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Abstract

We present a novel method for weakly-supervised action
segmentation and unseen error detection in anomalous in-
structional videos. In the absence of an appropriate dataset
for this task, we introduce the Anomalous Toy Assembly
(ATA) dataset1, which comprises 1152 untrimmed videos
of 32 participants assembling three different toys, recorded
from four different viewpoints. The training set comprises
27 participants who assemble toys in an expected and con-
sistent manner, while the test and validation sets comprise
5 participants who display sequential anomalies in their
task. We introduce a weakly labeled segmentation algo-
rithm that is a generalization of the constrained Viterbi al-
gorithm and identifies potential anomalous moments based
on the difference between future anticipation and current
recognition results. The proposed method is not restricted
by the training transcripts during testing, allowing for the
inference of anomalous action sequences while maintain-
ing real-time performance. Based on these segmentation
results, we also introduce a baseline to detect pre-defined
human errors, and benchmark results on the ATA dataset.
Experiments were conducted on the ATA and CSV datasets,
outperforming the state-of-the-art in segmenting anomalous
videos under both online and offline conditions.

1. Introduction
One of the challenges in human machine interaction is

the automatic vision-based understanding of human actions
in instructional videos. These videos depict a series of low-
level actions that collectively accomplish a top-level task,
such as preparing a meal or assembling an object. How-
ever, labeling each frame of these videos can be arduous
and necessitate a significant amount of manual effort to note
the start and end times of each action segment. Conse-
quently, there has been a surge of research interest in devel-
oping weakly-supervised methods to learn the actions. In

1https://usa.honda-ri.com/ata

Figure 1. A toy example of different assembly sequences. Given
a fixed set of non-anomalous training transcripts, our method ex-
plores and infers unseen anomalous sequences at test time. The
anomalous sequences may or may not entail assembly errors.

particular, such methods aim to overcome the challenge of
weakly-labeled instructional videos, where only the ordered
sequence of action labels (transcript) is provided without
any information on the duration of each action.

Specifically, detection of fine errors and anomalies in
tasks performed by human operators is critical for enhanc-
ing quality of work, safety, and efficiency. Anomalies can
take different forms, but in this paper, we focus on the de-
tection of fine-grained sequential anomalies in instructional
videos. We define sequential anomalies as unseen action
sequences that arise due to unexpected permutations of the
action sequences seen in the training set. Such permutations
may include unexpected changes in the order of actions, or
the omission or addition of one or multiple actions at any
point in the video. We also define an “error” as a sequential
anomaly that leads to an undesired outcome. This means
that not all sequential anomalies indicate faulty procedures
(Fig.1). In the context of assembly, some examples of these
unseen variations at test time include scenarios where an as-
sembly worker skips fastening a screw or spends too much
time idling between actions. AI systems can be trained
on limited data collected from the optimal work of profes-
sionals, yet they must still be capable of detecting out-of-
sequence actions in situations where inexperienced workers
make mistakes or follow sub-optimal sequences.

Existing weakly-supervised segmentation methods di-
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vide a video into its constituent atomic actions. These meth-
ods are either explicitly [8, 15, 21] or implicitly [33] limited
by the training transcripts, so they cannot identify anomalies
and out-of-sequence actions effectively in videos. More-
over, the absence of datasets with anomalous instructional
videos has prevented such methods from being thoroughly
tested under circumstances, where there are significant vari-
ations between the training and test transcripts.

This paper presents the Anomalous Toy Assembly (ATA)
dataset, which is the first instructional video dataset that
contains anomalies. The ATA dataset comprises 1152
untrimmed videos of 32 participants assembling three dif-
ferent toys, which were recorded from four different view-
points. Each toy assembly constitutes a task. The distin-
guishing feature of this dataset is the disparity between the
training and test action sequences, enabling the investiga-
tion of unseen error detection in instructional videos.

In particular, the training set comprises 27 participants
who assemble toys in an expected and consistent manner.
On the other hand, the test and validation sets entail 5 par-
ticipants who display anomalies in their assembly of toys,
including sequence variations, defects, or redundancies. Al-
though the test and training sets involve the same set of ac-
tions, the action sequences of the test set are distinct and
previously unseen in the training set. Our dataset includes
annotations of human errors, atomic actions, human pose,
and bounding boxes of interactive objects for each video.

As a second contribution, we propose a novel method for
weakly-supervised action segmentation, and unseen error
detection in anomalous instructional videos. Unlike previ-
ous work, the proposed real-time action segmentation algo-
rithm is not restricted by training transcripts during testing.
Our inference method is a generalized version of the Viterbi
algorithm [37] used in [14, 27]. It segments videos into un-
seen transcripts and identifies potential anomalous moments
based on the difference between future anticipation and cur-
rent recognition results. This method enables the inference
of anomalous action sequences while maintaining real-time
performance. Finally, based on these segmentation results,
the paper introduces a mechanism to detect predefined hu-
man errors that occur during assembly, with baseline error
detection results presented on the ATA dataset.

To summarize, the contributions of this paper are:
1) We introduce the ATA dataset, the first anomalous in-
structional video dataset, containing sequential anomalies
and human errors made during toy assembly. All videos are
annotated with various spatial and temporal labels.
2) We propose our unconstrained Viterbi algorithm that al-
lows real-time segmentation of videos into unseen action
sequences.
3) Experiments were conducted on the ATA and CSV [25]
datasets, demonstrating that our proposed method outper-
forms the state-of-the-art (SoTA) in segmenting anomalous

videos under both online and offline conditions. Here, on-
line refers to the causal inference of the current action in
streaming videos, while offline refers to the full segmenta-
tion of the video after observing the entire video.

2. Related Work
2.1. Weakly-Supervised Action Segmentation

The majority of weakly-supervised action segmentation
methods [7, 8, 17, 21, 23, 27, 32, 33] focus on offline pro-
cessing, and are limited by the training transcripts. Specifi-
cally, [7, 8, 21, 23, 26, 27, 32] cannot predict unseen tran-
scripts, because they iterate through training transcripts to
find the best alignment with the test video. In contrast, [33]
trains an RNN to predict the video transcript offline, but the
RNN remains biased by the training transcripts and unable
to generalize well to unexpected transcript variations. In
addition to the offline methods, [14] recently proposed a
baseline for weakly-supervised online action segmentation,
but its inference results are still constrained by the train-
ing transcripts. To this end, we purpose an unconstrained
Viterbi algorithm. Our method is not only able to segment
videos in a real-time and online manner, it also recognizes
anomalous sequences and errors more effectively. We also
compare our method with a greedy baseline [13] that is un-
constrained and able to predict any combination of actions.

2.2. Anomaly and Error Detection
In the context of instructional videos, [31] classifies

if a segment is a mistake or not, and [25] briefly ad-
dresses early warning. However, they study seen mistakes
or assume availability of a known reference procedure re-
spectively. Previous anomaly detection methods mainly
focus on surveillance cameras. Based on the availability
of anomalous events during training, these works are di-
vided into open-set [1, 44], unsupervised [10, 36, 40, 43],
weakly-supervised [19, 24, 42] and One Class Classifica-
tion (OCC) [3, 20, 28, 39] methods. OCC methods, similar
to ours, train on only normal videos, but they study anomaly
differently. Firstly, they address binary detection of anoma-
lies versus the non-anomalous background in surveillance
videos. Meanwhile, we focus on segmenting instructional
videos into unexpected sequences of fine-grained actions
and identifying the resulting unseen error classes. Secondly,
they define anomaly by occurrence of a visually out-of-
distribution event, while anomaly in our work is defined as
“unseen” permutations of “seen” actions.

2.3. Instructional Video Datasets
Some instructional video datasets [2, 11, 35, 45] are col-

lected from YouTube, containing edited footage with large
background segments. Meanwhile, most efforts for real-
time recording of tasks and their atomic actions are in do-
mains of cooking [16, 29, 34] and assembly [5]. Some
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Table 1. Comparison of real-time instructional video datasets. The overline denotes average. ∗ [31] indicates only if a segment is a mistake
or not. Results of [31] based on long disassembly-assembly videos.

Perspective Dataset #Vids Dur. #Tasks #Actions #Transcripts Transc. len. Vid dur. #Views Error labels Frame labels Pose Obj. bb
1st Person GTEA [12] 28 0.6h 7 11 28 33 1.2m 1 × ✓ ✓ ×
1st Person CSV [25] 1940 11.1h 14 18 70 9.5 0.3m 1 × × × ×
1st Person 1ReC [30] 450 27h 15 102 418 11.7 3.6m 1 × ✓ × ×
1st Person ASM101 ego [31] 1425 167h 101 202 362 24 7.1m 4 ×∗ ✓ ✓ ×

Cooking2 [29] 273 8h 58 87 272 95.5 6m 1 × ✓ ✓ ×
50 Salad [34] 50 4.5h 1 19 50 20 6.4m 1 × ✓ × ×

3rd Person Breakfast [16] 1712 77h 10 47 256 6.9 2.3m 2-5 × ✓ × ×
IKEA [5] 1113 35.3h 4 33 359 22.7 1.9m 3 × ✓ ✓ ✓
3ReC [30] 1349 82h 15 102 441 11.7 3.6m 3 × ✓ × ×

ASM101 [31] 2896 346h 101 202 362 24 7.1m 8 ×∗ ✓ × ×
3rd Person ATA 1152 24.8h 3 15 141 12.9 1.3m 4 ✓ ✓ ✓ ✓

datasets [9, 22] are studied as shorter trimmed clips due to
their very long original videos. Among untrimmed datasets,
[29, 34] are small and lack sufficient training samples.
Other datasets such as [5, 12, 16, 30] have similar and
error-free action sequences within the same task unlike our
proposed dataset. Therefore, these datasets are not suit-
able for studying error detection and action segmentation
of anomalous sequences. In ASM101 [31] action segments
are labeled as one of correct, mistake and correction cate-
gories, where such segments exist in both training and test
sets. In contrast, in our ATA we have unseen test errors
categorized into 11 specific classes, so there is a larger dis-
crepancy between test and training sequences. Recently, the
CSV dataset [25] was created to study 14 different tasks
in chemical experiments with 5 unique transcripts per task.
[25] is an egocentric dataset, and introduces diverse tran-
scripts across different tasks. However, it lacks temporal
annotations and errors, and has limited intra-task variations.
Table1 shows a comparison of existing datasets.

3. Anomalous Toy Assembly (ATA) Dataset

This section introduces the ATA dataset, the first pub-
lic dataset to study sequential anomalies in instructional
videos. For additional details, see the appendix.

3.1. Data Collection

32 volunteers assembled three toys (airplane, table, and
record player) in a lab environment. Each participant com-
pleted each assembly three times, resulting in nine total se-
quences per person for the three tasks. Four ZED Mini
cameras recorded the participants from four viewpoints
(front, side, overhead, and global). Participants’ faces were
blurred, and audio was muted for privacy reasons. See Fig.
2 for the camera viewpoints.

Action transcripts were scripted before recording, and
participants were briefed on the transcript, object names and
action definitions. During recording, participants followed
our verbal instructions for the next action, enabling seam-
less completion of each scripted assembly task.

3.2. Data Statistics
Overview: The ATA dataset includes 1152 untrimmed

RGB videos, totaling 24.8 hours, with a resolution of
1920×1080 and a frame rate of 30 fps. Videos were
recorded by four cameras during nine sessions per partic-
ipant, resulting in a mean duration of 1.3 mins and a range
of 0.6 to 2.1 mins. The dataset contains 15 atomic actions
such as ”fasten screw” and “take plate” and 11 error classes.
Consequently, there are 141 unique action sequences with
an average length of 12.9 action segments per video. The
gender ratio of the 32 participants is 3 to 1 male to female.
See Fig.2 for the occurrence distribution of action and error
labels.

Data Splits: We split the participants into training, vali-
dation, and test sets consisting of 27, 1, and 4 participants,
respectively. The validation and test sets include videos
with sequential anomalies, defined as unexpected permuta-
tions of the training transcripts, such as redundant actions
(e.g., inserting an extra screw or unexpected background
segments between actions), skipped actions (e.g., not tight-
ening a screw), and major changes in the order of training
action subsequences (e.g., when the last phase of an assem-
bly is done in the beginning of the video).

The dataset includes 96 training transcripts and two sep-
arate sets of 9 validation and 36 testing transcripts that are
mutually exclusive from the training set. While all sets dif-
fer in transcripts, they share the same tasks and actions.
This is in contrast to standard splitting of [25], where test
and training sets come from entirely different tasks, so its
transcripts set entails cross-task variations rather than intra-
task anomalies.

3.3. Data Annotations
Temporal Action Labels: We have annotated the start

and end frames of all action segments in each video in addi-
tion to the action transcripts. To ensure consistency among
annotators regarding action definitions, three experts tem-
porally annotated all 15 atomic actions.

Video-Level Error Labels: Although all test videos
involve sequential anomalies, some of these videos still
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Frame-wise spatial annotations
• Human Pose annotations (8 key points)
• Interacting objects annotations (BBox)

Airplane Record Player Table

3 Assembly Tasks

4 synchronized camera views

Segmentation Annotations

RS/LS:  R/L Shoulder
BB: Belly-button
RP/LP:  R/L Palm
RE/LE: R/L Elbow

Non anomalous

Anomalous with Error

Anomalous without Error

idle_time
unfastened_leg
dropped_item_wo_pickup
missing_leg
missing_ring
unfastened_screw
extra_screw
no_balancing
missing_screw
missing_part
extra_ring

fasten_screw
insert_screw
take_block
SIL
take_part
fasten_nut
take_ring
take_plate
tighten_screw
spin_block
insert_pin
balance_part
drop
pickup
hammer_pin

Distribution of unseen 11 error classes

Distribution of 15 action classes St
at

s

Figure 2. Overview of the ATA dataset

demonstrate a valid and complete assembly sequence. Con-
sequently, we identified and labeled the unseen errors that
occurred during the assembly of each toy in the test set.
There are a total of 11 error categories, including unfas-
tened screw, idle time, and not picking up a dropped item.
Each test video is annotated with one or more video-level
error labels that indicate which error classes are present in
the video. Our intention is to encourage further research on
error detection in instructional videos.

Object Bounding Boxes: Annotation workers were in-
structed to label and provide bounding boxes of all objects
that each participant touches for all frames.

Human Pose: The workers also provided labels for 8
upper body joints for all frames.

These annotations, along with the object bounding
boxes, provide human-object interaction information that
can be used for future research on the ATA dataset.

4. Action Segmentation of Anomalies
In this section, we present our segmentation model and

propose the unconstrained Viterbi algorithm for detecting
anomalies and unseen action sequences during testing, as
our method focuses more on the test phase due to the ab-
sence of anomalous sequences during training. The training
strategy is discussed at the end of the section.

4.1. Problem Definition

Given a set of training videos V and corresponding tran-
scripts Ts, the goal is to partition a test video into a se-
quences of n actions an

1 ∈ Tu and their duration ln1 . Tu is
the set of unseen test transcripts, and based on the anomaly
assumption, Tu ∩ Ts = ∅. We define A as the set of |A|
unique actions labels and xt

1 the sequence of frame-level
features from the beginning of video until time t.

4.2. Proposed Inference Method
Inference Model Overview: Given trained parameters

and extracted features xt
1 of a test video, we use Eq.1 to

approximate the likelihood of n action segments with labels
an
1 and durations ln1 until time t. In Eq.1, p(xt|ant

) is the
visual model, and is derived using the Bayes rule on top of
the probability output of a recognition network as in [21].
nt is the segment number at time t.

We also model the probability of transitioning into action
segment ń > 1 at time tń =

∑ń−1
1 ln̂ by p(ań|ań−1

1 ,xtń
1 ).

Our proposed action transition model depends on the con-
text of video at the transition point tń in addition to pre-
vious action labels ań−1

1 . This helps to detect anomalous
segments unlike previous work, where action transition oc-
curs only according to the set of seen training transcripts
Ts. Finally, pńmode(l|a) is the length model of segment ń,
and estimates the probability of action a lasting l frames.

pmode(a
n
1 , l

n
1 |xt

1) ≈
t∏

t́=1

p(xt́|ant́
)

n∏
ń=1

pńmode(lń|ań)p(ań|ań−1
1 ,x

tń
1 ). (1)

Eq.1 addresses segmentation for both modes of offline (off)
and online (on). In offline segmentation t marks the end of
an. Meanwhile in the online mode, the last segment n is
ongoing, so t may not mark the end of the current action.
Hence, the difference between both modes is the choice of
the length model pnmode(l|a) for the last segment n. While
pńoff(l|a) is a Poisson function in offline segmentation for all
segments, in the online mode we use half Poisson to model
pnon(l|a) for only the last segment n [14]. All Poissons are
parameterized by the estimated average length of actions.

Action Transition Model: Let A⃗t =
[p(ct|xt−ω; θa),∀c ∈ A] be the “anticipated” action
probability vector of time t given past features at time
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t − ω. Also, R⃗t = [p(ct|xt; θr),∀c ∈ A] denotes the
“current” action probability vector. A⃗t and R⃗t ∈ R|A|

are outputs of anticipation and recognition networks,
parameterized by θa and θr respectively.

We detect anomalous behavior by the discrepancy be-
tween the expected and current action representations A⃗t

and R⃗t respectively. Additionally, it has been shown [18]
that actions that typically occur temporally close to each
other, are also more similar in their visual representations.
We exploit these properties in Eq.2 to connect similarity
between action representations to their temporal positions.
Specifically, let Eτ (a

ń−1
1 , tń) be the set of possible action

labels for segment ń at transition point tń given the previous
labels ań−1

1 . In Eq.2, s() is the cosine similarity of two vec-
tors, and N+

Ts
{aj

i} returns the set of all actions that succeed
sequence aj

i according to the training transcripts Ts.

Eτ (a
ń−1
1 , tń) =

{
N+

Ts
{LCS(ań−1

1 , Ts)} if τ < s(R⃗tń , A⃗tń)

A otherwise
(2)

Dissimilar anticipated and current action probability vec-
tors can indicate an anomalous transition, so we allow devi-
ation from the transcripts by exploring the set of all possible
actions A. Otherwise, action transitions only follow the se-
quences in the training transcripts. In this case the set of all
possible actions is equal to the set of all actions that succeed
the Longest Common Subsequence (LCS) ań−1

i between
the previous sequence ań−1

1 and the training transcripts Ts.
Note that the transition model in previous work [21, 14] is a
special case of ours when τ = 0, because in this case devi-
ation from training transcripts never occurs and the LCS is
always ań−1

1 . Ultimately, in Eq.1, p(ań|ań−1
1 ,xtń

1 ) = 1 if
ań ∈ Eτ (a

ń−1
1 , tń), and it is 0 otherwise.

Unconstrained Viterbi Algorithm: We propose Algo-
rithm1 to efficiently solve both online and offline segmen-
tation of Eq.1 at each time step t. At each time step t, we
use dynamic programming and the results of previous time
step to generate new segmentation results. Each new se-
quence is the result of either continuing the last action or
transitioning into a new one. Different than the Viterbi al-
gorithm of [27], our Viterbi algorithm is unconstrained,
because it is not limited to the training transcripts. This
is essential for inferring unseen and anomalous action se-
quences, as our method can theoretically generate any se-
quence of actions. Specifically, Pt[ln,a

n
1 ] is defined as the

probability of the most likely alignment of sequence an
1

with video frames until time t, so that an is incomplete and
has a duration of ln. The mostly likely segmentation result
(an

1 , l
n

1 )mode = argmax{Pt[ĺń, á
ń
1 ] · pńmode(ĺń|áń)} is de-

rived once at the end of video for offline segmentation, and
at every time step during online inference. However, we
pick only the current action at = an as the online inference
output of time t.

In order to achieve a real time performance, separately

Algorithm 1 Unconstrained Viterbi Algorithm at time t

Input: Video features xt
1, and past results: Pt−1 and SB

t−1

Output: Pt, SB
t and the current action an

1: for a ∈ A do:
2: for (an

1 , l
n
1 ) ∈ SB

t−1(a) do:
3: Pt[ln + 1,an

1 ] = Pt−1[ln,a
n
1 ] · p(xt|a)

4: for an+1 ∈ Eτ (a
n
1 , t) do:

5: Q[ln,a
n+1
1 ]=Pt−1[ln,a

n
1 ]·p(ln|a)·p(xt|an+1)

6: ∀an
1 : Pt[1,a

n
1 ] = maxĺn−1

{Q[ĺn−1,a
n
1 ]}

7: an = argmax
áń∈A

{ max
ĺń,á

ń−1
1

{Pt[ĺń, á
ń
1 ] · pńon(ĺń|áń)}}

8: ∀a∈A : SB
t (a)=

{
(áń

1 ,ĺ
ń
1 ) | Pt[ĺń,á

ń
1 ]∈topB{Pt[:,:]} ∧ áń=a

}
9: return SB

t , Pt, an

for each action a ∈ A at time t, we keep only the set of top
B likely segmentation results SB

t (a) ending with action a.
Such an action-wise pruning gives the online segmentation
method the advantage to infer any possible action, which
might have been pruned out otherwise. The overall com-
plexity of Alg.1 at each time step is O(B|A|(logB + |A|)).
This complexity is the result of enumerations in addition to
the sorting complexity of topB{} with beam size B.

4.3. Weakly-Supervised Training
We use the weakly-supervised framework in [21] to train

our anticipation and recognition networks iteratively. Given
a video of length T and its transcript per iteration, training
is done following two steps. First, frame-level pseudo la-
bels aT

1 are estimated through offline segmentation in Eq.1.
Second, the pseudo labels are used in a loss function L to
update the parameters θa and θr of the anticipation, and
recognition networks respectively. Particularly, we employ
the Constrained Discriminative Forward Loss LCDFL [21],
which effectively maximizes the decision margin between
the valid and hard invalid pseudo labels. In Eq.3, we ap-

ply LCDFL to the recognition outputs R⃗
T

1 of all frames and

to the anticipation output A⃗
T

ω , weighted by λa, for frames
from ω to T , where ω is the future anticipation range.

L = LCDFL(a
T
1 , R⃗

T

1 ) + λaLCDFL(a
T
ω , A⃗

T

ω ). (3)

5. Error Detection in Instructional Videos
Problem Definition: The goal in error detection is to

identify the number of times ne an error e ∈ E has occurred
in a test video. E is the set of unseen error categories that are
only present in the test set. The dataset provides detailed in-
structions I of what constitutes each error when performing
a task, e.g., the error label ”Missed Leg” means using less
than 4 legs to assemble a table. It is not clear how to tem-
porally locate all errors because certain errors correspond to
inaction. Also, some errors can only be inferred when the
video has ended, e.g. not picking up an item that is dropped
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in the process. As a result, we detect errors at the end of the
video after the task is fully observed.

Method Overview: We propose a simple error detec-
tion method as a set of error functions {Fe}, so that each
function Fe : f

I−→ ne maps frequency f of inferred actions
in the test video to the number of instances ne that error e
has occurred. Here f = {fa}, and fa is the number of pre-
dicted video segments labeled by action a. For example, the
function for the error label “Unfastened screw” is defined as
FUnfastened screw := max(finsert screw − ffasten nut, 0). Below we
go over the details of our baseline:

Method Details: For each test video, we first generate
two different segmentation results S0 and Sτ for τ = 0
and τ > 0 respectively. The former represents the con-
strained offline segmentation as a reference, where the esti-
mated transcript is one of the training transcripts. Then, the
respective set of action frequencies f0 and fτ are calculated
from the segmentation results S0 and Sτ . Finally we incor-
porate f0 and fτ in Eq.4 to produce if and how many times
each error e has happened:

ne = Fe(f
τ )×

(
1−min(Fe(f

0), 1)
)︸ ︷︷ ︸

b

. (4)

Error functions operate based on action frequencies and do
not consider the semantics of the video. Therefore, we use
the reference action frequency f0 to focus on only relevant
errors and alleviate false positives. Specifically, term b in
Eq.4 conditions the result based on the action frequency dis-
crepancy between the predicted anomalous transcript and its
corresponding non-anomalous training transcript. In other
words, we detect an erroneous behavior in the anomalous
segmentation result only if the same behavior is error-free
in the estimated non-anomalous transcript of the video, e.g.,
skipping action a in a test video is an error only if action a
has occurred in its non-anomalous reference S0.

6. Experiments
Datasets. The CSV dataset [25] consists of 14 diverse

chemical tasks, where each task has 5 unique transcripts.
Following their task-wise splitting, we use the first two tasks
for testing, the third task for validation and the remaining
11 tasks for training. Such splitting imposes variations be-
tween test and training transcripts for our study. Refer to
table 1 for more statistics. We also show results on the ATA
dataset following our standard splitting.

Metrics. Based on previous segmentation works [21, 33,
4], we use 4 complementary metrics to evaluate our action
segmentation results: 1) acc as the mean frame-wise accu-
racy. 2) IoU computes the intersection over union for each
predicted segment. 3) F1@0.5 measures the class-wise F1
score of predicted segments using a 0.5 IoU threshold. 4)
edit score utilizes edit distance to evaluate the similarity be-
tween the predicted and ground-truth transcripts. Results

Table 2. Comparison of our method with various online and offline
action segmentation baselines on ATA and CSV datasets.

ATA Dataset(%) CSV (%)
Mode Method acc IoU edit F1@0.5 F1error edit

Greedy [13] 62.3 54.0 51.1 44.6 53.0 56.4
Online DPcon [14] 56.4 45.1 58.5 44.7 41.0 57.8

Ours 62.8 54.3 58.5 49.6 56.0 58.1
MuCon [33] 52.6 42.7 37.3 24.0 43.5 58.6
TASL [23] 40.5 27.7 57.3 27.1 0 53.0

Offline CDFL [21] 59.2 45.5 60.0 51.9 0 54.2
Ours 66.1 57.7 68.8 62.0 59.2 60.3

on the CSV dataset are reported using only the edit score
due to their lack of frame-wise annotations. Additionally,
we propose F1error to evaluate false and true positive rates
in error detection through class-wise F1 score.

Implementation Details. We employ the pre-trained
I3D network [6] to extract features from optical flow [41]
and RGB frames for both datasets. As our neural network,
we train the Transformer encoder of [38] with two sepa-
rate recognition and anticipation tokens, and use λa of 0.1.
Further, we set B to 150, and ω to 1 sec. The threshold τ
is chosen based on the validation set. Specifically, τ is 0.7
for all experiments except for offline segmentation of CSV
videos, where τ = 0.3. We evaluate the sensitivity of re-
sults to τ in Sec.6.2. All experiments are based on a fixed
random seed and following previous work [21, 33, 23], re-
sults correspond to inferring action sequences every 30 and
15 frames for the ATA and CSV datasets, respectively. Fi-
nally, our defined set of error functions, error instructions I ,
and all parameters are provided in the appendix.

6.1. Comparison with State of the Art

6.1.1 Online Segmentation

Baselines. 1) Greedy [13]: We train this baseline with our
loss function and Transformer for a direct comparison. At
test time, it directly uses the Transformer output to predict
the current action following a sliding window approach. 2)
We compare with the single-view DPcon [14], which uti-
lizes constrained dynamic programming (DP) to predict the
current action based on training transcripts. We used our
Transformer for DPcon as well.

Comparison. The Greedy baseline suffers from over-
segmentation, which is indicated by low edit and F1 values.
Meanwhile, our method can be viewed as a hybrid form of
the Greedy and DPcon approaches. Particularly, it follows
the action precedence in the training transcripts but also,
like the Greedy approach, explores all action possibilities
when a potential anomaly is indicated, i.e., τ > s(R⃗t́, A⃗t́).
Table 2 reflects this property, where our proposed method is
able to produce the superior online results of the two base-
lines in acc, IoU and edit score, while outperforming both
significantly in F1error and F1@0.5. For the CSV dataset,

10133



our edit score is only slightly better than [14]. However,
comparison of online results for the ATA dataset suggests a
potentially larger superiority of our method in other metrics
for the CSV dataset too.

6.1.2 Offline Segmentation

Baselines. We evaluated our offline segmentation results
by comparing them with other open source SoTA meth-
ods. Among them, CDFL [21] is the most similar to our
approach, and it is the offline inference version of the con-
strained DP in [14]. We therefore trained CDFL using our
settings and Transformer. Additionally, we used TASL [23]
and MuCon [33] as other comparison points. While the
segmentation result of TASL [23] is limited by the training
transcripts, MuCon [33] has the ability to predict previously
unseen transcripts during testing.

Comparison. Compared to online segmentation, our
offline results outperform the previous work more signifi-
cantly in all metrics and datasets. We explore the reason
more in Sec. 6.1.4. Although [33] is able to predict unseen
transcripts, its edit score is inferior to ours on both datasets.
This highlights the generalization limitations of [33] to un-
expected transcript changes in case of sequential anomalies.

6.1.3 Error Detection

Unseen error detection can be considered as a semantic
way of evaluating and explaining the segmentation results
in anomalous instructional videos. As such, we have ap-
plied our proposed error detection method to the segmenta-
tion results of all baseline methods to compare their ability
to detect assembly errors in the ATA dataset (Table2). For a
fair comparison, we have used our reference segmentation
S0 in all methods. Unsurprisingly, constrained offline meth-
ods, e.g., [21, 23], have an F1error value of 0, because their
predicted transcript is from the error-free training set, result-
ing in 0 true positives. It is worth noting that while DPcon
uses the training transcripts to infer the most likely action
sequence at each time step, its resulting segmentation can
still correspond to an unseen transcript since predictions at
different time steps are independent of each other. Despite
this advantage, DPcon remains unable to successfully predict
anomalous sequences and errors.

6.1.4 Semi-Online Segmentation

The amount of delay in segmenting videos can range from
no delay (online) to the entire duration of the video (offline).
When video is segmented with a delay within this range, it
is referred to as semi-online segmentation [14]. Fig. 3 com-
pares our semi-online segmentation with previous work us-
ing 4 metrics on the anomalous videos of the ATA dataset.

Figure 3. Semi-online segmentation results of DPcon [14] and ours
given the delay in seconds. The red cross indicates the online
Greedy [13] result.

The accuracy of our unconstrained segmentation monoton-
ically improves with longer delays because the added delay
provides more information and results in correcting earlier
inferred action segments. On the contrary, with more de-
lay the performance of [14] initially increases but it quickly
drops because it starts to lose its ability in predicting un-
seen sequences as it transitions from constrained online to
constrained offline segmentation. This is best observed in
F1error, where the rate of detected errors approaches 0 as the
latency converges to the offline limit.

6.2. Sensitivity Analysis
Threshold Sensitivity. The threshold τ determines how

often our Viterbi algorithm explores all action possibilities
beyond the transcripts constraint. τ ranges from 0 to 1 and
it changes the hybrid tendency of our algorithm from no
exploration of fully constrained to constant exploration of
Greedy. In online segmentation of anomalous videos on the
ATA dataset Greedy predictions (dashed lines in Fig.4) are
more reliable than the constrained baseline (τ = 0), so fre-
quent exploration (τ > 0.6) leads to fairly stable and better
results. This interval is shaded in Fig.4 (left). However,
increasing τ does not always lead to a monotonically bet-
ter performance, as both F1 and acc have a slight drop for
τ > 0.8 due to false positives. On the other hand, on the

Figure 4. Left: Effect of the threshold τ on online segmentation re-
sults of the ATA dataset based on acc and F1@0.5 metrics. Right:
Comparison of online and offline segmentation edit scores under
different thresholds in the CSV dataset.
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Table 3. The effect of beam size and exploration threshold τ in the
performance on the ATA dataset. Inference done every 30 frames.

B(τ = 0.7) B(τ = 0.2)
Metric 1 10 150 1k 1 10 150 1k

Online acc % 62.4 62.7 62.8 62.8 49.0 54.0 56.8 56.8
Offline acc % 65.7 65.9 66.1 66.1 50.5 55.7 59.8 60.0

Average Online fps 54k 6.1k 310 38 105k 15k 900 122

CSV dataset in Fig.4 (right), Greedy predictions are infe-
rior to the constrained baseline, so our online method tends
to perform best when exploration is limited (τ < 0.4). We
also compare the online and offline segmentation results on
the CSV dataset. Interestingly, our method in the offline
mode compensates for the unreliability of greedy predic-
tions and performs best with high thresholds.

Beam Size Sensitivity and Real-Time Performance.
Table 3 shows the effect of beam size B on our online and
offline segmentations given a high and a low exploration
threshold τ . Our online and offline segmentation results for
τ = 0.7 are hardly sensitive to B, which is mainly due
to a high exploration rate τ in segmentation. This allows
transitions between many confident action segments over
time, so that the inferred sequences at each step are hardly
punned out. On the contrary, segmentation with a low τ is
constrained, so it cannot explore enough possibilities to in-
crease its chance of staying in the beam. Consequently, it is
less invariant to B. Additionally, Table.3 demonstrates that
even with a high degree of exploration τ = 0.7, our action-
wise pruning can ensure a real-time fps. We measured fps
based on the average time it takes to process a video.

Sensitivity to the Discrepancy between Ts and Tu. Ta-
ble 4 compares constrained and unconstrained offline seg-
mentation under varying degrees of anomaly on the CSV
dataset. Specifically, we use the discrepancy between seen
and test transcripts as a metric to measure the anomaly de-
gree. To this end, we create a subset of the original training
transcript set Ttr by removing 2 of the 11 training tasks. T ⊂

tr
denotes this subset of the training transcript set. We initial-
ize the set of seen transcripts Ts at test time by the set of
all transcripts Tall in the dataset, and gradually increase the
degree of anomaly by limiting Ts to Ttr ∪ Tv, Ttr, and T ⊂

tr ,
where Tv is the set of validation transcripts. Initially, the
edit score for constrained segmentation is higher than that of
unconstrained segmentation when using Tall, since all tran-
scripts are available and test sequences entail no unexpected
anomaly to explore. However, as the discrepancy between
seen and test transcripts increases, the unconstrained Viterbi
outperforms the constrained Viterbi by a larger margin.

6.3. Additional Experiments and Ablation Study

We compare the performance of our proposed algorithm
for seen vs. unseen transcript and provide additional ex-
periments on how our unconstrained Viterbi is effective for

Table 4. edit score of constrained and unconstrained offline seg-
mentation with varying degrees of anomaly on the CSV dataset.

Seen transcript set Ts
Mode Tall Ttr ∪ Tv Ttr T ⊂

tr
Constrained Viterbi (τ = 0.0) 65.8 55.8 55.7 53.8

Unconstrained Viterbi (τ = 0.7) 62.0 60.3 60.3 59.6

fully supervised inference. Finally we conclude this section
by doing an analysis on the error detection task and further
results on the 50Salad[34] dataset.

6.3.1 Seen vs. Unseen Transcripts

At test time, each person assembles each toy 3 times. To
present separate results on seen/unseen transcripts, we do 3
experiments, where the transcripts for one of the 3 record-
ings is seen at a time. Table 5 shows the average on-
line segmentation results of these 3 experiments for test
videos with seen and unseen transcripts. Results confirm
the performance of the unconstrained Viterbi is more in-
variant to seen/unseen transcripts and generalizes better to
unseen cases. However, unsurprisingly, constraining the re-
sults to seen transcripts leads to a better performance for
videos with seen transcripts as there is no need to explore
new variations.

6.3.2 Fully-Supervised Comparison

ATA dataset can be used for any form of supervision. Ta-
ble 6 benchmarks one of the SOTA fully supervised online
action detection methods (Oadtr [38]). Table 2 and Table
6 show that our unconstrained Viterbi can improve results
in both weakly and fully supervised settings. Evidently,
[38] performs best when combined with our unconstrained
Viterbi and mitigates the over segmentation of greedy Oadtr
predictions.

6.3.3 Error Detection Analysis

Out of the 144 test videos, 40 videos are error-free and 104
are erroneous. Each test video has a max of 5 error instances

Table 5. Results on ATA test videos w/ seen and unseen transcripts.
Seen / Unseen / Mixed transcripts

Mode acc(%) IoU(%) edit(%) F1err(%)
Constrained Vite. τ = 0.0 71/57/62 60/46/51 76/58/65 72/49/56

Unconstrained Vite. τ = 0.7 65/64/64 55/55/55 58/57/57 58/57/57

Table 6. Fully supervised online segmentation on the ATA dataset.

Mode Method acc(%) IoU(%) edit(%) F1@0.5(%)
Full Oadtr + Cons. Viterbi 59.1 49.5 56.6 47.9
Full Oadtr + Uncons. Viterbi 65.5 58.9 54.1 51.0
Full Greedy Oadtr[38] 66.0 58.7 49.0 46.1
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Table 7. Online segmentation of erroneous and error-free videos.
Mode acc(%) IoU(%) edit(%) F1@0.5(%)

Error-free videos 55.8 48.9 52.4 44.9
Erroneous videos 66.0 56.1 58.5 50.7

Table 8. Weakly supervised online segmentation (50Salad-split1).
Method acc(%) IoU(%) edit(%) F1@0.5(%)
Greedy 39.3 25.1 14.2 5.3
DPcon 41.7 29.3 33.9 18.2

Ours (τ = 0.2) 44.0 31.6 34.5 18.2

with an average of 1.7 unique errors. Table 7 shows online
segmentation results of erroneous and error-free videos. In-
terestingly, the results of the erroneous videos are better.
Note that “error-free videos still include unseen sequential
anomalies and variations”, e.g., assembling pieces in a re-
verse order to those of training samples. In our test set, it
happens that error-free videos present more challenging se-
quential and visual variations. so results depend on the de-
gree of sequential and visual variations and not necessarily
presence of error.

6.3.4 Online Segmentation on the 50 Salad Dataset

Our work focuses on the study of anomalous instructional
videos, which limits suitable existing datasets that we can
use. Breakfast, GTEA and IKEA datasets follow strict
sequential ordering, so there is no need to explore new
transcripts at test time. Although 50Salad transcripts are
more diverse, the dataset is very small (40 training videos).
Hence, it is challenging for models to learn actions well,
and our unconstrained method becomes more sensitive to
the exploration rate τ . Having said that, our results on split
1 of 50salad in Table 8 show that with a low exploration
rate our method can still outperform SOTA in online seg-
mentation. We chose split1 as our test set because it has
the largest sequential variation to the other 4 splits of the
50Salad dataset.

6.4. Qualitative Results
The qualitative comparison in Fig.5 illustrates how our

approach for action segmentation and error detection out-
performs other constrained baselines. The top video shows
an incorrectly assembled record player, which includes two
background segments (idle time) and an unfastened screw.
During the idle segments, the cosine similarity drops be-
low the threshold, indicating a sequential anomaly. Hence,
our proposed Viterbi algorithm is capable of deviating from
the seen transcripts and infers these unseen idle segments.
Although the Greedy approach detects the idle segments,
it produces false positives and over-segmentation. Further-
more, DPcon, conditioned by the training transcripts, not
only fails to detect the idle segments, but also mistakenly

T1 T6T5T4T3T2

T1 T6T5T4T3T2

Online Segmentation       Error ground truth: [2 x idle time, 1 x Loose Screw]      Error predicted: [2 x idle time, 1 x Loose Screw]

Offline Segmentation                        Error ground truth: [2 x idle time]                        Error predicted: [2 x idle time, missing ring]

Figure 5. Online and offline segmentation of an incorrectly assem-
bled record player (top) and airplane (bottom). Position of each
image in the video is indicated by its corresponding red box.

predicts fastening after the insertion of a screw.
In Fig.5 (bottom), S0 and Sτ denote constrained and un-

constrained offline segmentation of an airplane assembly,
respectively. The video contains two instances of idle seg-
ments and a situation where a dropped screw is not retrieved
until the end of the video. Our segmentation approach cap-
tures the sequential anomaly caused by the delay in retriev-
ing the dropped item. In contrast, the action sequence in
S0 only follows one of the training transcripts, considering
the second idle time as the end of the video and missing
the final pickup. It’s worth noting that strictly adhering to
the training transcripts can lead to false predictions, such as
missing the action “take ring” in the beginning of the video.

7. Conclusion

We presented the ATA dataset as the first anomalous in-
structional video dataset, and annotated it with temporal
and spatial labels. Additionally, we proposed an uncon-
strained Viterbi algorithm that allows real-time segmenta-
tion of anomalous videos into unseen action sequences. We
used the segmentation results to introduce a baseline to de-
tect pre-defined human errors, and benchmark results on the
ATA dataset. Finally, in our experiments, we showed how
our proposed method outperforms SoTA in action segmen-
tation of anomalous videos in two public datasets.
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