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Abstract

This paper addresses the problem of ranking pre-trained
models for object detection and image classification. Select-
ing the best pre-trained model by fine-tuning is an expensive
and time-consuming task. Previous works have proposed
transferability estimation based on features extracted by the
pre-trained models. We argue that quantifying whether the
target dataset is in-distribution (IND) or out-of-distribution
(OOD) for the pre-trained model is an important factor
in the transferability estimation. To this end, we propose
ETran, an energy-based transferability assessment metric,
which includes three scores: 1) energy score, 2) classifica-
tion score, and 3) regression score. We use energy-based
models to determine whether the target dataset is OOD or
IND for the pre-trained model. In contrast to the prior
works, ETran is applicable to a wide range of tasks includ-
ing classification, regression, and object detection (classi-
fication+regression). This is the first work that proposes
transferability estimation for object detection task. Our ex-
tensive experiments on four benchmarks and two tasks show
that ETran outperforms previous works on object detection
and classification benchmarks by an average of 21% and
12%, respectively, and achieves SOTA in transferability as-
sessment. Code is available here1.

1. Introduction
Pre-trained neural networks are widely available on plat-

forms such as HuggingFace [50] and TensorFlowHub [35]
for different tasks such as classification, object detection,
segmentation, and natural language processing. These
pre-trained models, which have acquired the fundamen-
tal knowledge in vision [25] or language [9] domains, are
very important in transfer learning to downstream target
tasks with limited training data. Since training these mod-
els from scratch is computationally expensive, task-specific
fine-tuning from the pre-trained checkpoints is commonly

1https://developer.huaweicloud.com/
develop/aigallery/notebook/detail?id=
56e6645a-8133-49f6-a7ef-d877ef608fa5
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Figure 1: The overall framework of transferability assess-
ment, given M pre-trained models and a target dataset.

considered a time- and cost-efficient alternative solution.
One of the major challenges in transfer learning is to se-

lect the best pre-trained model for a target task (or dataset),
given numerous pre-trained models. The trivial solution
to this problem is brute-force fine-tuning, where all the
given pre-trained models need to be fine-tuned on the given
dataset and then the best-performing fine-tuned model is
chosen for the target task. However, this procedure is very
time-consuming and computationally expensive although it
is highly accurate. Recent studies have proposed fast trans-
ferability assessment and ranking solutions to properly and
quickly rank the models and select the best ones (Figure 1).

Most of the previous works extract features from the tar-
get dataset using the pre-trained models and try to find the
model whose features can be more effectively mapped to the
labels from the target dataset (e.g., NLEEP [29], LogME
[52], PACTran [10], and SFDA [43]). In other words, these
methods try to mitigate the fine-tuning process in order to
find a model that is more compatible with the given data
samples based on the extracted features.

One limitation of these approaches is that the extracted
features are drastically different before and after fine-
tuning, which is due to the difference in source and target
domains. As a result, the transferability assessment only
based on the extracted features cannot lead to a reliable,
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general, and task-agnostic solution for obtaining an optimal
pre-trained model. This uncertainty arises when the pre-
trained model sees the input that differs from its training
data (called in-distribution data), which can result in unreli-
able features and predictions [31]. In other words, if the tar-
get dataset does not follow the data distribution with which
the model has been trained, the extracted features cannot be
reliable for transferability assessment. Thus, determining
whether the target dataset is in-distribution (IND) or out-
of-distribution (OOD) is an essential assessment factor in
finding the best pre-trained model.

In this work, we propose an energy-empowered trans-
ferability estimation method (called ETran) that exploits
energy-based models (EBM) [28] to detect whether a tar-
get dataset is IND or OOD for a given pre-trained model.
To this end, the higher the energy score for a target dataset,
the more IND this dataset is for the pre-trained model
[31, 2, 3, 4]. As a consequence, the corresponding model
has a high likelihood to provide the best accuracy after
fine-tuning (for the given target dataset) compared to the
models with lower energy scores. In contrast to the pre-
vious transferability metrics, the energy score is label- and
optimization-free, which makes it highly efficient and easy
to use.

Another major limitation of most of the previous works
is that they are only applicable to classification tasks. H-
Score [6] and LogME [52] are the only works in the litera-
ture that introduce a solution for regression as well. Unlike
the previous works, our method can deal with all classifica-
tion, regression, and object detection tasks. To the best of
our knowledge, ETran is the first transferability assessment
approach that is also applicable to object detection (i.e., a
combination of classification and regression tasks).

In addition to the energy score, we also propose to
use classification and regression scores to benefit from the
feature-based characteristics of general transferability met-
rics as in the previous methods. For the classification score,
we use Linear Discriminate Analysis (LDA) [19] to project
features to a discriminate space by maximizing the variance
between class labels and minimizing the variance within
the classes. Bayes’ theorem is then applied to measure the
probability of class labels given the input features. For the
regression score, we employ a solution based on Singular
Value Decomposition (SVD) [17] that has fewer assump-
tions and better performance compared to LogME. Our ex-
periments show that the regression score is crucial for an
accurate transferability measurement on the object detec-
tion tasks. Figure 2 shows the overall framework of ETran.

The major contributions of this work are as follows:

• An energy-based transferability assessment metric that
is label- and optimization-free; and also applicable to
both classification and detection.

• Proposing two more scores based on LDA and SVD
for transferability measurement on classification and
object detection.

• Proposing the first transferability metric for object de-
tection tasks, and introducing multiple corresponding
benchmarks and baselines that avail future research
studies.

• Achieving SOTA results in transferability assessment
for image classification and object detection.

2. Related Work

In this section, we discuss the transferability estimation
methods introduced in the literature for both classification
(including LEEP [36], NLEEP [29], PACTran [10], SFDA
[43], and GBC [38]) and regression (including H-Score [6]
and LogME [52]) tasks.

LEEP [36] estimates the transferability of a source
model to a target dataset by estimating two probabilities:
1) the predicted classes of the target dataset by the source
model. LEEP used the prediction head of the source model
which makes the transferability estimation limited to the
source models trained in a supervised fashion for classifi-
cation tasks. In contrast to LEEP, NLEEP [29], PACTran
[10], SFDA [43], and GBC [38] use the features extracted
from the target dataset by the source model to estimate the
transferability. NLEEP is indeed an extension of LEEP,
which replaces the head detection of the source model with
a Gaussian Mixture Model (GMM) fitted on the target data
and then computes the LEEP score. PACTran [10] ar-
gues that LEEP and NLEEP overlook the generalization
of source models and emphasize the training error of the
source dataset. Therefore, PACTran uses a linear model
with a flatness regularizer to fit features to target labels us-
ing an optimization approach.

SFDA [43] and GBC [38] propose that class separability
of the target dataset in the features space of source mod-
els is an important factor for transferability in classification
scenarios. SFDA proposes to project features to a class sep-
arable space before applying a Bayes classifier. GBC uses
Bhattacharyya coefficients to estimate the overlap between
target classes in the features extracted by the source models.

All of the above-mentioned works are exclusively appli-
cable to classification tasks. These methods cannot be di-
rectly applied to the regression tasks due to the use of cross-
entropy loss function [10] or the class separating-based met-
rics [38, 43]. On the other hand, H-Score [6] and LogME
[52] are the two methods in the literature that use least
squares optimization for regression tasks. Their methods
are also applicable to classification, where the problem is
treated as a multi-variant regression problem.
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Figure 2: Overview of ETran’s framework. Φm: mth pre-trained source model, f : extracted features for the entire image,
fk(n): extracted features from n-th image and k-th bbox in the image (for object detection case), Scls: LDA-based classification
score, Sreg: SVD-based regression score, Sen: Energy-based score, Tm: the overall transferability score for the mth model.

3. Method
3.1. Problem Formulation

Classification. GivenM pre-trained models {Φm}Mm=1 and
a target datasetD = {(xn, yn)}Nn=1 (N : number of samples
and y: ground-truth labels), the transferability metric for
the m-th model is then computed as a scalar score Tm as
follows:

Tm =
1

N

N∑
n=1

p(yn|xn,Φm), (1)

where p(yn|xn,Φm) is the probability of label yn, given the
input data xn and the source model Φm.
Object Detection. For the case of object detection, the tar-
get dataset is defined as D = {(xn, yn, bn)}Nn=1, where
bn denotes the bounding boxes (bboxes) labels in the n-th
data sample. The transferability metric is also modified to
Tm = 1

N

∑N
n=1 p(yn, bn|xn,Φm).

3.2. Feature Construction

The transferability scores in our work are computed over
the features extracted from the target dataset by the source
models. In the classification scenario, the corresponding
extracted features (f ) are directly used as the input to the
transferability metrics. However, preparing features for the
object detection task is not straightforward due to the pres-
ence of bboxes in addition to the class labels. Using the
entire feature vector f for this task does not precisely pro-
vide bbox-specific features aligned with the ground-truth
bboxes. In order to construct bbox-specific feature vec-
tors, denoted by fkn , the ground-truth bboxes from the en-
tire target dataset are utilized. To this end, fkn represents
the feature values in f that exist in the relative position of
the k-th bbox of the n-th sample. Since bboxes are of dif-
ferent sizes, adaptive average pooling is applied to map fkn
to a feature vector of size ĥ. All the pooled feature vectors
are then concatenated to construct the overall feature vector

f̂ ∈ RK×ĥ, where K is the total number of bboxes in the
target dataset. The target feature dataset is then denoted by
F : {(f̂k, yk, bk)}Kk=1. In classification task f̂ = f , ĥ = h,
and K = N .

3.3. ETran

ETran is a hybrid transferability metric including energy,
classification, and regression scores. The classification and
regression scores are crucial since there is no single objec-
tive function that is optimal for both, especially in the case
of object detection. The energy score is also important as
the other two scores are unable to determine whether the
target dataset is IND or OOD for the pre-trained model.
The ETran’s overall transferability metric is defined using
the following score:

T = Sen + Scls + Sreg, (2)

where Sen, Scls, and Sreg are the energy, classification, and
regression (only for object detection) scores, respectively.

Energy Score. Energy-based models (EBM) introduce
a function E(x) : RD → R that maps input data x to a
single, non-probabilistic scalar called energy [28]. Energies
are uncalibrated values and can be turned into probability
density p(x) through Gibbs distribution:

p(y|x) =
e−E(x,y)∫
y′
e−E(x,y′)

, (3)

where the denominator
∫
y′
e−E(x,y′) = e−E(x) is called

partition function. The negative log of the partition func-
tion is Helmholtz free energy E(x) of an input data x. The
p(y|x) obtained by EBM can also be calculated by a ma-
chine learning model Φ : RD → RC by applying a softmax
function as follows:

p(y|x) =
eΦ(y)(x)∑C
c e

Φ(c)(x)
, (4)
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where Φ(y)(x) is the output logits of y-th class. Due to the
deep connection between EBMs and discriminative mod-
els, we can define the energy for a given data point x as
E(x, y) = −Φ(y)(x) by equating the Eq. 4 and 3. We can
then compute the free energy E(x) (defined as the negative
log of the partition function) as follows:

E(x) = − log

C∑
c

eΦ(c)(x). (5)

In the transferability estimation, we aim to assign a low
likelihood to the features extracted by a low-ranked source
model and a high likelihood to the features from the high-
ranked source models. We can use energy-based models to
define the density function of data: p(x) = e−E(x)∫

x
e−E(x) [31].

We take the logarithm of both sides of the above equation,

log p(x) = −E(x)− logZ︸ ︷︷ ︸
constant

, (6)

where Z is the denominator, which is constant for all sam-
ples. Therefore, the negative free energy is correlated with
the likelihood of samples. This means that samples with
high energy values have less likelihood and are OOD sam-
ples for the source model Φ. On the other hand, samples
with high energy values are IND for Φ. We hypothesize
that Φ has a high transferability to a target dataset D, if
samples from D are in-distribution samples for Φ. There-
fore, the transferability score of Φ to D is correlated to the
free energy score of Φ. In the above formulas, the free en-
ergy was calculated using output logits of Φ. This has a
major drawback as the logits are task-specific outputs that
depend on the number of classes in the source dataset. On
the contrary, features extracted by Φ are task-independent
outputs that can be assumed as the output of the discrimina-
tive model Φ with ĥ classes. Given ĥ as the dimension of
features f̂ , we calculate the energy values over features:

Ê(x) = − log

ĥ∑
η

ef̂
(η)

. (7)

Having the energy values corresponding to all data samples
{xk}Kk=1, we define the energy-based transferability score:

Sen = − 1

K

K∑
k=1

Ê(xk). (8)

LDA-Based Classification Score. Features extracted by
the pre-trained models are separable based on the source
dataset’s classes. However, after fine-tuning, the features
are separable based on the target dataset’s classes. The clas-
sification score in this work is obtained using Bayes theo-
rem after projecting the features into a subspace that sepa-
rates features of different target classes as much as possible.

In this work, the projection matrix, denoted by U , is
computed using Linear Discriminant Analysis (LDA) [19]:

U = arg max
U

UTΣβU

UTΣωU
, (9)

where Σβ =
∑C
c=1Kc(µc − µ)(µc − µ)T and Σω =∑C

c=1

∑Kc
k=1(f̂

(c)
k − µ)(f̂

(c)
k − µ)T are the between-scatter

and within-scatter matrices. µc and µ are the mean of c-th
class and the total mean of the target data. C is the num-
ber of classes in the target dataset and Kc is the number of
samples (i.e., bboxes in object detection) in c-th class. f̂ (c)

k ,
which is obtained by splitting F into classes, represents the
feature vector corresponding to the k-th sample (or bbox)
with c-th class. The optimization in Eq. 9 is [15] :

maximize
U

UTΣβU, subject to: UTΣωU = 1. (10)

The Lagrangian of this optimization is defined as:

L = UTΣβU − λ(UTΣωU − 1), (11)

where λ is the Lagrangian multiplier. Equating the deriva-
tive of L to zeros gives:

∂L
∂U

= 2ΣβU − 2λΣωU = 0 ⇒ ΣβU = λΣωU. (12)

The above eigenvalue problem can be solved [14]:

U = eig((Σω + εI)−1Σβ), (13)

where ε is a small positive number to make the Σw full-rank
in case that Σw is singular. Having the projection matrix, U ,
we project the features by f̄ = UT f̂ . We assume that each
class has a normal distribution f̄ (c) ∼ N (UTµc, I) where
I is an identity matrix. Therefore, the Bayes theorem can
be applied to obtain the prediction score δc for each class
c. The ETran’s classification score is then defined as the
probability of the ground-truth class as follows:

Scls =
1

K

K∑
k=1

eδy∑C
c=1 e

δc
, (14)

where y is the ground-truth label.
SVD-Based Regression Score. Singular Value Decom-

position (SVD) can be utilized for approximately solving
linear regression in a way that is less sensitive to errors
and more effective for ill-conditioned matrices [18]. This
is due to the singular values in the diagonal matrix being
sorted in descending order, so the smallest values can be
truncated or set to zero without significantly affecting the
overall solution. Therefore, we propose to use reduced SVD
[34, 17] to efficiently estimate the transferability of features
obtained by the source model. We decompose the feature
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matrix f̂ = Udiag(s)V T where U ∈ RK×ĥ, s ∈ Rĥ, and
V ∈ Rĥ×ĥ. We then use the decomposed matrices to cal-
culate the approximated pseudo-inverse [16] of the features
as follows:

f̂† = V diag(ŝ)−1UT , (15)

where ŝ is the truncated singular values whose top 80% is
preserved. Given the bbox position labels b ∈ RK×4, we
calculate the projection of b into the subspace spanned by
columns of f̂† by f̂†b. The approximated labels b̂ are cal-
culated by b̂ = f̂ f̂†b.

The ETran’s regression score is then computed by the
mean squared error between the approximated labels and
ground-truth bbox labels as follows:

Sr = − 1

K × 4

K∑
k=1

4∑
j=1

(b
(j)
k − b̂

(j)
k )2, (16)

where b(j)k denotes the j-th position value in the k-th bbox.

3.4. Baselines for Object Detection

In this section, we define 3 new baseline transferability
metrics for object detection based on the SOTA methods by
LogME [52], PACTran [10], and SFDA [43], which have
been originally proposed for classification tasks. These
classification-based metrics can be directly applied to ob-
ject detection by only evaluating the compatibility between
bbox features and their class labels. However, such a strat-
egy does not consider the bbox information (as a regression
problem) which is a crucial part of object detection tasks,
which is required to achieve good performance in transfer-
ability assessment. In order to benefit from the bbox in-
formation in all of the 3 baselines in this work, we employ
LogME’s regression solution [52] to calculate our baseline
regression score (denoted by Slmr) as:

Slmr =
1

4

4∑
j=1

(1

2
log γ +

ĥ

2
logα− K

2
log 2π

− γ

2
||f̂ q − b(j)|| − α

2
qT q − 1

2
log ||A||

)
,

(17)

where A = αI + γf̂T f̂ and q = γA−1f̂T b(j). Here, α
and γ are positive parameters in the prior distribution of
weights and observations. The weights map the features to
target labels. As in Eq. 15, b(j) represents the jth position
values, but for all K bboxes.

The overall transferability metric for our baselines is
then computed as follows: T = Sbaseline + Slmr, where
Sbaseline is the classification score calculated via LogME,
PACTran, or SFDA methods.

4. Experiments
In this section, the performance of the proposed transfer-

ability assessment method (ETran) compared with the pre-
vious works is numerically evaluated on image classifica-
tion and object detection. An extensive set of experiments
over different benchmarks along with ablation studies and
computational complexity analysis are also presented. In
addition, three transferability assessment benchmarks based
on VOC, COCO, and HuggingFace datasets are introduced
for the object detection task.

Evaluation Metric. In order to evaluate the performance
of the proposed method, the ground-truth ranking scores
of all the pre-trained models (Φm) are required. The cor-
responding ranking scores, denoted by Gm, are basically
the validation accuracies obtained after fine-tuning each
Φm on the target dataset. Following the previous works
[10, 38, 43, 52], we use Kendall’s tau, denoted by τ , as our
main evaluation metric. Kendall’s tau [24] is defined as the
number of concordant pairs minus the number of discordant
pairs divided by the overall number of pairs

(
M
2

)
as follows:

τ =
2

M(M − 1)

M∑
i=1

M∑
j=i+1

sgn(Gi −Gj) · sgn(Ti − Tj).

(18)
We use the weighted version of Kendall’s tau by [44], τw,
that assigns more weights to the top ranked models. In ad-
dition to τw, we also use the probability of correctly finding
the top-k pre-trained models, denoted by Pr(topk), as an-
other evaluation metric. Pr(topk) is the probability of the
ground-truth top-ranked model being among the top k esti-
mated models. In this work, we report Pr(top1), Pr(top2),
and Pr(top3). Although τw shows whether the whole
ranking of the pre-trained models matches the ground-truth
ranking, Pr(top-k) is also important in the real-case scenar-
ios, where we only need to find the best pre-trained model.

4.1. Image Classification

Benchmark. The experiments for the classification task
are performed on the benchmark used in [43] that has 11
different source models (pre-trained on ImageNet) and 11
target datasets. The source models include ResNet-34,
ResNet-50, ResNet-101, ResNet-152 [20], DenseNet-121,
DenseNet-169, DenseNet-201 [21], MNet-A1 [47], Mo-
bileNetV2 [42], GoogleNet [45], and InceptionV3 [46].
The target datasets include FGVC Aircraft [33], Caltech-
101 [13], Stanford Cars [26], CIFAR-10, CIFAR-100 [27],
DTD [8], Oxford-102 Flowers [37], Food-101 [7], Oxford-
IIIT Pets [39], SUN397 [51], and VOC2007 [11]. We fine-
tune all the source models on all of the target datasets to
obtain the ground-truth scores, G (details in the appendix).

Results Analysis. The ETran’s transferability score for
the classification scenario is defined as T = Scls+Sen, where
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Table 1: Classification Benchmark: Performance (Kendall tau τw) of different methods

Method CIFAR10 VOC Caltech-101 AirCraft CIFAR100 Food-101 Pets Flowers Cars DTD Sun Average

LEEP [36] 0.824 0.413 0.605 -0.233 0.667 0.434 0.389 -0.242 0.317 0.417 0.697 0.390
NLEEP [29] -0.360 -0.233 0.281 0.332 0.696 0.468 0.230 -0.162 0.367 0.378 0.511 0.228
OTCE [48] 0.562 0.639 0.104 0.099 0.285 0.474 0.056 0.265 0.439 0.082 -0.139 0.260
LogME [52] 0.852 0.564 0.352 0.334 0.725 0.385 0.411 -0.008 0.485 0.662 0.545 0.482
PACTran [10] 0.562 -0.235 0.528 -0.038 0.763 0.000 0.318 0.329 -0.121 0.522 0.301 0.266
SFDA [43] 0.849 0.518 0.555 -0.215 0.793 0.427 0.340 0.590 0.312 0.633 0.722 0.502
LEEP+Sen 0.897 0.413 0.626 -0.077 0.697 0.434 0.389 -0.070 0.405 0.417 0.658 0.435
LogME+Sen 0.890 0.656 0.567 0.370 0.774 0.484 0.447 -0.021 0.586 0.682 0.570 0.545
PACTran+Sen 0.562 -0.235 0.528 0.046 0.702 0.024 0.437 0.329 -0.163 0.599 0.378 0.291
SFDA+Sen 0.890 0.606 0.558 -0.161 0.856 0.370 0.422 0.406 0.328 0.639 0.744 0.514
ETran (Sen) 0.816 0.476 0.41 0.331 0.557 0.396 0.307 0.277 0.500 0.606 0.556 0.475
ETran (Scls+Sen) 0.887 0.667 0.440 -0.091 0.900 0.829 0.713 0.580 0.246 0.303 0.708 0.562

Figure 3: Energy score distributions corresponding to three source models on the CIFAR10, Caltech101, Cars, and DTD
target datasets in the classification benchmark.

Figure 4: Some failure cases of ranking source models by
energy scores.

the regression score does not exist. Table 1 demonstrates the
results of ETran compared with the previous works on the
classification benchmark [43]. ETran outperforms all the
previous works and achieves SOTA results with an average
τw of 0.562 which is relatively 12% better than SFDA.

In order to show the effectiveness of the proposed energy
score (Sen), we also integrated this score with all the previ-
ous works and report the results in Table 1. It is shown that
the energy score provides relative improvements for LEEP,
LogME, PACTran, and SFDA by about 11%, 13%, 9%, and
2%, respectively, in terms of the average τw. Given the ef-
ficiency of the energy score calculation (i.e., almost 10×
faster than the previous works), the corresponding improve-
ments come with a low cost.

It is also shown that ETran’s performance with only the

energy score can obtain an average τw of 0.475, which is
comparable with most of the previous works and even bet-
ter than LEEP and PACTran. Since the energy score is
completely unsupervised (no need for labels), our proposed
method can be applied in the case that labels are not pro-
vided with the target datasets. It is an important merit in
real case scenarios, especially with costly labeling proce-
dures.

Energy Analysis. Figure 3 shows the energy score
distributions corresponding to three source models on the
CIFAR10, Caltech101, Cars, and DTD target datasets in
the classification benchmark. The ground-truth validation
accuracy of the models is also provided in the legends of
the figures. We can observe that the source models with a
higher accuracy on the target dataset have a higher range
of energy scores. For instance, on CIFAR10, Densnet169,
ResNet-34, and GoogleNet are ranked as the first, second,
and third models, respectively, which follow the same rank-
ing in terms of having a higher range of energy scores. Al-
though it is the case for the majority of the datasets, there are
some rare cases, where models with higher accuracy give
lower energy scores. Two examples are given in Figure 4.

4.2. Object Detection

4.2.1 Benchmarks and Setup

For the numerical analysis of our proposed transferability
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Table 2: Results on VOC-FT and VOC-RH object detection benchmarks.

VOC-FT VOC-RH

Method reg Pr(top1) Pr(top2) Pr(top3) τw Pr(top1) Pr(top2) Pr(top3) τw
LogME [52] 0.071 0.107 0.250 0.180 0.107 0.250 0.393 0.340
PACTran [10] 0.143 0.214 0.321 0.131 0.143 0.286 0.357 0.242
Linear [10] 0.143 0.214 0.321 0.132 0.143 0.286 0.357 0.242
SFDA [43] 0.107 0.107 0.250 0.108 0.250 0.321 0.357 0.376
LogME+Slmr X 0.071 0.179 0.357 0.350 0.321 0.536 0.571 0.537
PACtran+Slmr X 0.071 0.179 0.321 0.355 0.393 0.500 0.571 0.560
Linear+Slmr X 0.071 0.179 0.321 0.359 0.357 0.536 0.571 0.549
SFDA+Slmr X 0.107 0.179 0.321 0.354 0.357 0.536 0.571 0.551
LogME+Sreg X 0.036 0.107 0.214 0.336 0.321 0.500 0.643 0.560
PACTran+Sreg X 0.071 0.107 0.321 0.335 0.214 0.429 0.571 0.508
Linear+Sreg X 0.071 0.143 0.393 0.352 0.250 0.429 0.607 0.555
SFDA+Sreg X 0.107 0.214 0.357 0.353 0.250 0.393 0.500 0.529
SFDA+Sreg+Sen X 0.214 0.321 0.536 0.462 0.143 0.393 0.500 0.528
ETran (Sen) 0.286 0.393 0.464 0.309 0.000 0.250 0.429 0.318
ETran (Scls+Sen+Sreg) X 0.250 0.321 0.536 0.464 0.500 0.536 0.679 0.590

Table 3: Results on COCO object detection benchmark.

Method reg Pr(top1) Pr(top2) Pr(top3) τw
LogME [52] 0.267 0.400 0.600 0.269
PACTran [10] 0.133 0.267 0.333 0.138
Linear [10] 0.133 0.267 0.333 0.139
SFDA [43] 0.200 0.267 0.533 0.104
LogME+Slmr X 0.067 0.467 0.533 0.249
PACtran+Slmr X 0.200 0.333 0.467 0.229
Linear+Slmr X 0.200 0.333 0.467 0.227
SFDA+Slmr X 0.200 0.333 0.467 0.183
ETran (Sen) 0.267 0.467 0.600 0.213
ETran (Scls+Sen+Sreg) X 0.400 0.533 0.600 0.333

Table 4: Results on HF object detection benchmark.

Method reg Pr(top1) Pr(top2) Pr(top3) τw
LogME [52] 0.600 0.600 0.800 0.374
PACTran [10] 0.400 0.400 0.600 0.140
Linear [10] 0.200 0.400 0.600 0.214
SFDA [43] 0.400 0.600 0.100 0.312
LogME+Slmr X 0.600 0.600 0.800 0.400
PACtran+Slmr X 0.200 0.400 0.800 0.322
Linear+Slmr X 0.200 0.200 0.800 0.306
SFDA+Slmr X 0.200 0.400 0.800 0.202
ETran (Sen) X 0.400 0.800 0.800 0.412
ETran (Scls+Sen+Sreg) X 0.600 0.800 1.000 0.522

metric for object detection, we design 3 benchmarks based
on VOC2012 [12], COCO [30], and HuggingFace (HF) [50]
datasets.

VOC. We split the VOC2012 dataset into two clusters
called the source and target clusters. VOC2012 has 20
classes from which we assign 12 classes to the source clus-
ter and 8 classes to the target cluster. We randomly select 3
classes from the source cluster and repeat this selection 19
times to create 19 different source datasets. The YOLOv5s
object detection model [40, 22] is trained on each of the

source datasets resulting in 19 pre-trained source models.
We also randomly select 28 pairs from the target cluster to
create 28 target datasets (divided into train and validation
sets). All pre-trained models are fine-tuned on the created
target datasets (train set) and the map50 value over the vali-
dation sets is used to obtain the ground-truth ranking scores
of pre-trained models.

Following the method in LEEP [36], we use two ap-
proaches to fine-tune the source models: 1) fine-tuning the
entire model, i.e., all layers (denoted by FT), 2) re-training
only the detection head from the scratch with all the other
layers frozen, denoted by RH (more details in the appendix).

COCO. We apply the same above-mentioned procedure
in VOC to the COCO dataset (with 80 classes in total). We
consider 65 and 15 classes for the source and target clus-
ters, respectively. 9 source datasets each with 20 classes
randomly selected from the source cluster are created. 15
target datasets each with 2 classes randomly selected from
the target cluster are also created. A similar pre-training
and fine-tuning process (only the FT case) as in VOC is
performed for this benchmark.

HuggingFace (HF). In the VOC and COCO bench-
marks, the architecture of the source models was fixed, but
it was trained on different source datasets. In this bench-
mark, we fix the source dataset but use different model
architectures. Six different models including YOLOv5s,
YOLOv5m, YOLOv5n [22], YOLOv8s, YOLOv8m, and
YOLOv8n [23] are employed all of which are pre-trained
on COCO dataset. We fine-tune these source models (all the
layers) on 5 object detection datasets presented in the Hug-
gingFace platform: Blood [41], NFL [1], Valorant Video
Game [32], CSGO Video Game [5], and Forklift [49]. Note
that the object classes in these target datasets have not been
defined in COCO dataset. Therefore, the pre-trained models
have not seen the target classes beforehand.
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Table 5: Ablation study of ETran scores on object detection
benchmarks.

VOC-FT VOC-RH COCO HF
Scls Sreg Sen Pr(top3) τw Pr(top3) τw Pr(top3) τw Pr(top3) τw
X 0.29 0.14 0.43 0.37 0.53 0.13 0.80 0.38

X 0.39 0.36 0.50 0.54 0.40 0.12 0.80 0.51
X 0.46 0.31 0.43 0.32 0.60 0.21 0.80 0.41

X X 0.25 0.31 0.64 0.57 0.47 0.25 1.00 0.50
X X 0.50 0.40 0.57 0.55 0.53 0.23 0.80 0.45

X X 0.50 0.37 0.50 0.41 0.53 0.32 0.80 0.40
X X X 0.50 0.44 0.68 0.59 0.60 0.33 1.00 0.52

4.2.2 Results Analysis

VOC. The experimental results of ETran on the VOC-FT
and VOC-RH object detection benchmarks are summarized
in Table 2. In both scenarios, the source models are the
same, however, the ground-truth rankings are different. It
is worth mentioning that the VOC-FT case provides a more
challenging transferability estimation because the features
extracted by the source and target models are quite different.

The baseline results with both LogME (Slmr) and our
SVD-based regression (Sreg) scores are given in Table 2,
which outperforms classification-only metrics in the previ-
ous works. For example, SFDA+Slmr with a τw of 0.354
achieves a relative improvement of 70% on VOC-FT com-
pared to SFDA with a τw of 0.108. As summarized in Ta-
ble 2, ETran outperforms all the previous works and base-
lines in terms of all the evaluation metrics. The results of
ETran only with the energy score (without labels) are also
presented, which provide comparable or better scores than
the previous classification-only scores.

COCO. The comparison results for the COCO-based
benchmark are provided in Table 3. Although adding the
LogME’s regression score to the previous works improves
their results, ETran still achieves the best performance.

HuggingFace. The comparison results on HF are sum-
marized in Table 4, which are very insightful for evaluat-
ing the performance of the transferability metrics when the
source models have different architectures. Similar to the
VOC benchmark, the regression-empowered baselines out-
perform the previous classification-only works by an aver-
age of 0.047 in τw (average τw of 0.307 vs. 0.260). Over-
all, the proposed ETran method achieves the best results in
terms of all the evaluation metrics. As presented in Table
4, we obtain larger numbers in terms of Pr(top-k) on the
HF benchmark compared with the VOC and COCO bench-
marks. We argue that when the source models have different
architectures, the transferability estimation is less challeng-
ing because the features extracted by the source models are
more distinct. This is well-aligned with the results of the
classification benchmark designed in the previous works in
which the source models have different architectures [43].

Table 6: Left: Ablation study on ETran scores for classifi-
cation benchmark. Right: Ablation study on the logits- vs.
features-based energy scores.

Scls Sen τw
X 0.470

X 0.475
X X 0.562

Method τw
CB VOC HF

Logits -0.088 0.270 0.297
Features 0.475 0.309 0.412

Table 7: Time complexity analysis.

Object Detection (VOC-FT) Classification
Method Run-Time (s) Method Run-Time(s)
LogME [52] 11 LogME [52] 65
PACTran [10] 53 PACTran [10] 444
SFDA [43] 28 SFDA [43] 236
LogME+Slmr 22 LogME+Sen 70
PACtran+Slmr 63 PACTran+Sen 449
SFDA+Slmr 39 SFDA+Sen 240
ETran (Sen) 0.3 ETran (Sen) 5
ETran (Scls+Sen+Sreg) 25 ETran (Scls+Sen) 101

4.3. Ablation and Complexity Study

Components of ETran. The individual performance of
the proposed ETran’s classification, energy, and regression
scores on all the object detection and classification bench-
marks are summarized in Tables 5 and 6. As presented in
Table 5, excluding any of the scores from ETran can result
in a performance drop for all the benchmarks. It is also
shown that the regression score has a major contribution to
the object detection task. This is an important finding that
emphasizes the limitation of the previous classification-only
transferability metrics for object detection tasks. On the
other hand, Table 6-Left shows the importance of both clas-
sification and energy scores in the classification scenarios.

Energy Score. In Table 6-Right, the performance of
the proposed energy-based transferability score calculated
over logits vs. features is given. As shown by the results,
the feature-based energy score calculation significantly per-
forms better than the logit-based scenario. As also dis-
cussed in Section 3.3, it is mainly because the features ex-
tracted by the source models acquire more general infor-
mation about the target dataset. On the other hand, logits
are the outputs of the network’s head that are specific to
the labels of the source datasets used for training the source
models. Specifically, in the case that the number of labels
in the source and target datasets is significantly different,
using logits for the calculation of energy score can be mis-
leading.

Time Complexity. The computational complexity of
ETran compared with the previous works and the base-
lines over the VOC-FT and classification benchmarks are
given in Table 7. The numbers in the table are the run-
ning time of the whole transferability assessment averaged
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over the number of target datasets (i.e., 28 for VOC-FT
and 11 for the classification benchmark). Among the previ-
ous works, LogME is the fastest metric. Our ETran is the
second model after LogME and it is faster than PACTran
and SFDA. ETran (Sen) is around 10× faster than LogME,
which shows the efficiency of the energy score calculation
in our method. The running time of PACTran depends on
the number of iterations used for optimization (i.e., 100 iter-
ations by default). SFDA has a self-challenging mechanism
that requires applying Fisher Discriminate Analysis twice
on all the samples. In contrast, ETran only needs one round
for LDA-based score calculation, which makes it 2× faster
than SFDA.

5. Conclusion
In this work, we proposed an energy-based transferabil-

ity metric for classification and object detection. We intro-
duced energy score as a fast and unlabeled transferability
score that is used together with labeled classification and
regression scores, which outperformed previous transfer-
ability metrics on object detection and classification scenar-
ios. In terms of running time, ETran is comparable with the
previous works while obtaining better performance. In this
work, we only showed the performance of ETran for vision
tasks. Future work should evaluate the performance of this
method for other modalities such as language models.
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