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Abstract

Privacy-preserving federated learning allows multiple
users to jointly train a model with coordination of a central
server. The server only learns the final aggregation result,
thereby preventing leakage of the users’ (private) training
data from the individual model updates. However, keep-
ing the individual updates private allows malicious users
to degrade the model accuracy without being detected, also
known as Byzantine attacks. Best existing defenses against
Byzantine workers rely on robust rank-based statistics, e.g.,
setting robust bounds via the median of updates, to find ma-
licious updates. However, implementing privacy-preserving
rank-based statistics, especially median-based, is nontrivial
and unscalable in the secure domain, as it requires sorting of
all individual updates. We establish the first private robust-
ness check that uses high break point rank-based statistics
on aggregated model updates. By exploiting randomized
clustering, we significantly improve the scalability of our
defense without compromising privacy. We leverage the
derived statistical bounds in zero-knowledge proofs to de-
tect and remove malicious updates without revealing the
private user updates. Our novel framework, zPROBE, en-
ables Byzantine resilient and secure federated learning. We
show the effectiveness of zPROBE on several computer vi-
sion benchmarks. Empirical evaluations demonstrate that
zPROBE provides a low overhead solution to defend against
state-of-the-art Byzantine attacks while preserving privacy.

1. Introduction
Federated learning (FL) has emerged as a popular

paradigm for training a central model on a dataset distributed
amongst many parties, by sending model updates and with-
out requiring the parties to share their data. However, model
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updates in FL can be exploited by adversaries to infer prop-
erties of the users’ private training data [28]. This lack of
privacy prohibits the use of FL in many machine learning
applications that involve sensitive data such as healthcare
information [31, 44] or financial transactions [45]. As such,
existing FL schemes are augmented with privacy-preserving
guarantees. Recent work propose secure aggregation proto-
cols using cryptography [6, 3, 35]. In these protocols, the
server does not learn individual user updates, but only a final
aggregate with contribution from several users. Hiding indi-
vidual updates from the server opens a large attack surface
for malicious clients to send invalid updates that compromise
the integrity of distributed training.

Byzantine attacks on FL are carried out by malicious
clients who manipulate their local updates to degrade
the model performance [13, 4, 2]. Popular high-fidelity
Byzantine-robust aggregation rules rely on rank-based statis-
tics, e.g., trimmed mean [46, 43], median [46], mean around
median [42, 7], and geometric median [9, 21, 42]. These
schemes require sorting of the individual model updates
across users. As such, using them in secure FL is nontrivial
and unscalable to large number of users since the central
server cannot access the (plaintext) value of user updates.

In this work we address aforementioned challenges and
provide high break point Byzantine tolerance using rank-
based statistics while preserving privacy. We propose a
median-based robustness check that derives a threshold for
acceptable model updates using securely computed mean
over random user clusters. Our thresholds are dynamic and
automatically change based on the distribution of the gra-
dients. Notably, we do not need access to individual user
updates or public datasets to establish our defense. We lever-
age the computed thresholds to identify and filter malicious
users in a privacy-preserving manner. Our Byzantine-robust
framework, zPROBE, incorporates carefully crafted zero-
knowledge proofs [39, 40] to check user behavior and iden-
tify possible malicious actions, including sending Byzantine
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updates or deviating from the secure aggregation protocol.
As such, zPROBE guarantees correct and consistent behavior
in the challenging malicious threat model.

We incorporate probabilistic optimizations in the design
of zPROBE to minimize the overhead of our zero-knowledge
checks, without compromising security. By co-designing
the robustness defense and cryptographic components of
zPROBE, we are able to provide a scalable and low over-
head solution for private and robust FL. Our construction
is the first of its kind with cost that grows sub-linearly with
respect to the number of clients. zPROBE performs an ag-
gregation round on ResNet20 over CIFAR-10 with only
sub-second client compute time. In this work we show the
performance of zPROBE on three foundational computer
vision benchmarks, while also highlighting the scalability
of our framework to larger benchmarks. In summary, our
contributions are:

• Developing a novel privacy-preserving robustness
check based on rank-based statistics. zPROBE is ro-
bust against various Byzantine attacks with 0.5� 2.8%
higher accuracy compared to prior work on private and
robust FL.

• Enabling private and robust aggregation in the mali-
cious threat model by incorporating zero-knowledge
proofs. Our Byzantine-robust secure aggregation, for
the first time, scales sub-linearly with respect to number
of clients.

• Leveraging probabilistic optimizations to reduce
zPROBE overhead without compromising security, re-
sulting in orders of magnitude client runtime reduction.

2. Cryptographic Primitives
Shamir Secret Sharing [32] is a method to distribute a

secret s between n parties such that any t shares can be used
to reconstruct s, but any set of t� 1 or fewer shares reveal
no information about the secret. Shamir’s scheme picks a
random (t � 1)-degree polynomial P such that P (0) = s.
The shares are then created as (i, P (i)), i 2 {1, ..., n}. With
t shares, Lagrange Interpolation can be used to reconstruct
the polynomial and obtain the secret.

Zero-Knowledge Proof (ZKP) is a cryptographic primi-
tive between two parties, a prover P and a verifier V , which
allows P to convince V that a computation on P’s private
inputs is correct without revealing the inputs. We use the
Wolverine protocol [39] with highly efficient P in terms of
runtime, memory usage, and communication. In Wolverine,
value x known by P can be authenticated using information-
theoretic message authentication codes (IT-MACs) [14] as
follows: assume � is a global key sampled uniformly and is
known only to V . V is given a uniform key K[x] and P is
given the corresponding MAC tag M [x] = K[x] +�.x. An

authenticated value can be opened (verified) by P sending
x and M [x] to V to check whether M [x]

?
= K[x] + �.x.

Wolverine represents the computation as an arithmetic or
Boolean circuit, for which the secret wire values are authen-
ticated as described. The circuit is evaluated jointly by P
and V , at the end of which P opens the output indicating the
proof correctness.

Secure FL Aggregation includes a server and n clients
each holding a private vector of model updates with l pa-
rameters u 2 Rl. The server wishes to obtain the aggregatePn

i=1 ui without learning any of the individual client up-
dates. [6] and follow up [3] propose a secure aggregation
protocol using low-overhead cryptographic primitives such
as one-time pads. Each pair of clients (i, j) agree on a ran-
dom vector mi,j . User i adds mi,j to their input, and user
j subtracts it from their input so the masks cancel out when
aggregated. To ensure privacy in case of dropout or network
delays, each user adds an additional random mask ri. Users
then create t-out-of-n Shamir shares of their masks and share
them with other clients. User i computes their masked input
as follows:

vi = ui + ri �
X

0<j<i

mi,j +
X

i<jn

mi,j (1)

Once the server receives all masked inputs, it asks for shares
of pairwise masks for dropped users and shares of individual
masks for surviving users (but never both) to reconstruct
the aggregate value. The construction in [3] builds over [6]
and improves the client runtime complexity to logarithmic
scale rather than linear with respect to the number of clients.
Note that the secure aggregation of [3, 6] assumes the clients
are semi-honest and do not deviate from the protocol. How-
ever, these assumptions are not suitable for our threat model
which involves malicious clients. We propose an aggregation
protocol that benefits from speedups in [3] and is augmented
with zero-knowledge proofs for the challenging malicious
setting as described below.

3. Methodology
Threat Model. We aim to protect the privacy of indi-

vidual client updates as they leak information about clients’
private training data. No party should learn any informa-
tion about a client’s update other than the contribution to an
aggregate value with inputs from a large number of other
clients. We also aim to protect the central model against
Byzantine attacks, i.e., when a malicious client sends invalid
updates to degrade the model performance. We consider a
semi-honest server that follows the protocol but may try to
learn more information from the received data. We assume
a portion of clients are malicious, i.e., arbitrarily deviating
from the protocol, or sending erroneous updates to cause
divergence in the central model. Notably, we assume the
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(a) Step 1: The server randomly clusters the
users, obtains cluster means µi, and computes
the median of cluster means (µis).

(b) Step 2: Each client provides a ZKP attesting
that their update is within the threshold from
the median of cluster means.

(c) Step 3: Clients marked as benign participate
in a final round of secure aggregation and the
server obtains the result.

Figure 1: High level description of zPROBE robust and private aggregation.

Algorithm 1 zPROBE secure aggregation
Input: Shamir threshold value t, clients set U

Round 1: Mask Generation
client i: Generate key pair (ski, pki), sample bi

ai,j  KeyAgreement(ski, pkj)
mi,j  PRG(ai,j), ri  PRG(bi)
{sskj }j2U , SS(ski, t), {sbj}j2U  SS(bi, t)
Send sskj , sbj to client j

Round 2: Update Masking
client i: vi  ui + ri �

X

0<j<i

mi,j +
X

i<jU

mi,j

Authenticate ui and send vi to server
Perform correctness check in Alg 2

server: Sample q indices Si (Sec. 3.4) for client i
Perform correctness check in Alg 2

Round 3: Aggregate Unmasking
server: Ud  dropped clients, Us  surviving clients

Collect t shares of {sski }i2Ud and {sbi}i2Us

Agg 
X

i2Us

vi �
X

i2Us

ri +
X

i2Us,j2Ud

mi,j

clients may: 1 perform Byzantine attacks by changing the
value of their model update to degrade central model perfor-
mance, 2 use inconsistent update values in different steps
of the secure aggregation protocol, 3 perform the masked
update computation in Eq. 1 incorrectly or with wrong val-
ues, and 4 use incorrect seed values in generating masks
and shares. To the best of our knowledge, zPROBE is the
first single-server framework with malicious clients that is
resilient against such an extensive attack surface, supports
client dropouts, and does not require a public clean dataset.

3.1. zPROBE Overview

zPROBE comprises two main components, namely, se-
cure aggregation, and robustness establishment. We propose
a new secure aggregation protocol for malicious clients in
Sec. 3.2. Our proposed method to establish robustness is de-
tailed in Sec. 3.3. We design an adaptive Byzantine defense
that finds the dynamic range of acceptable model updates

Algorithm 2 Circuit for zPROBE correctness check
Client input: bi, ai,j , authenticated ui

Public input: vi, indices set Si, clients set U
check = 1
for k in Si

r̂ki  PRGk(bi)
for j in U

m̂k
i,j  PRGk(ai,j)

v̂ki  uk
i + r̂ki �

X

0<j<i

m̂k
i,j +

X

i<jn

m̂k
i,j

check = check ^ (v̂ki = vki )
return check

Algorithm 3 Circuit for zPROBE robustness check
Client input: Authenticated ui

Public input: �, ✓, indices set Si

check = 1
for k in Si

check = check ^ (|uk
i � �k| < ✓k)

return check

per iteration. Using the derived bounds, we perform a secure
range check on client updates to filter Byzantine attackers.
Our robustness check is privacy-preserving and highly scal-
able.

The proposed robust and private aggregation is performed
in three steps as illustrated in Fig. 1. First the server clusters
the clients randomly into c clusters. Each cluster cj then
performs zPROBE’s secure aggregation protocol. The server
obtains the aggregate value ↵j and the mean µj = ↵j/|cj |
for each cluster in plaintext. In the second step, the server
uses the median � of all cluster means to compute a threshold
✓ for model updates. The values of median � and threshold
✓ are public, and broadcasted by the server to all clients.
Each client i then provides a zero-knowledge proof attesting
that their update is within the threshold from the median,
i.e., abs(ui � �) < ✓. This ensures that clients are not
performing Byzantine attacks on the central model (item 1
in threat model). Users that fail to provide the proof are
considered malicious and treated as dropped. The remaining
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users participate in a round of zPROBE secure aggregation
and the server obtains the final aggregate result.

3.2. zPROBE Secure Aggregation
Alg. 1 shows the detailed steps for zPROBE’s secure aggre-
gation for n clients consisting of three rounds. In round
1, each client i generates a key pair (ski, pki), samples a
random seed bi, and performs a key agreement protocol [15]
with client j to obtain a shared seed ai,j . The seeds are used
to generate individual and pairwise masks using a pseudo-
random generator (PRG). Each client then creates t-out-of-n
Shamir shares (SS) of ski and bi, and sends one share of
each to every other client.

In the second round, each client uses the masks generated
in round one to compute masked updates according to Eq. 1,
which are then sent to the server. All clients perform the
ZKP authentication protocol described in Sec. 2 on their
update. This ensures that clients use consistent update values
across different steps (item 2 in threat model). In addition,
each client proves, in zero-knowledge, that their sent value
vi is correctly computed as shown in Alg. 2. Specifically,
the circuit that is evaluated in zero-knowledge expands the
generated seeds to masks, and computes the masked update
using Eq. 1. The value of check is then opened by the client,
and the server verifies that check = 1. This ensures that the
masks are correctly generated from seeds, and the masked
update is correctly computed (item 3 in the threat model).
Users that fail to provide the proof are dropped in the next
round and their update is not incorporated in aggregation.

We introduce optimizations in Sec 3.4 that allow the
server to derive a bound q, for the number of model updates
to be checked, such that the probability of detecting Byzan-
tine updates is higher than a predefined rate. The server
samples q random parameters from client i, and performs
the update correctness check (Alg. 2). We note that clients
are not motivated to modify the seeds for creating masks,
since this results in uncontrollable, out-of-bound errors that
can be easily detected by the server (item 4 in threat model).
We discuss the effect of using wrong seeds in Appendix A.

In round 3, the server performs unmasking by asking for
shares of ski for dropped users and shares of bi for surviving
users, which are then used to reconstruct the pairwise and in-
dividual masks for dropped and surviving users respectively.
The server is then able to obtain the aggregate result.

3.3. Establishing Robustness
Deriving Dynamic Bounds. To identify the malicious

gradient updates, we adaptively find the valid range for ac-
ceptable gradients per iteration. In this context, acceptable
gradients are those that do not harm the central model’s
convergence when included in the gradient aggregation. To
successfully identify such gradients, we rely on the underly-
ing assumption that benign model updates are in the majority

while harmful Byzantine updates form a minority of outlier
values. In the presence of outliers, the median can serve as a
reliable baseline for in-distribution values [7].

In the secure FL setup, the true value of the individual user
updates is not revealed to the server. Calculating the median
on the masked user updates is therefore nontrivial since it
requires sorting the values which incurs extremely high over-
heads in secure domain. We circumvent this challenge by
forming clusters of users, where our secure aggregation can
be used to efficiently compute the average of their updates.
The secure aggregation abstracts out the user’s individual
updates, but reveals the final mean value for each cluster
{µ1,µ2, . . . ,µc} to the server. The server can thus easily
compute the median (�) on the mean of clusters in plaintext.

Using the Central Limit Theorem for Sums, cluster means
follow a normal distribution µi ⇠ N (µ, 1p

nc
�) where µ

and � denote the mean and standard deviation of the original
model updates and nc is the cluster size. We can thus use the
standard deviation of the cluster means (�µ) as a distance
metric for marking outlier updates. The distance is measured
from the median of means �, which serves as an accept-
able model update drawn from N (µ, 1p

nc
�). For a given

update ui, we investigate Byzantine behavior by checking
|ui��| < ✓, where ✓ = ⌘.�µ = ⌘p

nc
�. The value of ⌘ can

be tuned based on cluster size (nc) and the desired statistical
bounds on the distance in terms of the standard deviation of
model updates (�). Specifically, assuming a higher bound
on the portion of malicious users �max, the server can auto-
matically adjust ⌘ such that at most (1 � �max) · n of the
users are marked as benign where n is the total user count.
Secure Robustness Check. We use ZKPs to identify ma-
licious clients that send invalid updates, without compro-
mising clients’ privacy. Our ZKP relies on the robustness
metrics derived in Sec. 3.3, i.e., the median of cluster means
� and the threshold ✓. Clients (P) prove to the server (V)
that their updates comply with the robustness range check.

During the aggregation round in step 1, clients authen-
ticate their private updates, and the authenticated value is
used in steps 2 and 3. This ensures that consistent values
are used across steps and clients can not change their update
after learning � and ✓ to fit in the robustness threshold. In
step 2, the server makes � and ✓ public. Inside ZKP, the
clients’ updates ui are used in a Boolean circuit determin-
ing if |ui � �| < ✓ as outlined in Alg. 3. Invalid model
updates that fail the range check are dropped from the final
aggregation round.

3.4. Probabilistic Optimizations
This section provides statistical bounds on the number

of required checks to accurately detect malicious clients.
Using the derived bounds, we optimize our framework for
minimum overhead, thereby ensuring scalability to large
models.
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Figure 2: Detection probability vs. number of ZKP checks
(q). Vertical lines mark the required q values for 99.5%
detection rate.

Malicious clients can compromise their update, by send-
ing updates with distance margins larger than the tolerable
threshold ✓, or sending incorrect masked updates (Eq. 1). As-
sume that a portion of model updates Sm, are compromised.
The probability of detecting a malicious update is equivalent
to finding at least one compromised parameter gradient:

p = 1�
✓
l · (1� Sm)

q

◆.✓
l

q

◆
, (2)

where l is the total model parameter updates, and q denotes
the number of per-user ZKP checks on model updates. The
above formulation confirms that it is indeed not necessary
to perform ZKP checks on all parameter updates within the
model. Rather, q can be easily computed via Eq. 2, such that
the probability of detecting a compromised update is higher
than a predefined rate: p > 1��. Fig. 2 shows the probability
of detecting malicious users versus number of ZKP checks
for a model with l = 60K parameters. As seen, zPROBE
guarantees a failure rate lower than � = 0.005 with very few
ZKP checks. Note that malicious users are incentivized to
attack a high portion of updates to increase their effect on the
aggregated model’s accuracy. We leverage Eq. 2 to derive
the required number of correctness and robustness checks as
described in Alg. 2 and Alg. 3. For each check, the server
computes the bound q, then samples q random indices from
model parameters for each client. The clients then provide
ZKPs for the selected set of parameter indices.

4. Experiments
4.1. Experimental Setup

We now provide details about the benchmarked models,
datasets, and defense implementation.

Dataset and Models. We consider three benchmarks
commonly studied by prior work in secure FL. Our first
benchmark is a variant of LeNet5 [27] trained on the MNIST
dataset [26], with 2 convolution and 3 fully-connected lay-
ers, totaling 42K parameters. Our second benchmark is
the Fashion-MNIST (F-MNIST) dataset [41] trained on the

LeNet5 architecture with 60K parameters. Finally, to show-
case the scalability of our approach, we evaluate ResNet-
20 [22] with 273K parameters trained on the CIFAR-10
dataset [25] which is among the biggest benchmarks stud-
ied in the secure FL literature [8, 10]. Table 2 encloses the
training hyperparameters for all models.

Benchmark # Clients LR # Epochs Batch size (per user)

MNIST (IID) + LeNet5 50 0.01 500 12800 (256)
MNIST (non-IID) + LeNet5 25 0.01 500 800 (32)
F-MNIST (IID) + LeNet5 50 0.01 500 12800 (256)†
CIFAR-10 (IID) + ResNet-20 50 0.05 500 12800 (256)

†When varying the number of clients, we keep the total batch size as 12800
and scale the per user batch size accordingly.

Table 2: Training hyperparameters.

Implementation and Configuration. zPROBE defense
is implemented in Python and integrated in PyTorch to en-
able model training. We use the EMP-Toolkit [38] for imple-
mentation of zero-knowledge proofs. We run all experiments
on a 128GB RAM, AMD Ryzen 3990X CPU desktop. All
reported runtimes are averaged over 100 trials.

Byzantine Attacks. We assume 25% of the clients are
Byzantine, which is a common assumption in the litera-
ture [2]. Malicious users alter a portion Sm of benign model
updates and masks according to a Byzantine attack scenario.
We show the effectiveness of our robustness checks against
three commonly used Byzantine attacks. Here Um denotes
the malicious updates, where |Um| = Sm · l and l is the total
number of model updates.

• Sign Flip [13]. Malicious client flips the sign of the
update: u = �.u, > 0 (8u 2 Um)

• Scaling [4]. Malicious client scales the local gradients
to increase the influence on the global model: u =
.u, > 0 (8u 2 Um)

• Non-omniscient attack [2]. Malicious clients construct
their Byzantine update by adding a scaled Gaussian
noise to their original update with mean µ and standard
deviation �: u = µ� .� (8u 2 Um)

Baseline Defenses. We present comparisons with prior
work on robust and private FL, i.e., BREA [34] and EIF-
FeL [10]. While zPROBE is able to implement popular
defenses based on rank-based statistics, EIFFeL is limited to
static thresholds and requires access to clean public datasets.
BREA implements multi-Krum [12], but leaks pairwise dis-
tances of clients to the server. zPROBE achieves lower com-
putation complexity compared to both works and higher
accuracy1 compared to EIFFeL. We also benchmark a com-
monly used aggregator which uses only the median of cluster

1Raw accuracy numbers are not reported for BREA, therefore, direct
comparison is not possible.
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(a) MNIST + Sign Fl ip (b) FMNIST + Non-omniscient (c) CIFAR-10 + Scaling

Figure 3: Test accuracy vs. FL training epochs for different attacks and
benchmarks. Each plot shows the benign training (green), Byzantine training
without defense (maroon), and Byzantine training with zPROBE defense.

Aggregator IID non-IID

AVG 93.2 ± 0.2 92.7 ± 0.3
KRUM 91.6 ± 0.3 53.1 ± 3.9
CM 91.9 ± 0.2 78.6 ± 3.1
CClip 93.0 ± 0.2 91.2 ± 0.5
RFA 93.2 ± 0.2 92.6 ± 0.2
zPROBE 99.0 ± 0.0 98.6 ± 0.4

Table 1: zPROBE and previous robust
FL aggregators for non-IID data, ac-
curacy reported across 10 runs.

means, and show that it results in drastic loss of accuracy
compared to zPROBE. Additionally, we evaluate zPROBE
when the training data is non-IID and show our adaptive
bounds outperform the state-of-the-art defense in [24]2.

4.2. Defense Performance
IID Training Data. We evaluate zPROBE on various

benchmarks using n = 50 clients picked for a training round,
randomly grouped into c = 7 clusters. In Section 5.1 we
present evaluations with different number of clients between
30 and 200. Consistent with prior work [2], we assume ma-
licious users compromise all model updates to maximize the
degradation of the central model’s accuracy. Fig. 3 demon-
strates the convergence behavior of the FL scheme in the
presence of Byzantine users with and without zPROBE de-
fense. As seen, zPROBE successfully eliminates the effect
of malicious model updates and recovers the ground-truth ac-
curacy. We show evaluations of zPROBE accuracy on other
variants of the dataset and attack in Fig. 10 in Appendix D.

On the MNIST benchmark, the byzantine attacks cause
the central model’s accuracy to reduce to nearly random
guess (10.2%-11.2%), without any defense. zPROBE suc-
cessfully thwarts the malicious updates, recovering benign
accuracy within 0.0%-0.6% margin. On F-MNIST, we re-
cover the original ⇠ 88% drop of accuracy caused by the
attacks to 0%-2% drop. Finally, on CIFAR-10, the gap be-
tween benign training and the attacked model is reduced
from 45%- 90% to only 3%-7%. Compared to EIFFeL [10],
zPROBE achieves 1.2%, 0.5%, and 2.8% higher accuracy
when evaluated on the same attack applied to MNIST, FM-
NIST, and CIFAR-10, respectively.

Non-IID Training Data. Most recently, [24] show user
clustering over existing robust aggregation methods can
adapt them to heterogeneous (non-IID) data. We follow
their training setup and hyperparameters to distribute the
MNIST dataset unevenly across 25 users. As shown in Tab. 1,
zPROBE defense outperforms the accuracies obtained by the
various defenses evaluated in [24]. This performance boost

2Note that this work focuses on plaintext robust training and does not
provide secure aggregation.

we believe can be attributed to 1) the use of rank-based statis-
tics to establish dynamic thresholds, and 2) the use of all
benign gradients in the aggregation, rather than replacing all
values with a robust aggregator, e.g., as in KRUM.

4.3. Runtime and Complexity Analysis

Tab. 3 summarizes the total runtime for clients in
zPROBE for one round of federated training with n = 50,
c = 7, and Sm = 0.3 across different benchmarks. We
use the secure aggregation protocol of [3] as our baseline,
which does not provide security against malicious clients or
robustness against Byzantine attacks.

Dataset Baseline
(ms)

zPROBE

(ms)

MNIST 208.0 444.7
F-MNIST 214.4 452.9
CIFAR-10 231.2 461.2

Table 3: zPROBE runtime vs. the baseline secure aggrega-
tion of [3] with no support for Byzantine clients.

Tab. 4 summarizes the runtime of zPROBE versus the por-
tion of attacked model updates. By decreasing Sm, zPROBE
requires more checks to detect the outlier gradients as out-
lined in Eq. 2. Nevertheless, due to the optimizations in
zPROBE robustness and correctness checks, we are still able
to maintain sub-second runtime and sublinear growth with
respect to number of ZKP checks necessary.

0.1 0.3
Sm

0.5 0.7 1.0

# ZKP Checks 51 15 8 5 1
zPROBE Runtime (ms) 777.9 452.9 372.6 349.6 316.5

Table 4: zPROBE performance for LeNet5 on F-MNIST vs.
the portion of Byzantine model updates (Sm).
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5. Effect of Number of Clients on zPROBE Run-
time

Table 5 shows the effect of increasing the number of
clients on the performance on zPROBE. For these experi-
ments, results are gathered on the F-MNIST dataset, with
c = 7 and |Sm| = 0.3. As seen, although exceeding the
sub-second performance as the number of clients scales up,
zPROBE maintains sublinear growth in runtime with respect
to number of clients.

# Clients zPROBE Runtime (ms)

30 298.4
40 369.7
50 452.9
70 598.8

100 828.6
200 1620.4

Table 5: Runtime of zPROBE over varying number of clients

In Tab. 3, we can see that as the underlying model
gets much larger (growing ⇠ 4⇥ in size from the MNIST
to CIFAR-10 tasks) zPROBE overhead grows a negligible
amount. This is a strong indicator of the scalability of our
proposed secure aggregation. Alongside this, the proba-
bilistic optimizations explained in Sec. 3.4 become more
beneficial as the model size increases. Compared to a naive
implementation where 1� Sm parameters are checked, we
achieve a speedup of 3 orders of magnitude in client and
server runtime.

We also provide the detailed breakdown of the runtime
for various components of zPROBE in Fig. 5. Results are
gathered on CIFAR-10 dataset and ResNet-20 architecture
with n = 50, c = 7, and Sm = 0.3. Step 2 has very low over-
head, even when only 30% of model updates are Byzantine,
which requires more checks. The most significant operation
in terms of percent increase from baseline is observed in
Step 3 (R2), where the correctness of masked updates are
checked (Alg. 1 Round 2 and Alg. 2). zPROBE enjoys a low
communication overhead as well, requiring only 2.1MB and
4.4MB of client and server communication respectively, for
a round of aggregation over CIFAR-10. Overall, with sub-
second performance on all benchmarks examined, zPROBE
provides an efficient full privacy-preserving and robust solu-
tion for FL.

zPROBE Complexity. In this section we present the
complexity analysis of zPROBE runtime with respect to
number of clients n (with k = log n) and model size l.

• Client: Each client computation consists of perform-
ing key agreements with O(k), generating pairwise masks
with O(k · l), creating t-out-of-k Shamir shares with O(k2),
performing correctness checks of Alg. 2 with O(k · l), and
performing robustness checks of Alg. 3 with O(l). The com-

plexity of client compute is therefore O(log2 n+ l · log n).
• Server. The server computation consist of reconstructing

t-out-of-k shamir shares with O(n · k2), generating pairwise
masks for dropped out clients with O(n · k · l), performing
correctness checks of Alg. 2 with O(n · l), and performing
robustness checks of Alg. 3 with O(n · l). The overall com-
plexity of server compute is thus O(n · log2 n+n · l · log n).

We are unable to directly compare zPROBE’s runtime
numbers with previous private and robust FL methods since
their implementations are not publicly available. Instead,
Tab. 6 presents a complexity comparison between zPROBE,
BREA [34], and EIFFeL [10] with respect to number of
clients n (with k = log n), model size l, and number of
malicious clients m. zPROBE enjoys a lower computa-
tional complexity compared to both prior art for client and
server. Specifically, the client runtime is quadratic and linear
with number of clients in BREA and EIFFeL respectively,
whereas logarithmic in zPROBE.

Client Server

BREA O(n2
l + nlk

2) O((n3 + nl)k2 · log(k))
EIFFeL O(mnl) O((n+ l)nk2 · log(k) +m.l.min(n,m2))
zPROBE O(k2 + kl) O(nk2 + nlk)

Table 6: Runtime complexity of zPROBE vs. prior works
BREA [34] and EIFFeL [10].

5.1. Discussion

We perform a sensitivity analysis to various attack param-
eters and FL configurations on F-MNIST. Number of clients
is set to n = 50 with c = 7 clusters, unless otherwise noted.
Sign flip attack [13] is applied to all model updates with
 = 5. As shown, zPROBE is largely robust to changes in
the underlying attack or training configuration, consistently
recovering the central models’ accuracy.

Portion of Compromised Updates Sm. We vary the por-
tion of Byzantine model updates (Sm) and show the accuracy
of the central model with and without zPROBE robustness
checks in Fig. 4(a). Even when only a small portion of model
updates are malicious, zPROBE’s outlier detection can suc-
cessfully recover the accuracy from random guess (10%) to
97.9%. To worsen the central model’s accuracy, Byzantine
workers are incentivized to attack a high number of model
updates. Attacking all model updates results in a 89.7% drop
of accuracy when no defense is present. However, even when
all model updates are compromised, zPROBE recovers the
central model’s accuracy with less than 0.5% error margin.

Attack Magnitude. We control the magnitude of the per-
turbation applied to model updates by changing the parame-
ter  in various Byzantine attack scenarios. Fig. 4(b) shows
the effect of the attack magnitude on the central model’s
accuracy and zPROBE’s defense performance. As seen, a
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(a) (b) (c) (d)

Figure 4: Ablation studies on zPROBE defense performance with varying (a) portion of compromised gradients, (b) attack
magnitude, (c) number of clients, and (d) number of user clusters. The dashed line in (a), (b) corresponds to the highest test
accuracy obtained during training when no defense is applied.

Figure 5: Runtime breakdown for CIFAR-10, corresponding
to rounds (R) from Alg. 1 and steps (S) from Fig. 1.

higher perturbation is easier to detect using our median-
based robustness check. The Byzantine attack can cause
an accuracy drop of ⇠ 88% when no robustness check is
applied. However, zPROBE can largely recover the accuracy
degradation, reducing the accuracy loss to 0.2%-9.8%.

Aggregation Strategy. Recall from Fig. 1 that zPROBE
uses the median of per-cluster means (in plaintext) to extract
a threshold, which is then used in step 2 to filter out malicious
clients. Rather than performing steps 2 and 3 of zPROBE,
an alternative robust aggregation rule may directly use the
median value to update the global model. Merely using the
median for the final aggregation ignores beneficial updates
by benign users. This leads to a drastic accuracy degradation
of 28.6% compared to zPROBE which includes all gradients
that pass the threshold. A comparison between median-based
aggregation and zPROBE is presented in Appendix B, Fig. 8.

Number of Clients (n). Fig. 4(c) shows the convergence
of zPROBE during training for various n 2 [30, 200]. We
note that n is the subset of clients which are picked for an
aggregation round. We pick this range according to practical
deployments of FL where the server picks a small fraction
of all FL clients for each aggregation round [33]. As seen,
client count does not affect zPROBE convergence and the
central model’s final accuracy. Specifically, zPROBE can
scale to n = 200, which is among the largest studied user
counts in robust and private FL.

Number of Clusters (c). Fig. 4(d) shows the effect
of number of clusters on accuracy. The performance of

zPROBE is largely independent of the number of clusters,
showing less than 0.18% variation for different c while the
increase in latency is less than 8%. The number of clus-
ters can therefore be selected freely such that user privacy
is ensured. Recall from Fig. 1 that cluster means in step 1
of zPROBE are revealed to the server. To analyze the pri-
vacy implications, we rely on the contemporary literature
in model/gradient inversion which show that increasing the
batch size, or equivalently number of users, (> 100 [19] or
> 48 [47]) reduces the effectiveness of such attacks.

We benchmark the SOTA attack by [19] to reconstruct
user data from the aggregate. We use a small 4-layer model
and a batch size of 10 to benefit the attacker. Fig. 9(a),(b)
in Appendix C show the efficacy of the inversion attack as
the number of users in the aggregation varies. As seen, the
reconstructions are unintelligible with > 4 users per cluster.
More recently [17] quantify the user information leakage
from the aggregate value using Mutual Information (MI).
They show that MI reduces with more clients, starting to
plateau around 10-20 users where the reconstructed image
quality of the DLG attack [48] is severely affected. Based on
these results, our cluster size range of 7 to 30 can preserve
user privacy.

User Dropout. zPROBE secure aggregation supports
user dropouts, i.e., when a user is disconnected amidst train-
ing iterations and/or in between zPROBE steps (see Fig. 1).
Fig 6 shows the effect of random user dropouts on zPROBE
defense. As shown, the fluctuations in the central model’s
test accuracy are negligible (< 0.13%). The robustness of
zPROBE aggregation protocol to user dropouts is intuitive
since the remaining users can carry on the training.

6. Related Work
Secure Aggregation. Cryptographic techniques have

been used in prior work for secure machine learning infer-
ence [20, 18] and training [37] with few parties. To support
many clients, federated learning with secure aggregation is
adopted to hide individual private updates, e.g. using random
masks [6, 3]. A line of work [11, 29] considers a different
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Figure 6: The effect of (a) number of clusters, and (b) user
dropout on defense.

trust model with non-colluding servers that receive secret
shares of data and collaborate to compute the aggregate.
However, realizing the non-colluding trust assumption can
be challenging in practice. Differential Privacy (DP) can
provide complementary privacy guarantees to cryptographic
methods (by protecting information leakage from output),
and have been used in conjunction to reduce the required
noise. [35] combine threshold homomorphic encryption and
differential privacy for private aggregation.

Robust Aggregation. Prior work on Byzantine-robust
aggregation sanitizes the client updates using robust statis-
tics or historical information. (Multi-)Krum [5, 12] selects
updates with minimum Euclidean distance to their neighbors.
Coordinate-wise operations based on median and trimmed
mean [46, 42] have also been proposed that calculate the
mean of values closest to the median for each coordinate.
More recently, AKSEL [7] defines an interval around the
median and aggregates the values within that interval. [9, 30]
use the robustness of geometric median (generalized to multi-
ple dimensions), to provide a robust update rule. Bulyan [21]
augments prior aggregation rules to ensure all coordinates
are agreed upon by a majority of user gradients.

Several works propose applying robust aggregation over
an accumulated history of gradients, assuming IID data. [1]
use the concentration of aggregated past gradients around
the median to mark byzantine workers. Similarly, [16] apply
Byzantine-resilient aggregation rules on a weighted aver-
age of past gradients using a momentum term. In lieu of
using the median, centered clipping [23] iteratively scales
the accumulated gradients to ensure robust aggregation. The
aforesaid works focus on robust aggregation under IID data
assumptions. [24] propose user clustering as an effective
way to adapt previously proposed robust aggregation meth-
ods, e.g., Krum, to heterogeneous (non-IID) data. zPROBE
designs a new aggregation rule that 1) enables efficient exe-
cution in the secure domain and 2) achieves state-of-the-art
accuracy compared to [24].

Robust and Secure Aggregation. RoFL [8] focuses on
model poisoning, when malicious users try to embed a back-
door in the model, without downgrading accuracy on benign

data. RoFL uses Pedersen commitments to implement ZKP
of norm bounds over model updates. RoFL does not sup-
port dropouts during aggregation and the proposed l-norm
bounds are unsuitable against Byzantine workers. zPROBE
considers Byzantine attacks where the malicious parties send
invalid updates to degrade the central model’s accuracy. In
this domain, BREA [34] relies on Shamir secret sharing and
multi-Krum [12] for aggregation. However, BREA reveals
the pairwise distances of client updates to the server, i.e.,
even one client’s collusion with the server would reveal all
updates.

SHARE [36] incorporates secure averaging [6] on ran-
domly clustered clients, and filters cluster averages through
robust aggregation. Any cluster with malicious clients de-
tected will be dropped, resulting in loss of all benign updates.
SHARE’s mitigation is to repeat the random clustering sev-
eral times for each epoch, which results in increased com-
putation and communication cost. Moreover, reclustering
compromises privacy as the server observes different varia-
tions of cluster averages which can leak information about
the user updates. Most recently, EIFFeL [10] proposes a
robust aggregation using Shamir shares of client updates,
and secret-shared non-interactive proofs (SNIP). EIFFeL
does not support rank-based statistics for robustness checks,
resulting in higher accuracy degradation, and requires access
to a clean public dataset for defense parameters.

7. Conclusion

This paper presented zPROBE, a novel framework for
low overhead, scalable, private, and robust FL in the mali-
cious client setting. zPROBE ensures correct behavior from
clients, and performs robustness checks on model updates.
With a combination of zero-knowledge proofs and secret
sharing techniques, zPROBE provides robustness guaran-
tees without compromising client privacy. We highlight the
effectiveness of zPROBE on seminal computer vision bench-
marking, but reiterate the fact that our approach is not limited
by scale. zPROBE can handle even the most advanced com-
puter vision FL tasks, while still maintaining the same levels
of privacy and robustness. zPROBE presents a paradigm
shift from previous work by providing a private robustness
defense relying on rank-based statistics with cost that grows
sublinearly with respect to number of clients.
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