are made also semantic-
aware by concatenating the semantic logits to the last layers
of the heads. Prototypes (2 are feature vectors the prototype
head predicts to represent objects and stuff classes. While
computed at each pixel, only the features at object centers
C are considered thing prototypes, plus one for each stuff
class. This is inspired by the size heatmap in [79]. Thing
prototypes are 4, = {(pt,02) € RE x RT : 0 € T},
one for each object o of all detected instances . F is the
embedding size, i and 0% are mean and variance. Stuff pro-
totypes are Qg = {(pug, 07) € RF x RT : k € Ky}, one
for each stuff class k € K,; independently.

Simlarly to [66], the embeddings head predicts embed-
dings ¢ ;) € R¥ for each pixel (7,7), then matches them
with their prototype w € €2 as follows. We compute asso-
ciation scores ¥ ; ;) ., for each pixel (4, j) and prototype as:

y(i,j),w = _H¢(z‘,j) - Mw‘|2/2‘75 )]
Compared to [66], we relax the problem by not including
the term —g log afj, and let the embedding variance be in-
directly controlled by the final task, which naturally bounds
it (shown empirically in Section 5.2). Then, we keep the
prototype variance o2 strictly positive by using softplus.
At inference time, for things, the semantic class of each
instance is determined by majority voting of its semantic
branch predictions, ensuring output consistency. Instead,
the ID is computed from the highest score in Eq. 1. For stuff
regions, we follow [66], determining the semantic classes
by associating the pixel embeddings to the prototypes 4
via the highest scoring class from Eq. 1. This decoupling
allows semantic awareness throughout the model.

4.2. Dealing with Unseen Unknown Objects

We find unknown segments by relying on uncertainty es-
timates, which can help identify the knowledge boundaries
of a model [58, 46]. Specifically, instead of predicting the
void class and searching in it for unknowns as in [66, 36],
we estimate the uncertainty related to the semantic seg-
mentation predictions and consider as unknown the areas
with a high associated uncertainty. Although our framework
can flexibly work with various uncertainty estimators (Sec-
tion 5.2), here we exemplify it with DPN [58, 37], which
we extended from image classification to semantic segmen-
tation, and also improved its convergence in this context.
We chose DPNSs as they allow for minimal modifications at
training time, i.e., replacing the softmax with a strictly pos-
itive activation function while providing good uncertainty
estimates on OOD data without training on such data [58].

Following [58], we consider the evidence e, = ay, — 1 as
a measure of the number of hints given by data for a pixel
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to be assigned to a class k € K known classes, with o, be-
ing the parameters of the Dirichlet distribution Dir(«). We
compute the uncertainty as u = K/ Zszl ag. Given that
the class probabilities p = {py : k = [1, ..., K]} follow a
simplex (i.e., are positive and sum to 1), the class assign-
ment corresponds to a Dirichlet distribution parametrized
over the evidence, as the probability density function:

D(ple) = B(a) ' [T, pp*
with: B(a) = Hszl I(ag)/T (Zszl ak)

where I' is the gamma function and B(«) is the K-
dimensional multinomial beta function [58].

We apply this to semantic segmentation by predicting a
concentration parameter o(*7) for each pixel (7, 5), replac-
ing the last layer with the smooth softplus activation func-
tion, thus converting the logits to a strictly positive vector,
which we use as evidence e(*7) in the Dirichlet distribution.
We learn this distribution with the semantic loss £, mini-
mizing the negative expected log likelihood of the correct
class Y (%), for the random variable X' () ~ Dir(a/(%9)):

2

£ = —E[In XSE%A

=) ( 25:1 Q4 5,k ) —P(ayan)

where 1 is the digamma function (i.e., I"’s logarithmic
derivative) and «; jy 1 is the output of the semantic branch.
Due to the difficulty of modeling the target distribution in
our holistic setting, we omit the KL term used in [58], sim-
plifying the loss design (Section 5.2). After training on the
closed-set data, we consider all pixels (7,7) with an esti-
mated uncertainty u; ;) > p+ ¢ - o as unknown regions
with 4 and o2 being mean and variance of the uncertainties
of all training pixels, and ¢ being a hyperparameter.
Separating unknowns After finding the unknown seg-
ments, we cluster their instance-aware embeddings trained
only on known objects into individual unknowns using DB-
SCAN [19]. We find the DBSCAN hyperparameters on the
training closed-set data (Appendix). Finally, we re-assign
the few DBSCAN’s outliers to their originally predicted se-
mantic class, thus ignoring their uncertainty estimates.

3)

4.3. Learning to Find Knowns and Unknowns

We train our models with a combination of four losses.
The semantic branch is optimized with £ (Eq. 3) over
the whole image sized W x H as:

L= ﬁ Zz] —Eln Xy(/lff,.)j)]

= wrm 2 v (25:1 a(i,j),k) — oy )

As in [13], the detection branch is trained with an L2 loss
between predicted C' and ground truth C center heatmaps:

NP S\ 2
Lo= Wy, (o(m - cw) ©)

“)

For stuff, we use the predicted {25, as a pseudo label to
learn the prototypes €2. For things, the same is done with
Qy, at the true instance centers. The prototype loss £, is
the cross-entropy on the softmax of the association scores
(i) 3 2 g)w = EXP(Y(ig)w)/ 2w eq XP(Y (i) w )
with w(; ;) being the pseudo label prototype:

L= wrg >oig —1og(Zi 5y .0 ;) (6)

We learn embeddings ¢(;,) with a discriminative
loss [15] L4 (Appendix). The overall training objective is:

L= AI‘Cs + A2‘6() + A3‘Cp + A4Ld (7)

5. Experiments and Results
5.1. Experimental Setup

Datasets We conducted our experiments on three pub-
lic datasets, namely Cityscapes [ 4], Lost&Found [52], and
MS COCO [45]. Cityscapes is a popular outdoor bench-
mark. Recorded around 50 different cities, mainly in Ger-
many, it contains 19 classes: 8 things and 11 stuff. We fol-
lowed the standard split, with 2975 images for training and
500 as validation set, reporting all metrics on the latter. Also
recorded in Germany, the Lost&Found dataset contains a
variety of unusual OOD objects placed in the middle of the
road. We selected it because: 1) it was recorded with the
same sensor setup as Cityscapes, allowing seamless trans-
fers and removing the need for fine-tuning; 2) it contains
only real images; and 3) unlike similar datasets [3, 8], it
provides instance annotations for unknowns. Therefore, it
is a challenging complement to Cityscapes for holistic seg-
mentation. We did not train on Lost&Found, but used it
only to evaluate models trained on Cityscapes. We report
all metrics on the unknown class of its 1202 test samples.
MS COCO is a challenging large-scale benchmark for gen-
eral image understanding, as it includes a variety of scenar-
ios from indoor to outdoor. The 2017 panoptic split con-
tains 80 rhing categories, and 53 stuff classes. We followed
EOPSN [36] by treating as unknown the least frequent 20%
thing classes (e.g., bear, frisbee). However, instead of turn-
ing their segments into void and keeping their images in the
training set as in [36], we removed their samples completely
and regarded them as unseen unknowns. This reduced the
training samples to 98112, with 117 classes to learn. We
report on the 827 validation samples with unseen classes.

Evaluation metrics We evaluated the panoptic qual-
ity (PQ) metric [41] separately for known classes and
unknowns, including recognition (RQ) and segmentation
(SQ) qualities. We report PQ on the held-out classes of
COCO [45], the unknown class of Lost&Found [52], as
well as on the 19 known classes of Cityscapes [14] for both
open and closed settings. Specifically, in open cases, mod-
els detect both knowns and unknowns, while in closed set-
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Lost&Found (unseen)

COCO (unseen)

Method Assumptions | PQ RQ SQ Method Assumptions | PQ RQ SQ
EOPSN [36] data, void 0* 0* 0* EOPSN [36] data, void 040 050 80.30
OSIS [66] data, void 145 223 65.11 void-train [36]  data, void 440 590 74.80

U3HS [ours] none 794 1237 6424

Table 1. Segmentation of unseen unknown objects (unknown class)
of Lost&Found [52] test set after training on Cityscapes [14] and
transferring with no fine-tuning. *: EOPSN diverged (null TP).

tings, the same models predict only knowns, which in prac-
tice means ignoring the uncertainty estimates. By analyzing
both, we explore the trade-off between detecting unknowns
(open) and the in-domain performance (closed).

Network architecture All our models share the struc-
ture with Panoptic-DeepLab [13], using a ResNet50 [31]
backbone and decoders following Deep-LabV3+ [12].
ResNet50 was chosen to increase reproducibility with lim-
ited resources. As described in Section 4.2, the only
modification to the semantic decoder is applying the soft-
plus activation to quantify the uncertainty. The other
branches follow Panoptic-DeepLab for detecting centers
and DeepLabV3+ for the embeddings, with two heads.

Implementation details For [ 14, 52], we used input im-
ages sized 1024 x512 and batch size 16. For [45], we fed 8
images sized 640x480. We used the Adam optimizer until
convergence, with an initial learning rate of 0.001, which
was reduced by 2% at each epoch. We set t = 3 for
the uncertainty threshold (i.e., 3 times the standard devia-
tion) and ' = 8 for the embedding size to keep the mem-
ory low. We adjusted to the different data distribution of
COCO with t = 1. The backbone was pre-trained on Ima-
geNet [17]. The losses were weighted A\; = A3 = Ay =1
and Ao = 200 [13].

Prior works We compared our U3HS with open-set
panoptic works: OSIS [66], which we adapted from Li-
DAR point clouds to images, EOPSN and its baselines [36],
and DDOSP [72]. Instead of training them directly on the
unknown categories being evaluated (as in [30]), we fol-
lowed their setup [06, 36, 72] by training them with the void
class as fallback, and applied them to unseen unknowns. All
methods followed this setup, except that ours ignored void.
On COCO, we facilitated other works following the K=5%
setting of EOPSN [30], thus turning 4 classes into void, so
they learned 4 classes less than ours. We repurposed and ex-
tended a variety of uncertainty estimators [58, 61, 46] from
image classification to semantic segmentation (Appendix).
We then extended them to holistic segmentation by incor-
porating them in our U3HS framework.

5.2. Quantitative Results

Unseen unknowns, L&F Table 1 compares our U3HS
with prior approaches when segmenting instances of unseen

void-supp. [36] data, void 450 6.00 7590
DDOSP [72] data, void 9.30 11.20 82.50
U3HS [ours] none 9.62 13.20 72.84

Table 2. Segmentation of unseen, unknown objects (20% least fre-
quent, held-out classes) on the validation set of MS COCO [45].
All others learn void and are taken from [72], added trailing zero.

unknowns from Lost&Found [52]. OSIS [66] was the first
to address the more limited open-set panoptic segmentation
setting, followed by EOPSN [36]. However, OSIS perfor-
mance fell short on PQ for unseen unknowns, proving the
severe limitation of relying on unknowns at training time.
By learning void, OSIS achieved the highest SQ, which ig-
nores wrong predictions [41]. Instead, despite numerous
attempts, EOPSN [36] did not work: it diverged as soon as
the exemplars were mined, obtaining O true positives (TP).
We attribute this to the inconsistent similarities within the
void class of Cityscapes, compared to those across existing
major classes treated as void (e.g., car in their setup). This
prevented EOPSN from forming meaningful clusters from
the proposal features during training [36]. Despite the simi-
lar setup to EOPSN [36], OSIS [66] could converge since it
does not rely on associating unknowns across images. Our
U3HS outperformed OSIS by 5.5 times on PQ.

Unseen unknowns, COCO In Table 2, we show results
on the 16 held-out categories of MS COCO [45]. In this
case, other works were trained following the K=5% setup
of EOPSN [36], where 4 classes were learned as void (car,
cow, pizza, and toilet). While this allows them to learn more
meaningful representations of unknowns (as unlabeled), it
limits the number of classes they can distinguish semanti-
cally, e.g., they cannot identify cars. For the other works,
the benefit of expanding the void distribution by enforcing
the inclusion of a variety of recurring objects (e.g., pizza
and cars) is evident as it allowed EOPSN to converge, al-
though to a low PQ on the unseen objects. DDOSP [72]
delivered a PQ similar to ours, albeit requiring to turn some
knowns into void, learning unknowns via void and only 113
classes. Without altering the data nor making any assump-
tion on the training samples (e.g., the presence of unknowns
within void as in [36, 72, 66]), our U3HS performed the
best on the unseen categories, especially on RQ (i.e., ability
to form instances of unknowns), while learning the whole
set of 117 classes, thereby distinguishing even more classes
than the other works. Avoiding data assumptions with re-
spect to unknowns made our U3HS effective at segmenting
unseen unknowns across both datasets.

Known-unknown Table 3 reports the performances in-
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Lost&Found (unseen) open Cityscapes closed Cityscapes

ID | Method PQ RQ SQ PQ RQ SQ PQ RQ SQ

- | Panoptic-DeepLab [13] - - - - - - 45.82 57.66 79.46

- | OSIS [66] 1.45 223 65.11 | 3942 50.20 78.53 | 39.42 50.20 78.53
Al | [ours] baseline: semantic uncertainty | 0.49 0.82  60.16 | 35.02 44.83 78.10 | 35.97 46.12 78.00
A2 | Al +relaxed embedding association | 3.64 5.27 69.09 | 42.14 5346 78.83 | 43.99 5598 78.59
A3 | A2 + prototype head = USHS 794 1237 6424 | 41.21 51.67 79.77 | 46.53 58.99 78.87
A4 | A3 —reassigning outliers 7.85 1225 64.11 | 39.84 4997 79.75 | 46.53 58.99 78.87
A5 | A4 — majority voting 7.85 1225 64.11 | 23.94 30.15 7941 | 26.77 33.86 79.06
A6 | A4 — semantic embeddings 233 348 67.01 | 35.16 4334 81.13 | 3592 4430 81.07
Ul | U3HS [ours] + softmax uncertainty 0.10 020 5145 | 39.70 50.77 78.20 | 45.12 56.83 79.40
U2 | U3HS [ours] + DUQ [61] 0.56 0.89 6256 | 41.68 53.14 78.42 | 4590 58.17 78.90
U3 | U3HS [ours] + DPN [58] 2.09 330 6343 | 3890 49.56 78.49 | 4491 56.95 78.85
U4 | U3HS [ours] + SNGP [46] 4.65 7.57 6149 | 41.02 5198 7891 | 46.23 58.56 78.95
A3 | U3HS [ours] + improved DPN [ours] | 7.94 1237 64.24 | 41.21 51.67 79.77 | 46.53 58.99 78.87

Table 3. Segmentation comparison of models trained on Cityscapes [
tuning. All were trained with the same constraints (e.g., ResNet50 [

] and transferred to the test set of Lost&Found [52] without fine-

], small batch, and image sizes). An ablation study (A1-A6) shows

the impact of the main components of U3HS, with A3 being our full approach. A3 is paired with various uncertainty estimators (U1-U4).

domain, under open and closed settings (Section 5.1). Ide-
ally, a method would suffer from no decrease in PQ between
the two settings, meaning that its estimates are aligned
with the distribution shift between knowns and unknowns.
OSIS [66] does not use uncertainty estimation, so it does
not have these two operating modes, resulting in identical
open and closed-set outputs, as if it had only the open set-
ting (via the prediction of void). Conversely, all others suf-
fered from a reasonable decrease when extended to open-
set. DUQ [61] had the smallest gap, which could be at-
tributed to its underestimation of the uncertainty, as sup-
ported by its low scores on Lost&Found.

Closed-set In Table 3, we also compare our U3HS with
Panoptic-DeepLab [13]. For a fair comparison, both ap-
proaches and all others were trained with the same back-
bone, image, and batch sizes (Section 5.1). As these were
all smaller than those used in [13] due to the limited re-
sources used, they resulted in a lower PQ than that reported
in [13]. Nevertheless, our full approach (A3) achieved a
slightly higher PQ on Cityscapes under the same setting.
We attribute this to the effectiveness of the instance-aware
discriminative embeddings learned by our approach, com-
pared to the offset vectors and grouping used by Panoptic-
DeepLab. As the focus is unknowns, experiments with im-
proved training resources are out of the scope of this work.

Uncertainty In Table 3, we compare various uncertainty
estimations paired to our U3HS framework (U1-U4, A3).
While DUQ [61] and softmax underperformed compared to
OSIS [66], DPN [58] and SNGP [46] achieved a higher PQ.
Nevertheless, our improved DPN paired with our frame-
work outperformed prior methods by a substantial margin
(A3). For DPN and SNGP, this can be attributed to the su-

periority of our uncertainty estimates. Compared to OSIS
and EOPSN, U3HS’s combination of uncertainty estimation
with instance-aware embeddings was more effective than
learning void when encountering wholly new and unseen
objects, such as those found in unconstrained settings (e.g.,
this transfer to Lost&Found).

Ablation study Table 3 reports an ablation of the main
components of our U3HS, showing their benefits for holis-
tic segmentation. Compared to the open-set panoptic OSIS
[66], with A1, we reduced assumptions not learning the void
class, and we added a semantic branch with uncertainty
for unknowns, which by itself worsened the performance.
However, combining this with a relaxed embedding associ-
ation (Section 4.1) for things and stuff improved all metrics
(A2). A dedicated prototype head (A3, i.e., full approach)
increased them even further, more than doubling the PQ on
unknowns (i.e., Lost&Found). Specifically, dedicated heads
allow both prototypes and embeddings to be more meaning-
ful and expressive without sacrificing the other. A4 shows
the impact of reassigning outliers (Section 4.2). While its
effect was limited on unknowns, it was more significant
on Cityscapes [14]. Transforming unknown predictions in
standard in-domain outputs is relevant only in open settings.
A5 shows the effect of majority voting to enforce consis-
tency between the outputs (Section 4.1). This did not affect
unknowns since classes are not distinguished among them,
but it significantly impacted RQ and PQ on Cityscapes. Fi-
nally, A6 shows the importance of learning the embeddings
according to their semantic classes. In A6, predictions are
made by the dedicated semantic branch without the model
learning to distinguish the embeddings semantically. Al-
though this increased SQ, it caused a discrepancy within
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Figure 4. Example predictions of U3HS on OOD data from the Lost&Found [52] test set. The model was trained on Cityscapes [14] and
transferred to Lost&Found without fine-tuning. Embeddings are projected to RGB via t-SNE [62]. White arrows mark labeled unknowns.

the model outputs, decreasing RQ and PQ.

5.3. Qualitative Results

Figure 4 shows example predictions of the proposed
U3HS. The images illustrate the setting difficulty and pro-
vide examples of the OOD objects of Lost&Found [52].
These are often small and hard to see, hidden in the shade
or far away from the camera. As seen in the quantitative
results (Section 5.2), our U3HS could distinguish instances
of unknowns (e.g., stroller in Figure 1), albeit leaving room
for improvement. While unknowns correctly triggered high
uncertainty estimates, their necessary filtering (third col.)
sometimes left too few pixels, if any, on unknowns, leading
to missed predictions. However, this is to be expected with-
out any access to OOD data. Furthermore, without distin-
guishing between unknown things and unknown stuff, also
structures (e.g., fence in the lower image) were given an ID.
Nevertheless, thanks to our learned instance-aware embed-
dings, these were not further subdivided but formed a single
large instance (e.g., blue in the lower output). Separate un-
usual stuff regions had the same effect, e.g., the structures
around the trees in the upper image. This proves that in-
stances are not simply created by separating disjoint OOD
segments but are formed using the learned embeddings. As
shown in Figure 4, the embeddings are closely coupled with

input with unknowns predictéd unknowns holistic output

Figure 5. Example predictions of U3HS on OOD data from the
COCO [45] validation set. The model had never seen images con-
taining bear or frisbee (part of the held-out classes), nor had any
information about them. Colors represent the predicted instances.

the uncertainty estimates and the outputs.

Figure 5 reports predictions of U3HS on samples of MS
COCO [45] containing two held-out classes (i.e., bear and
frisbee). Remarkably, U3HS was able to separate both
bears and frisbees into individual instances despite their
high inter-class similarity and not having accessed any in-
formation about them. This is thanks to the uncertainty es-
timation and instance-aware embeddings of our U3HS.

Data considerations and limitations Lost&Found [52]
introduces a significant domain shift from Cityscapes. By
placing real OOD objects on the road, the authors had to
choose unusual scenarios (Figure 4), causing the whole
scenes to be OOD. This leads to high uncertainty estimates
also on a few known areas. As we do not use any OOD data,
nothing constrains high uncertainty to unknown segments,
decreasing PQ. A similar issue occurs in COCO, albeit less
severely, thanks to more training data. However, COCO
has no dedicated unknown class, so it had to be extracted
from the set of known ones. Nevertheless, results show
that uncertainty is highly valuable, allowing to leave the set-
tings unconstrained. U3HS would mainly benefit from im-
provements in uncertainty estimates, embeddings descrip-
tiveness, and their clustering. So, learning-based cluster-
ing [23, 24] could be advantageous.

The Supplementary Material includes more details on
the proposed holistic segmentation setting, U3HS and the
baselines, as well as additional results, including the trade-
off between in-domain and OOD performances, failure
cases and qualitative comparisons.

6. Conclusion

In this paper we introduced holistic segmentation: a new
setting addressing completely unseen unknown objects in
unconstrained scenarios. Additionally, we presented U3HS:
the first solution for this new problem. Thanks to its uncer-
tainty estimation and instance-aware learned embeddings,
U3HS identifies and separates instances of completely un-
seen unknowns without any information about them, while
segmenting known regions. Extensive experiments on mul-
tiple datasets showed the effectiveness of U3HS.
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