Segmenting Known Objects and Unseen Unknowns without Prior Knowledge

Stefano Gasperini1,2,\textdegree Alvaro Marcos-Ramiro2 Michael Schmidt2
Nassir Navab1 Benjamin Busam1 Federico Tombari1,3

1 Technical University of Munich 2 BMW Group 3 Google

Abstract

Panoptic segmentation methods assign a known class to each pixel given in input. Even for state-of-the-art approaches, this inevitably enforces decisions that systematically lead to wrong predictions for objects outside the training categories. However, robustness against out-of-distribution samples and corner cases is crucial in safety-critical settings to avoid dangerous consequences. Since real-world datasets cannot contain enough data points to adequately sample the long tail of the underlying distribution, models must be able to deal with unseen and unknown scenarios as well. Previous methods targeted this by re-identifying already-seen unlabeled objects. In this work, we propose the necessary step to extend segmentation with a new setting which we term holistic segmentation. Holistic segmentation aims to identify and separate objects of unseen, unknown categories into instances without any prior knowledge about them while performing panoptic segmentation of known classes. We tackle this new problem with U3HS, which finds unknowns as highly uncertain regions and clusters their corresponding instance-aware embeddings into individual objects. By doing so, for the first time in panoptic segmentation with unknown objects, our U3HS is trained without unknown categories, reducing assumptions and leaving the settings as unconstrained as in real-life scenarios. Extensive experiments on public data from MS COCO, Cityscapes, and Lost&Found demonstrate the effectiveness of U3HS for this new, challenging, and assumptions-free setting called holistic segmentation. Project page: https://holisticseg.github.io.

1. Introduction

Since neural networks have achieved unprecedented performance in perception tasks (e.g., object detection and semantic segmentation), there has been a growing interest in ensuring their safe deployment, especially important for safety-critical scenarios, such as autonomous driving and robotics [25]. Recently, several works have been proposed to improve robustness and generalization by addressing corner cases and out-of-distribution data [6, 65, 22], via domain adaptation [70], adversarial augmentations [44], simulations [1], and uncertainty estimation [54].

Due to the difficulty of collecting corner cases from the long tail of the underlying data distribution, current datasets cannot fully represent the diversity of the world, leaving its vast majority as difficult out-of-distribution (OOD) samples [32, 8]. In safety-critical applications, considering them during development and deployment is of utmost importance [3, 44], or they could cause severe damage.

Furthermore, since the powerful and popular softmax highly promotes the probability of the highest logit, state-of-the-art methods tend to be overly confident even on wrong predictions [58, 25]. In safety-critical settings, reliable confidence together with interpretability techniques [20, 77] increases trust for downstream tasks [25], e.g., trajectory prediction and path planning. Towards this end, estimating the uncertainty of a model’s output is commonly considered a key enabler for its safe applicability [39, 25].
While several works addressed some of these problems for image classification [58, 46, 54, 61] and object detection [48, 21], they remain primarily unexplored for dense tasks such as semantic and panoptic segmentation [5, 66]. Compared to object detection, the problem is more severe for dense tasks, where a model needs to provide a prediction for every input unit (e.g., each pixel). So unseen objects (i.e., of new, unseen categories) are systematically and wrongly assigned to one of the limited number of known classes (closed-set), as shown in Figure 1. This has led researchers towards designing new methods that work not only with the available data distribution but also with OOD samples that are not available (open-set), thereby improving robustness against unseen scenarios [38, 46, 5, 44].

Open-set panoptic segmentation [66] segments instances of unlabeled objects in addition to panoptic segmentation of known areas, i.e., the combination of semantic and instance segmentation [41]. Unlike OOD segmentation [38], segmenting unknown instances enables tracking and trajectory prediction. Prior works [66, 36, 72] tackled this problem by relying on seeing unlabeled categories during training. They learned these categories through the void class (i.e., unlabeled) and assumed unknowns to be within ground truth void regions at training time and inside void predictions at test time. By doing so, unknowns are transformed into learned unlabeled instances (i.e., essentially known objects) [36], constraining the open-set task. Mainly intended to segment already-seen unlabeled objects [36, 72], current works cannot deal with the wide variability of unknowns and corner cases outside the training data.

In this paper, we propose the necessary next step for panoptic segmentation to include object categories outside the training data (i.e., unseen unknowns). We term the new setting holistic segmentation. The aim is to identify and segment unseen unknowns into instances while segmenting known classes in a panoptic fashion without any external nor prior knowledge about unknowns. Unseen categories pose new challenges compared to already-seen unlabeled ones [36], requiring new solutions. Estimating the uncertainty is a key step towards finding the knowledge boundaries of a model, leaving the problem unconstrained and reducing assumptions on the training data. Therefore, we propose U3HS: Unseen Unknowns via Uncertainty estimation for Holistic Segmentation. The main contributions of this paper can be summarized as follows:

- We introduce the setting of holistic segmentation, which highlights the importance of not using prior knowledge about unknown objects (e.g., text), and leaves the setup unconstrained as in real scenarios.
- We tackle this new setting with U3HS: the first panoptic framework to deal with unseen, unknown object categories, able to segment and separate them.
- We provide uncertainty measures for the output of U3HS to further improve its safe applicability.

2. Related Work

Closed-set panoptic segmentation Combining semantic and instance segmentation, panoptic segmentation [41] distinguishes things (countable classes) from stuff (amorphous). The vast majority of methods are top-down [71, 60, 53, 40, 34, 50]: two-stage exploiting box proposals and thing masks from Mask R-CNN [30], and filling up stuff areas with a semantic branch. Bottom-up are proposal-free, e.g., Panoptic-DeepLab [13]: they segment semantically and cluster instances within thing regions [13, 64]. A different line of work proposed end-to-end solutions [23, 63] where instance and semantic segments are delivered directly by treating instance segmentation as a class-agnostic classification task. Others explored self-attention [34], videos [67, 11, 47], scene graphs [69, 68], multi-task learning [16, 28], neural fields [43], or text descriptions [18]. Our U3HS framework deals with unseen unknowns and extends [13] via instance-aware embeddings.

Zero-shot learning aims to predict unseen classes outside the training set [4, 78, 75] with the help of external knowledge [10, 26], e.g., a language model [76], used to build semantic spaces common between seen and unseen classes [74]. While zero-shot methods detect only unseen classes at inference time, generalized zero-shot approaches also detect seen ones [9, 56], similarly to the proposed holistic segmentation. Also open-vocabulary methods are zero-shot [35, 27, 73, 18]. They exploit language models such as CLIP [57] to describe unknowns. CLIP has been trained on unknown classes and is treated as an oracle, as it is assumed to be able to describe every unknown, allowing open-vocabulary and zero-shot approaches to identify them. However, this implies that unknown classes are known, e.g., to CLIP. Moreover, CLIP is not immune to corner cases and long tail samples [57]. This limits the pool of objects that these methods can recognize. As shown in Figure 2, holistic segmentation segments unseen objects too, but unlike zero-shot and open-vocabulary, it does not use any external support (e.g., text descriptions of unknowns), such that objects of unseen categories are segmented solely by learning on known ones. More recent than this work, SAM [42] is a strong foundation model. Unlike SAM, ours does not use any prompts and outputs semantic classes.

Uncertainty estimation Epistemic uncertainty is caused by the model itself, while aleatoric is due to the input [39, 25]. OOD data typically results in high epistemic due to a knowledge gap. Single deterministic approaches are sampling-free and provide predictions and uncertainty estimates with the same model [25]. Among these, DUQ [61] learns class representatives and compares them with input features. SNGP [46] improves the awareness to domain
unknown objects
input with
unknowns
zero-shot
learning
open-set panoptic
segmentation
proposed: holistic
segmentation
Figure 2. Comparison between closed-set (top right) [41] and open-set [36] panoptic segmentation, zero-shot learning [78], and the proposed holistic segmentation setting. While zero-shot and open-set panoptic methods commonly leverage knowledge about unknown objects, holistic segmentation does not use any priors.

shifts via weight normalization and a Gaussian process. DPN [58] predicts the parameters of a Dirichlet distribution, and uses a Dirichlet density function for each probability assignment and its uncertainty. Various works estimated uncertainty for object detection [49, 48, 21], and segmentation [55, 5, 59], improving robustness and generalization. While most compute uncertainty only to provide it as extra output [25, 59], our U3HS can be paired with any of the above techniques to find unknown objects, which it then separates into instances for holistic segmentation.

Open-set perception Open-set tasks are similar to generalized zero-shot learning [9], with the fundamental difference that here no external knowledge on the unseen classes is used [75]: inference is based only on what was learned from the training data. Uncertainty estimation helps to identify knowledge boundaries [49]. Bayesian SSD [49] uses Dropout sampling for open-set object detection. MLUC [6] tackles this for LiDAR point clouds via metric learning and unsupervised clustering. Open world recognition [2, 7] labels detected unknowns and adds them to the training set. Pham et al. [51] grouped regions perceptually to known and unknown instances, exploiting edges, boxes, and masks. Recently, several works tackled open-set semantic segmentation, telling apart unknown areas from known classes [38, 33, 29]. Among those not learning from OOD data, DML [5] uses metric learning and SML [38] acts as post-processing, standardizing the max logits, improving the class distributions. Instead, our work separates unseen, unknown objects into instances and segments known areas, addressing the proposed holistic segmentation.

Open-set panoptic segmentation The pioneering OSIS [66] was the first in this direction. Applied to LiDAR data, it exploits 3D locations to cluster unlabeled points into instances. Later, EOPSN [36] extended Panoptic FPN [40] and grouped its proposals into clusters. At training time, EOPSN clusters similar unlabeled objects across multiple inputs. When surrounded by known segments, it labels an unlabeled object and uses it to learn to segment its instances. Instead, DDOSP [72] uses a known-unknown class discriminator and class-agnostic proposals. However, as these approaches were intended to re-identify already-seen unlabeled objects, they all rely on seeing unknown data at training time [66, 36, 72]. They all cluster into instances what falls in the predicted void class, learned as a fallback (i.e., must be in the training samples) and assumed to contain all unknowns. Since datasets are limited [44], by requiring to learn from unknowns and the void class, existing works are not designed to deal with any completely unseen object, as their pool of identifiable unknowns is also limited [36, 72]. For these reasons, they solve only part of the problem. Instead, by using no OOD data at training time and preventing learning priors for unknowns, the proposed holistic segmentation differs from the way open-set panoptic segmentation has been tackled so far [66, 36, 72]. As shown in Figure 2, the outputs are comparable, but the definition of unknowns differs (here unseen), as well as the inability to learn from unknowns. Unknown instances can then be used for downstream tracking, trajectory prediction, path planning, or active learning.

3. Proposed Setting: Holistic Segmentation

As shown in Figure 2, the proposed setting of holistic segmentation is a logical extension of open-set panoptic segmentation [66, 36]. To make the setting unconstrained as real-life scenarios, we aim to identify and separate any unseen, unknown object into instances while segmenting known classes. Other settings allow to include unknowns in the training data [66, 36, 72] (e.g., within the void class) or use information about them [78], and only re-identify already-seen unlabeled objects [36]. Instead, we focus on the case where no information is available about unknowns. Therefore, holistic segmentation is more challenging, makes no assumptions about the training data (e.g., the presence of void, with unknowns in it), leaves the problem unconstrained to any object, and simplifies data collection as no unknowns need to be in the training data. Formal definition and metrics follow open-set panoptic segmentation [66, 36]. As shown in Figure 2, the outputs are comparable, but the definition of unknowns differs (here unseen), as well as the inability to learn from unknowns. Unknown instances can then be used for downstream tracking, trajectory prediction, path planning, or active learning.

4. Proposed Framework: U3HS

In Figure 3, we show a representation of U3HS, targeting holistic segmentation. U3HS outputs instances of unseen unknowns by clustering instance-aware embeddings corre-
4.1. Panoptic Segmentation for Known Classes

Our approach for closed-set panoptic segmentation builds upon learning instance-aware embeddings. As shown in Figure 3, an encoder extracts features from an input image and propagates them to different decoders: 1) a semantic branch performing semantic segmentation and uncertainty estimation to identify unknown regions (Section 4.2); 2) a detection branch identifying object centers similarly to Panoptic-DeepLab [13]; and 3) an embeddings branch, with two separate heads, for prototypes and embeddings.

We make the embeddings instance-aware via discriminative loss functions (Section 4.3) and by concatenating the detection branch features to prototype and embeddings heads. Embeddings and detections are made also semantically-aware by concatenating the semantic

\[
\hat{y}_{(i,j),\omega} = -\frac{1}{2} \sum_{\omega} \log \sigma_{\omega}^2 - \left(\frac{1}{2} \sum_{\omega} || \phi_{(i,j)} - \mu_{\omega} ||^2 / 2 \sigma_{\omega}^2 \right)
\]

(1)

Compared to [66], we relax the problem by not including the term \(- \frac{1}{2} \sum_{\omega} \log \sigma_{\omega}^2\), and let the embedding variance be indirectly controlled by the final task, which naturally bounds it (shown empirically in Section 5.2). Then, we keep the prototype variance \(\sigma_{\omega}^2\) strictly positive by using softplus.

At inference time, for things, the semantic class of each instance is determined by majority voting of its semantic branch predictions, ensuring output consistency. Instead, the ID is computed from the highest score in Eq. 1. For stuff regions, we follow [66], determining the semantic classes by associating the pixel embeddings to the prototypes \(\Omega_{st}\) via the highest scoring class from Eq. 1. This decoupling allows semantic awareness throughout the model.

4.2. Dealing with Unseen Unknown Objects

We find unknown segments by relying on uncertainty estimates, which can help identify the knowledge boundaries of a model [58, 46]. Specifically, instead of predicting the void class and searching in it for unknowns as in [66, 36], we estimate the uncertainty related to the semantic segmentation predictions and consider as unknown the areas with a high associated uncertainty. Although our framework can flexibly work with various uncertainty estimators (Section 5.2), here we exemplify it with DPN [58, 37], which we extended from image classification to semantic segmentation, and also improved its convergence in this context. We chose DPNs as they allow for minimal modifications at training time, i.e., replacing the

\[
\text{softmax}
\]

with a strictly positive activation function while providing good uncertainty estimates, which can help identify the knowledge boundaries of a model [58, 46]. Specifically, instead of predicting the void class and searching in it for unknowns as in [66, 36], we estimate the uncertainty related to the semantic segmentation predictions and consider as unknown the areas with a high associated uncertainty. Although our framework can flexibly work with various uncertainty estimators (Section 5.2), here we exemplify it with DPN [58, 37], which we extended from image classification to semantic segmentation, and also improved its convergence in this context. We chose DPNs as they allow for minimal modifications at training time, i.e., replacing the softmax with a strictly positive activation function while providing good uncertainty estimates on OOD data without training on such data [58].

Following [58], we consider the evidence \(e_k = \alpha_k - 1\) as a measure of the number of hints given by data for a pixel
to be assigned to a class \(k \in K \) known classes, with \(\alpha_k \) being the parameters of the Dirichlet distribution \(\text{Dir}(\alpha) \). We compute the uncertainty as \(u = K / \sum_{k=1}^{K} \alpha_k \). Given that the class probabilities \(p = \{ p_k : k = \{1, \ldots, K\} \} \) follow a simplex (i.e., are positive and sum to 1), the class assignment corresponds to a Dirichlet distribution parameterized over the evidence, as the probability density function:

\[
D(p | \alpha) = B(\alpha)^{-1} \prod_{k=1}^{K} p_k^{\alpha_k-1}
\]

with:

\[
B(\alpha) = \prod_{k=1}^{K} \Gamma(\alpha_k) / \Gamma \left(\sum_{k=1}^{K} \alpha_k \right)
\]

where \(\Gamma \) is the gamma function and \(B(\alpha) \) is the \(K \)-dimensional multinomial beta function [58].

We apply this to semantic segmentation by predicting a concentration parameter \(\alpha^{(i,j)} \) for each pixel \((i, j)\), replacing the last layer with the smooth \textit{softmax} activation function, thus converting the \textit{logits} to a strictly positive vector, which we use as evidence \(e^{(i,j)} \) in the Dirichlet distribution. We learn this distribution with the semantic loss \(L \) minimizing the negative expected log likelihood of the correct class \(Y^{(i,j)} \), for the random variable \(X^{(i,j)} \sim \text{Dir}(\alpha^{(i,j)}) \):

\[
L_s^{(i,j)} = -E[\ln X_Y^{(i,j)}] = \psi \left(\sum_{k=1}^{K} \alpha_{(i,j),k} \right) - \psi(\alpha_{Y^{(i,j)}})
\]

where \(\psi \) is the digamma function (i.e., \(\Gamma \)'s logarithmic derivative) and \(\alpha_{(i,j),k} \) is the output of the semantic branch. Due to the difficulty of modeling the target distribution in our holistic setting, we omit the KL term used in [58], simplifying the loss design (Section 5.2). After training on the closed-set data, we consider all pixels \((i, j)\) with an estimated uncertainty \(u_{(i,j)} \geq \mu + t \cdot \sigma \) as unknown regions with \(\mu \) and \(\sigma^2 \) being mean and variance of the uncertainties of all training pixels, and \(t \) being a hyperparameter.

Separating unknowns After finding the unknown segments, we cluster their instance-aware embeddings trained only on known objects into individual unknowns using DBSCAN [19]. We find the DBSCAN hyperparameters on the training closed-set data (Appendix). Finally, we re-assign the few DBSCAN’s outliers to their originally predicted semantic class, thus ignoring their uncertainty estimates.

4.3. Learning to Find Knowns and Unknowns

We train our models with a combination of four losses. The semantic branch is optimized with \(L_s^{(i,j)} \) (Eq. 3) over the whole image sized \(W \times H \) as:

\[
L_s = \frac{1}{WH} \sum_{i,j} -E[\ln X_Y^{(i,j)}] = \frac{1}{WH} \sum_{i,j} \psi \left(\sum_{k=1}^{K} \alpha_{(i,j),k} \right) - \psi(\alpha_{Y^{(i,j)}})
\]

As in [13], the detection branch is trained with an L2 loss between predicted \(\hat{C} \) and ground truth \(C \) center heatmaps:

\[
L_o = \frac{1}{WH} \sum_{i,j} \left(\hat{C}^{(i,j)} - C^{(i,j)} \right)^2
\]

For **stuff**, we use the predicted \(\Omega_{st} \) as a pseudo label to learn the prototypes \(\Omega \). For **things**, the same is done with \(\Omega_{th} \) at the true instance centers. The prototype loss \(L_p \) is the cross-entropy on the softmax of the association scores \(\hat{y}_{(i,j),\omega} \) and \(\hat{y}_{(i,j),\omega} = \exp(\hat{y}_{(i,j),\omega}) / \sum_{\omega' \in \Omega} \exp(\hat{y}_{(i,j),\omega'}) \), with \(\omega_{(i,j)} \) being the pseudo label prototype:

\[
L_p = \frac{1}{WH} \sum_{i,j} -\log(\hat{y}_{(i,j),\omega_{(i,j)}})
\]

We learn embeddings \(\phi(x,y) \) with a discriminative loss [15] \(L_d \) (Appendix). The overall training objective is:

\[
L = \lambda_1 L_s + \lambda_2 L_o + \lambda_3 L_p + \lambda_4 L_d
\]

5. Experiments and Results

5.1. Experimental Setup

Datasets We conducted our experiments on three public datasets, namely Cityscapes [14], Lost&Found [52], and MS COCO [45]. **Cityscapes** is a popular outdoor benchmark. Recorded around 50 different cities, mainly in Germany, it contains 19 classes: 8 **things** and 11 **stuff**. We followed the standard split, with 2975 images for training and 500 as validation set, reporting all metrics on the latter. Also recorded in Germany, the **Lost&Found** dataset contains a variety of unusual OOD objects placed in the middle of the road. We selected it because: 1) it was recorded with the same sensor setup as Cityscapes, allowing seamless transfers and removing the need for fine-tuning; 2) it contains only real images; and 3) unlike similar datasets [3, 8], it provides instance annotations for unknowns. Therefore, it is a challenging complement to Cityscapes for holistic segmentation. We did not train on Lost&Found, but used it only to evaluate models trained on Cityscapes. We report all metrics on the **unknown** class of its 1202 test samples. **MS COCO** is a challenging large-scale benchmark for general image understanding, as it includes a variety of scenarios from indoor to outdoor. The 2017 panoptic split contains 80 **thing** categories, and 53 **stuff** classes. We followed EOPSN [36] by treating as unknown the least frequent 20% **thing** classes (e.g., bear, frisbee). However, instead of turning their segments into **void** and keeping their images in the training set as in [36], we removed their samples completely and regarded them as unseen unknowns. This reduced the training samples to 98112, with 117 classes to learn. We report on the 827 validation samples with unseen classes.

Evaluation metrics We evaluated the panoptic quality (PQ) metric [41] separately for known classes and unknowns, including recognition (RQ) and segmentation (SQ) qualities. We report PQ on the held-out classes of COCO [45], the unknown class of Lost&Found [52], as well as on the 19 known classes of Cityscapes [14] for both open and closed settings. Specifically, in open cases, models detect both knowns and unknowns, while in closed set-
ings, the same models predict only knowns, which in practice means ignoring the uncertainty estimates. By analyzing both, we explore the trade-off between detecting unknowns (open) and the in-domain performance (closed).

Network architecture All our models share the structure with Panoptic-DeepLab [13], using a ResNet50 [31] backbone and decoders following Deep-LabV3+ [12]. ResNet50 was chosen to increase reproducibility with limited resources. As described in Section 4.2, the only modification to the semantic decoder is applying the softplus activation to quantify the uncertainty. The other branches follow Panoptic-DeepLab for detecting centers and DeepLabV3+ for the embeddings, with two heads.

Implementation details For [14, 52], we used input images sized 1024×512 and batch size 16. For [45], we fed 8 images sized 640×480. We used the Adam optimizer until convergence, with an initial learning rate of 0.001, which was reduced by 2% at each epoch. We set $t = 3$ for the uncertainty threshold (i.e., 3 times the standard deviation) and $F = 8$ for the embedding size to keep the memory low. We adjusted to the different data distribution of COCO with $t = 1$. The backbone was pre-trained on ImageNet [17]. The losses were weighted $\lambda_1 = \lambda_3 = \lambda_4 = 1$ and $\lambda_2 = 200$ [13].

Prior works We compared our U3HS with open-set panoptic works: OSIS [66], which we adapted from LiDAR point clouds to images, EOPSN and its baselines [36], and DDOSP [72]. Instead of training them directly on the unknown categories being evaluated (as in [36]), we followed their setup [66, 36, 72] by training them with the void class as fallback, and applied them to unseen unknowns. All methods followed this setup, except that ours ignored void. On COCO, we facilitated other works following the $K=5\%$ setting of EOPSN [36], thus turning 4 classes into void, so they learned 4 classes less than ours. We repurposed and extended a variety of uncertainty estimators [58, 61, 46] from image classification to semantic segmentation (Appendix). We then extended them to holistic segmentation by incorporating them in our U3HS framework.

5.2. Quantitative Results

Unseen unknowns, L&F Table 1 compares our U3HS with prior approaches when segmenting instances of unseen unknowns from Lost&Found [52]. OSIS [66] was the first to address the more limited open-set panoptic segmentation setting, followed by EOPSN [36]. However, OSIS performance fell short on PQ for unseen unknowns, proving the severe limitation of relying on unknowns at training time. By learning void, OSIS achieved the highest SQ, which ignores wrong predictions [41]. Instead, despite numerous attempts, EOPSN [36] did not work: it diverged as soon as the exemplars were mined, obtaining 0 true positives (TP). We attribute this to the inconsistent similarities within the void class of Cityscapes, compared to those across existing major classes treated as void (e.g., car in their setup). This prevented EOPSN from forming meaningful clusters from the proposal features during training [36]. Despite the similar setup to EOPSN [36], OSIS [66] could converge since it does not rely on associating unknowns across images. Our U3HS outperformed OSIS by 5.5 times on PQ.

Unseen unknowns, COCO In Table 2, we show results on the 16 held-out categories of MS COCO [45]. In this case, other works were trained following the $K=5\%$ setup of EOPSN [36], where 4 classes were learned as void (car, cow, pizza, and toilet). While this allows them to learn more meaningful representations of unknowns (as unlabeled), it limits the number of classes they can distinguish semantically, e.g., they cannot identify cars. For the other works, the benefit of expanding the void distribution by enforcing the inclusion of a variety of recurring objects (e.g., pizza and cars) is evident as it allowed EOPSN to converge, although to a low PQ on the unseen objects. DDOSP [72] delivered a PQ similar to ours, albeit requiring to turn some knowns into void, learning unknowns via void and only 113 classes. Without altering the data nor making any assumption on the training samples (e.g., the presence of unknowns within void as in [36, 72, 66]), our U3HS performed the best on the unseen categories, especially on RQ (i.e., ability to form instances of unknowns), while learning the whole set of 117 classes, thereby distinguishing even more classes than the other works. Avoiding data assumptions with respect to unknowns made our U3HS effective at segmenting unseen unknowns across both datasets.

Known-unknown Table 3 reports the performances in-
domain, under open and closed settings (Section 5.1). Ideally, a method would suffer from no decrease in PQ between the two settings, meaning that its estimates are aligned with the distribution shift between knowns and unknowns. OSIS [66] does not use uncertainty estimation, so it does not have these two operating modes, resulting in identical PQ scores on Cityscapes. Nevertheless, A6 shows the importance of learning the embeddings per class, and we added a semantic branch with uncertainty estimations paired to our U3HS framework (U1-U4).

Closed-set In Table 3, we also compare our U3HS with Panoptic-DeepLab [13]. For a fair comparison, both approaches and all others were trained with the same backbone, image, and batch sizes (Section 5.1). As these were all smaller than those used in [13] due to the limited resources used, they resulted in a lower PQ than that reported in [13]. Nevertheless, our full approach (A3) achieved a slightly higher PQ on Cityscapes under the same setting. We attribute this to the effectiveness of the instance-aware discriminative embeddings learned by our approach, compared to the offset vectors and grouping used by Panoptic-DeepLab. As the focus is unknowns, experiments with improved training resources are out of the scope of this work.

Uncertainty In Table 3, we compare various uncertainty estimations paired to our U3HS framework (U1-U4, A3). While DUQ [61] and softmax underperformed compared to OSIS [66], DPN [58] and SNGP [46] achieved a higher PQ. Nevertheless, our improved DPN paired with our framework outperformed prior methods by a substantial margin (A3). For DPN and SNGP, this can be attributed to the superiority of our uncertainty estimates. Compared to OSIS and EOPSN, U3HS’s combination of uncertainty estimation with instance-aware embeddings was more effective than learning void when encountering wholly new and unseen objects, such as those found in unconstrained settings (e.g., this transfer to Lost&Found).

Ablation study Table 3 reports an ablation of the main components of our U3HS, showing their benefits for holistic segmentation. Compared to the open-set panoptic OSIS [66], with A1, we reduced assumptions not learning the void class, and we added a semantic branch with uncertainty for unknowns, which by itself worsened the performance. However, combining this with a relaxed embedding association (Section 4.1) for things and stuff improved all metrics (A2). A dedicated prototype head (A3, i.e., full approach) increased them even further, more than doubling the PQ on unknowns (i.e., Lost&Found). Specifically, dedicated heads allow both prototypes and embeddings to be more meaningful and expressive without sacrificing the other. A4 shows the impact of reassigning outliers (Section 4.2). While its effect was limited on unknowns, it was more significant on Cityscapes [14]. Transforming unknown predictions in standard in-domain outputs is relevant only in open settings. A5 shows the effect of majority voting to enforce consistency between the outputs (Section 4.1). This did not affect unknowns since classes are not distinguished among them, but it significantly impacted RQ and PQ on Cityscapes. Finally, A6 shows the importance of learning the embeddings according to their semantic classes. In A6, predictions are made by the dedicated semantic branch without the model learning to distinguish the embeddings semantically. Although this increased SQ, it caused a discrepancy within

<table>
<thead>
<tr>
<th>ID</th>
<th>Method</th>
<th>Lost&Found (unseen)</th>
<th>open Cityscapes</th>
<th>closed Cityscapes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>PQ</td>
<td>RQ</td>
<td>SQ</td>
</tr>
<tr>
<td>-</td>
<td>Panoptic-DeepLab [13]</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>OSIS [66]</td>
<td>1.45</td>
<td>2.23</td>
<td>65.11</td>
</tr>
<tr>
<td>A1</td>
<td>[ours] baseline: semantic uncertainty</td>
<td>0.49</td>
<td>0.82</td>
<td>60.16</td>
</tr>
<tr>
<td>A2</td>
<td>A1 + relaxed embedding association</td>
<td>3.64</td>
<td>5.27</td>
<td>69.09</td>
</tr>
<tr>
<td>A3</td>
<td>A2 + prototype head = U3HS</td>
<td>7.94</td>
<td>12.37</td>
<td>64.24</td>
</tr>
<tr>
<td>A4</td>
<td>A3 – reassigning outliers</td>
<td>7.85</td>
<td>12.25</td>
<td>64.11</td>
</tr>
<tr>
<td>A5</td>
<td>A4 – majority voting</td>
<td>7.85</td>
<td>12.25</td>
<td>64.11</td>
</tr>
<tr>
<td>A6</td>
<td>A4 – semantic embeddings</td>
<td>2.33</td>
<td>3.48</td>
<td>67.01</td>
</tr>
</tbody>
</table>

Table 3. Segmentation comparison of models trained on Cityscapes [14] and transferred to the test set of Lost&Found [52] without fine-tuning. All were trained with the same constraints (e.g., ResNet50 [31], small batch, and image sizes). An ablation study (A1-A6) shows the impact of the main components of U3HS, with A3 being our full approach. A3 is paired with various uncertainty estimators (U1-U4).
5.3. Qualitative Results

Figure 4 shows example predictions of the proposed U3HS. The images illustrate the setting difficulty and provide examples of the OOD objects of Lost&Found [52]. These are often small and hard to see, hidden in the shade or far away from the camera. As seen in the quantitative results (Section 5.2), our U3HS could distinguish instances of unknowns (e.g., stroller in Figure 1), albeit leaving room for improvement. While unknowns correctly triggered high uncertainty estimates, their necessary filtering (third col.) sometimes left too few pixels, if any, on unknowns, leading to missed predictions. However, this is to be expected without any access to OOD data. Furthermore, without distinguishing between unknown things and unknown stuff, also structures (e.g., fence in the lower image) were given an ID. Nevertheless, thanks to our learned instance-aware embeddings, these were not further subdivided but formed a single large instance (e.g., blue in the lower output). Separate unusual stuff regions had the same effect, e.g., the structures around the trees in the upper image. This proves that instances are not simply created by separating disjoint OOD segments but are formed using the learned embeddings. As shown in Figure 4, the embeddings are closely coupled with the uncertainty estimates and the outputs.

Figure 5 reports predictions of U3HS on samples of MS COCO [45] containing two held-out classes (i.e., bear and frisbee). Remarkably, U3HS was able to separate both bears and frisbees into individual instances despite their high inter-class similarity and not having accessed any information about them. This is thanks to the uncertainty estimation and instance-aware embeddings of our U3HS.

Data considerations and limitations Lost&Found [52] introduces a significant domain shift from Cityscapes. By placing real OOD objects on the road, the authors had to choose unusual scenarios (Figure 4), causing the whole scenes to be OOD. This leads to high uncertainty estimates also on a few known areas. As we do not use any OOD data, nothing constrains high uncertainty to unknown segments, decreasing PQ. A similar issue occurs in COCO, albeit less severely, thanks to more training data. However, COCO has no dedicated unknown class, so it had to be extracted from the set of known ones. Nevertheless, results show that uncertainty is highly valuable, allowing to leave the settings unconstrained. U3HS would mainly benefit from improvements in uncertainty estimates, embeddings descriptiveness, and their clustering. So, learning-based clustering [23, 24] could be advantageous.

The Supplementary Material includes more details on the proposed holistic segmentation setting, U3HS and the baselines, as well as additional results, including the trade-off between in-domain and OOD performances, failure cases and qualitative comparisons.

6. Conclusion

In this paper we introduced holistic segmentation: a new setting addressing completely unseen unknown objects in unconstrained scenarios. Additionally, we presented U3HS: the first solution for this new problem. Thanks to its uncertainty estimation and instance-aware learned embeddings, U3HS identifies and separates instances of completely unseen unknowns without any information about them, while segmenting known regions. Extensive experiments on multiple datasets showed the effectiveness of U3HS.
References

