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Abstract

It has been established that training a box-based de-
tector network can enhance the localization performance
of weakly supervised and unsupervised methods. More-
over, we extend this understanding by demonstrating that
these detectors can be utilized to improve the original net-
work, paving the way for further advancements. To ac-
complish this, we train the detectors on top of the net-
work output instead of the image data and apply suit-
able loss backpropagation. Our findings reveal a signif-
icant improvement in phrase grounding for the “what is
where by looking” task, as well as various methods of
unsupervised object discovery. Our code is available at
https://github.com/eyalgomel/box-based-refinement.

1. Introduction

In the task of unsupervised object discovery, one uses
clustering methods to find a subset of the image in which
the patches are highly similar, while being different from
patches in other image locations. The similarity is com-
puted using the embedding provided, e.g., by a transformer
f that was trained using a self-supervised loss. The group-
ing in the embedding space does not guarantee that a single
continuous image region will be selected, and often one re-
gion out of many is selected, based on some heuristic.

It has been repeatedly shown [47, 58, 5] that by training
a detection network, such as faster R-CNN[39], one can im-
prove the object discovery metrics. This subsequent detec-
tor has two favorable properties over the primary discovery
method: it is bounded to a box shape and shares knowledge
across the various samples.

In this work, we show that such a detector can also be
used to improve the underlying self-supervised similarity.
This is done by training a detector network h not on top
of the image features, as was done previously, but on the
output map of network f . Once the detector network h is
trained, we freeze it and use the same loss that was used to
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Figure 1. Examples of refining localization networks. The top row
depicts an example of unsupervised object discovery. (a) the in-
put image (b) the normalized cut eigenvector using the original
DINO [9] network f , as extracted with the TokenCut[58] method.
(c) the same eigenvector using the refined DINO network fh our
method produces. The bottom row contains phrase grounding re-
sults (d) the original input corresponding to the phrase “two foot-
ball teams”, (e) the localization map using the image-text network
g of [42], and (f) the localization map using the refined gh.

train the detector network to refine the underlying represen-
tation of f .

At this point, the detector network serves as a way to link
a recovered set of detection boxes to an underlying feature
map of f . Without it, deriving a loss would be extremely
challenging, since the process used for extracting the detec-
tion box from f is typically non-differentiable.

The outcome of this process is a refined network fh, ob-
tained by fine-tuning f using network h. The finetuned net-
work produces a representation that leads to a spatially co-
herent grouping of regions, as demonstrated in Fig. 1(a-c).

A similar process is used for the phrase grounding prob-
lem. In this case, given a textual phrase, a network g is
trained to mark a matching image region. Supervision is
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performed at the image level, without localization informa-
tion, a process known as weakly supervised training. In this
case, the same loss is used to train a network h on a set of
extracted regions, and then to refine g.

Our method exhibits remarkable versatility, as demon-
strated through extensive testing on multiple benchmarks,
two phrase grounding tasks, and various unsupervised ob-
ject discovery methods. In all cases, our method consis-
tently achieves significant improvements across all metrics,
surpassing the performance of state-of-the-art methods. The
move approach introduced trains a detector on the network
output rather than the image data. This strategy, distinct
from previous work, allows us to refine the primary network
independently and further enhance its performance.

2. Related work
Our method is tested on two localization tasks that are

not fully supervised: unsupervised object discovery (de-
tection) and phrase grounding. Numerous studies have
been introduced in the realm of unsupervised object dis-
covery, alongside akin tasks involving detection and seg-
mentation, using different techniques and methods to dis-
cover and localize objects in images (and videos) with-
out requiring explicit object annotations. In particular,
deep learning-based approaches have been combined with
clustering-based methods [64, 49, 45, 57], generative mod-
els [56, 4, 33], and object-level grouping [46, 3]. Two of the
methods we build upon in our experiments, LOST [47] and
TokenCUT [58], employ clustering methods on top of the
DINO network [9], while MOVE [5] uses a segmentation
head on top of DINO representation.

In the phrase grounding task, text phrases are associated
with specific image locations [62, 26]. When relying on
weakly supervised learning, the locations are not given dur-
ing training, only during test time [1]. A common way to
link the phrase to the image is to embed both the text and
image patches in a shared embedding space [14, 41, 27].
Recent contributions employ CLIP [38] for linking text with
image locations since it has powerful text and image en-
coders and relies on weakly supervised training [31, 42].
It can, therefore, be used both to represent the text and to
obtain a training signal for the phrase grounding network.

We are not aware of other work in which one network
f trains another network h, which in turn is used to re-
fine the first network. There are contributions in which
two networks are trained symbiotically at the same time.
For example, for the task of semi-supervised semantic seg-
mentation, two differently initialized networks were trained
jointly, with each network creating pseudo-labels for the
other [13]. The DINO unsupervised representation learn-
ing method [9] employs a self-distillation process in which
the teacher is a combination of frozen student networks.

The role of h in propagating a detection-based loss back

to f is reminiscent of other cases in which a network is used
for the purpose of supervising another, e.g., GANs [23]. In
other cases, an auxiliary network can be trained in a super-
vised way to provide a differentiable approximation of an
indifferentiable black box [35].

3. The Phrase Grounding Method
While we apply the same method for multiple applica-

tions, each application relies on a different configuration of
baseline networks. Therefore, to minimize confusion, we
first focus on phrase grounding. Applying our method to
unsupervised object discovery is explored in Sec. 4.

In phrase grounding, we refine a pre-trained localization
model (g) using a detection model (h) that we add. h is
trained based on g and then the predictions of h, now serv-
ing as a teacher, are used to finetune network g, which be-
comes the student. This cyclic process is illustrated in Fig. 2
and serves to make g more spatially coherent, see Fig. 1(d-
f).

The phrase grounding network g is based on an encoder-
decoder architecture adapted to support text-based condi-
tioning [42]. The input signals are (i) a text t and (ii)
an RGB image I ∈ R3×W×H . It outputs a localization
heatmap M that identifies image regions in I that corre-
spond to the part of the scene described by t.

M = g(I, Zt(t)) , (1)

where M ∈ RW×H contains values between 0 and 1, and
Zt(t) is a text embedding of the input text t, given by the
text encoder of CLIP [37]. Our refinement algorithm uses g
with the pre-trained weights published by [43].

Our method trains a model h to generate a set of bound-
ing boxes B̄ that match the localization map M .

B̄ = h(M) (2)

Thus h provides a feedforward way to generate bounding
boxes from M . The alternative provided, for example, by
[43] is a multi-step process in which M is first converted to
a binary mask by zeroing out any pixel value lower than half
the mask’s max value [36, 17, 16]. Next, contours are ex-
tracted from the binary mask using the method of [51]. For
each detected contour, a bounding box is extracted, whose
score is given by taking the mean value of M for that bound-
ing box. Finally, a non-maximal suppression is applied over
the boxes with an overlap of at least 0.05 IOU, filtering out
low-score boxes (0.5 of the maximal score).

h replaces this process with a single feed-forward pass.
However, its main goal is to provide a training signal for
refining g. This is done by considering the output of h as
foreground masks and considering the values of g’s output
inside and outside these masks.
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Figure 2. An illustration of our method. The phrased grounding network f is given the input image I and a text phrase t and produces a
heatmap M . A heuristic (blue line) then produces a set of bounding boxes B from this map that are used to train a detection network h,
which outputs a set of boxes B̄. The loss that is used is applied after applying the optimal permutation.

3.1. Training h

The network h is trained to predict a fixed number k of
bounding boxes B̄. Each box is represented as a vector bi ∈
R6 that contains the center coordinates of the box, its width,
and its height. In addition, the network h contains a logit
value, which denotes whether there is an expected object
within each box.

Training is performed maintaining the semi-supervised
nature of the phrase grounding method. The bounding
boxes used for training h are extracted using network g and
the method of Suzuki et al[51], as explained above. We call
the set of resulting bounding boxes B.

Following Carion et al. [8], we train h using a loss Lh

that has three terms: (1) a classification loss Lcls, (2) an l1
loss Lbox, and (3) the GIoU[40] loss Lgiou.

If the number of objects k returned by h is smaller than
the number of target boxes |B|, the k boxes with the highest
confidence are used. In the opposite case, B is padded with
zero-coordinate vectors with a “no object” label.

For computing the loss, one assumes a one-to-one cor-
respondence between the ground truth objects and the de-
tected boxes. This matching is obtained by minimizing Lh

over all possible permutations, using the Hungarian algo-
rithm [30] for minimal cost bipartite matching. Denote as
B′ = [b′0, b

′
1, ..., b

′
k−1] the matrix that holds the set of boxes

B ordered optimally.
The classification loss Lcls is a Negative log-likelihood

loss

Lcls =

k−1∑
i=0

− log p̄i (3)

where p̄i is the predicted box logit, representing the proba-
bility of the existence of an object.

Lbox is applied directly to the coordinates of the centers
of the bounding boxes, their height and width:

Lbox =

k−1∑
i=0

∥b′i − b̄i∥1 (4)

While the loss Lbox is affected by the size of the box, the
2nd loss, Lgiou, is a scale-invariant loss given by

Lgiou(B
′, B̄) =

k−1∑
i=0

1−

(∣∣b̄i ∩ b′i
∣∣∣∣b̄i ∪ b′i
∣∣ −

∣∣ci \ (b̄i ∪ b′i)
∣∣∣∣Ci

∣∣
)
(5)

where ci is the smallest box containing b′i and b̄i. All losses
are normalized by the number of boxes.

The final loss is a weighted sum of all three losses:

Lh(B
′, B̄) = λ1 ∗ Lcls(B

′, B̄) + λ2 ∗ Lbox(B
′, B̄)+

λ3 ∗ Lgiou(B
′, B̄)

(6)

where λ1 = 2, λ2 = 5, λ3 = 2. These weights are similar
to those used in previous work, with an extra emphasis on
λ1 (using a value of 2 instead of 1), but there was no attempt
to optimize them beyond inspecting a few training images.

3.2. Refining g

For finetuning g, we use the multiple loss terms, includ-
ing the same loss terms that are used for training h, with a
modification. Here, instead of just calculating the loss be-
tween two sets of boxes, we also compute the union box of
ground truth boxes: BU = Union(B). With probability
0.5 we use BU instead of B for calculating the loss (in this
case, the matching is done with a single box only)

LhBU
=

{
Lh(BU, B̄), if p ≥ 0.5

Lh(B, B̄), otherwise
, p ∼ Uniform[0, 1]

(7)
In addition to the bounding box loss, we use losses for

the localization maps used by [43] to train g. This prevents
the fine-tuned model from following h “blindly”, without
considering the underlying data.

The relevancy map loss, uses a CLIP-based relevancy
[11] to provide rough estimation for the localization map

Lrmap(I,H) = ∥H − gh(I, ZT )∥2, (8)

16046



where H is the relevancy map and gh is the refined network
g. The foreground loss Lfore(I, T ) is given by

Lfore(I, t) = −CLIP (gh(I, ZT )⊙ I, t), (9)

where ⊙ is the Hadamard product. The loss maximizes the
similarity given by CLIP between the mask’s foreground re-
gion and the input text t. On the other hand, the background
loss Lback(I, t) minimizes the similarity CLIP distance be-
tween the background and text t

Lback(I, t) = CLIP ((1− gh(I, ZT ))⊙ I, t), (10)

The overall loss is given by:

Lg = LhBU
+ λ4 ∗ Lreg(I, g

h) + λ5 ∗ Lrmap(I,H)+

λ6 ∗ Lback(I, T ) + λ7 ∗ Lfore(I, T )

where λ4 = 1, λ5 = 64, λ6 = 2, λ7 = 1. These hyperpa-
rameters reflect the values assigned by previous work, mul-
tiplied by 4 in order to approximately balance the loss that
arises from h with the other loss terms.

Architecture h is a VGG16 [48], pre-trained on the
ImageNet[18] dataset. In order to apply it to the single
channel heatmap M ∈ R×W×H , this input is repeated
three times across the channel dimension. The last layer
of the classifier is replaced by a linear layer of dimensions
4096× (6k), k being the number of boxes predicted by h.

4. Unsupervised object discovery
For the task of unsupervised object discovery, a vision

transformer f is pretrained in a self-supervised manner, us-
ing DINO [9]. It is then used to extract features F from an
input image I ∈ R3×W×H

F = f̄(I) (11)

where f̄ denotes the latent variables from the transformer
f . F ∈ Rd×N , where d is the features dimension and N
denotes the number of patches for f . For each patch p, we
denoted by fp ∈ Rd the associated feature vector. Bound-
ing boxes based on these features are extracted using unsu-
pervised techniques, such as LOST [47], TokenCut [58] or
MOVE [5].
LOST builds a patch similarities graph G, with a bi-
nary symmetric adjacency matrix A=(apq)1≤p,q≤N ∈
{0, 1}N×N where

apq =

{
1 if f⊤

p fq ≥ 0,
0 otherwise.

(12)

An initial seed p∗ is selected as the patch with the smallest
number of connections to other patches.

p∗ = argmin
p∈{1,...,N}

dp where dp =

N∑
q=1

apq. (13)

This is based on the assumptions that connectivity im-
plies belonging to the same object, since patch embeddings
are similar for the same object, and that each object occu-
pies less area than the background.

Denote the list of a patches with the lowest degree dp as
Da. LOST then considers the subset of Da that is positively
correlated, in the embedding space, with p∗

S = {q ∈ Da|f⊤
q fp∗ ≥ 0} (14)

This set is then expanded obtaining

S+ = {q|
∑
p∈S

f⊤
q fp ≥ 0} (15)

We note that in the image itself, the patches of S+ can be
part of multiple separate regions. The method selects the
connected component (4-connectivity in the image space) in
S+ that contains the seed p∗ as its single discovered object.

TokenCut[58] employs a slightly different adjacency
matrix, A, which employs the cosine similarity score be-
tween pairs of feature vectors.

Ap, q =

{
1, if

f⊤
p fq

∥fp∥2∥fq∥2
≥ τ

ϵ, else
, (16)

where τ = 0.2 and ϵ = 1e− 5.
The normalized cut method [44] is applied to the graph to

achieve object discovery. This method clusters all patches
into two groups, based on the 2nd smallest eigenvector of
the normalized adjacency matrix, and selects the group with
the maximal absolute value in this eigenvector. The bound-
ing box of the patches in this group is returned.

MOVE[5], in contradistinction to the preceding two
methodologies, employs a segmentation network that is
trained atop the latent transformer features denoted as F .
The resulting output of this network takes the form of a seg-
mentation map denoted as M ∈ RW×H . Subsequently, this
segmentation map undergoes binarization with a threshold
set at 0.5, followed by the detection of connected compo-
nents [7]. The most sizable bounding box is then selected
to correspond to the most extensive connected component.

4.1. Training h and refining f

The training process of detector h follows the details de-
scribed in Sec. 3.1, with a few minor changes. There is
a single ground-truth bounding box B, extracted from an
image I by model f using the unsupervised techniques de-
scribed above. Using the same loss term Lh, h is optimized
to minimize Lh(B, B̄), where B̄ are the k predicted boxes.

To maintain the unsupervised nature of the task, h is
initialized with weights from the self-supervised method
DINO[9], using a ResNet-50[25] backbone. In the phrase
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Method Backbone VG trained MS-COCO trained

VG Flickr ReferIt VG Flickr ReferIt

Baseline Random 11.15 27.24 24.30 11.15 27.24 24.30
Baseline Center 20.55 47.40 30.30 20.55 47.40 30.30
GAE [10] CLIP 54.72 72.47 56.76 54.72 72.47 56.76

FCVC [22] VGG - - - 14.03 29.03 33.52
VGLS [61] VGG - - - 24.40 - -
TD [62] Inception-2 19.31 42.40 31.97 - - -
SSS [26] VGG 30.03 49.10 39.98 - - -
MG [1] BiLSTM+VGG 50.18 57.91 62.76 46.99 53.29 47.89
MG [1] ELMo+VGG 48.76 60.08 60.01 47.94 61.66 47.52
GbS [2] VGG 53.40 70.48 59.44 52.00 72.60 56.10
WWbL [43] CLIP+VGG 62.31 75.63 65.95 59.09 75.43 61.03
Ours CLIP+VGG 63.51 78.32 67.33 60.05 77.19 63.48

Table 1. Phrase grounding results: “pointing game” accuracy on
Visual Genome (VG), Flickr30K, and ReferIt. The methods in the
first three rows do not train.

grounding case and MOVE [5], the input of h is the map
M , and the analogue for non-trainable unsupervised object
discovery is the map F where such map M is missing.

For refining the DINO-trained transformer model f , we
use the same loss term Lh as is used in phrase ground-
ing and add loss terms to prevent it from diverging too far.
While in phrase grounding we used the loss terms that were
used to train the phrase grounding network, here, for run-
time considerations, we explicitly keep the transformer f in
the vicinity of the DINO-pretrained network.

The loss term is defined as the distance between the out-
put of f and that of the refined model fh

Lf (I) = ∥f(I)− fh(I)∥2, (17)

Both methods [47, 58] are improved by training a
Class Agnostic Detector (CAD) on the extracted bounding
boxes. Faster R-CNN [39] is used for CAD, with the R50-
C4 model of Detectron2 [60] based on a ResNet-50[25]
backbone. This backbone is pre-trained with DINO self-
supervision. Following this process, we train an identical
CAD using the refined model fh. Note that CAD and our
method are complementary. While both train with the same
pseudo-labels, CAD is trained on the original image and
cannot backpropagate a loss to the underlying network f .

5. Experiments
We present our results for three tasks: weakly super-

vised phrase grounding (WSPG), “what is were by looking”
(WWbL), and unsupervised single object discovery. The
first two use the same phrase grounding network g, and the
third one is based on one of two techniques, which both uti-
lize the same pre-trained transformer f .
Datasets For WSPG and WWbL, the network g is trained
on either MSCOCO 2014 [32] or the Visual Genome (VG)
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(a) (b) (c) (d)
Figure 3. Sample phrase-grounding results. where (a) the phrase
(b) the input image (c) results (black) for network g [43] compared
to ground-truth box (green) (d) same for refined network gh.

dataset [29]. Evaluation is carried out on the test splits of
Flickr30k[34], ReferIt[12, 24] and VG [29].

VG contains 77,398, 5,000, and 5000 training, valida-
tion, and test images, respectively. Each image is linked to
natural-language text and annotated bounding boxes. Dur-
ing the training of MSCOCO2014 we use the training split
defined by Akbari et al. [1]. It consists of 82,783 training
samples and 40,504 validation samples, where each sam-
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(a) (b) (c) (d) (e)
Figure 4. Single object discovery results. (a) the input image, (b) the inverse degree of the LOST [47] graph obtained over f (published
model); the red bounding box is directly from LOST, the white is the prediction of CAD trained on top of it (c) same with our refined model
fh and LOST (d) same as b, but using f together with TokenCut[58], (using the published weights; the CAD model was not released and
is not shown) (e) the results of fh and TokenCut.

Training Model
Test Bbox Accuracy

VG Flickr ReferIt

MS-COCO
MG [1] 15.77 27.06 15.15
WWbL [43] 27.22 35.75 30.08
Ours 28.77(27.1) 47.26(45.01) 30.63(29.05)

VG
MG [1] 14.45 27.78 18.85
WWbL [43] 27.26 36.35 32.25
Ours 31.02(29.23) 42.40(44.91) 35.56(34.56)

Table 2. Phrase grounding results: bounding box accuracy on Vi-
sual Genome (VG), Flickr30K, and ReferIt. The outcomes ob-
tained from network h are presented within brackets.

ple contains an image and five captions describing the im-
age. ReferIt[12, 24] consists of 130k expressions referring
to 99,535 objects in 20k images. For evaluation, we use the
test split of Akbari et al.[1]. The dataset Flickr30k Entities

Tr
ai

n
se

t

Model
Test point Accuracy Test Bbox Accuracy

VG Flickr ReferIt VG Flickr ReferIt

C
O

C
O MG [1] 32.91 50.154 36.34 11.48 23.75 13.31

WWbL [43] 44.20 61.38 43.77 17.76 32.44 21.76
Ours 46.29 63.43 44.59 22.32 38.00 22.91

V
G

MG [1] 32.15 49.48 38.06 12.23 24.79 16.43
WWbL [43] 43.91 58.59 44.89 17.77 31.46 18.89

Ours 46.77 61.75 44.9 22.40 35.23 23.44

Table 3. WWbL results: bounding box accuracy on Visual
Genome (VG), Flickr30K, and ReferIt.

[34] consists of 224K phrases that depict objects present in
more than 31K images, with each image having five corre-
sponding captions. The evaluation is carried out on a the
test split of Akbari et al.[1]. For unsupervised single ob-
ject discovery, the network g is trained on either MSCOCO
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Model VOC07 VOC12 MS-COCO

Selective Search [52] 18.8 20.9 16.0
EdgeBoxes [65] 31.1 31.6 28.8
Kim et al. [28] 43.9 46.4 35.1
Zhang et al. [63] 46.2 50.5 34.8
DDT+ [59] 50.2 53.1 38.2
rOSD [54] 54.5 55.3 48.5
LOD [55] 53.6 55.1 48.5
DINO-seg [9] 45.8 46.2 42.1
LOST [47] 61.9 64.0 50.7
Ours using LOST 62.0(42.1) 66.2(53.5) 52.0(33.7)

TokenCut [58] 68.8 72.1 58.8
Ours using TokenCut 69.0(44.6) 72.4(54.1) 60.7(39.5)

MOVE [5] 76.0 78.8 66.6
Ours using MOVE 77.5(42.9) 79.6(54.9) 67.2(48.3)

LOD + CAD [47] 56.3 61.6 52.7
rOSD + CAD [47] 58.3 62.3 53.0
LOST + CAD [47] 65.7 70.4 57.5
Ours using LOST + CAD 66.1 71.0 58.7
TokenCut [58] +CAD 71.4 75.3 62.6
Ours using TokenCut + CAD 71.9 75.6 64.4
MOVE [5] +CAD 77.1 80.3 69.1
Ours using MOVE [5] +CAD 78.7 81.3 69.3

Table 4. Object Discovery results: CorLoc score on MS-
COCO20K, VOC07 and VOC12. Network h was trained us-
ing pseudo labels from either LOST [47], TokenCut [58] or
MOVE [5]. +CAD indicates training a second-phase class-
agnostic detector with model pseudo-boxes as labels. Network h
results are enclosed in brackets.

Ablation
Test point Accuracy Test Bbox Accuracy

VG Flickr ReferIt VG Flickr ReferIt

w/o Box Union 57.26 72.54 62.55 25.11 28.74 24.63
w/o reg. 53.49 68.47 61.92 26.45 42.79 29.74
k=1 56.84 70.74 62.15 27.75 32.35 24.73
Ours 60.05 77.19 63.48 28.77 47.26 30.63

Table 5. Ablation study for the phrase grounding task. See text for
details. All models were trained on MS-COCO14[32] dataset

20K, PASCAL-VOC07[20] or PASCAL-VOC12[21]. MS-
COCO20K has 19,817 images chosen at random from the
MSCOCO 2014 dataset[32]. VOC07 and VOC12 contain
5,011 and 11,540 images respectively, with each image be-
longing to one of 20 categories. For evaluation, we follow
common practice and evaluate the train/val datasets. This
evaluation is possible since the task is fully unsupervised.
Implementation details For phrase grounding tasks, the
proposed network h backbone is VGG16 [48], pre-trained
on the ImageNet[18] dataset. For the object discovery task,
we use h with ResNet-50[25] backbone, pre-trained with
DINO[9] self-supervision on the ImageNet[18] dataset. For
both tasks, h predicts k = 10 bounding boxes. Refining

Ablation VOC07 VOC12 MSCOCO20K

w/o reg. 61.72 64.45 50.13
k=1 62.54 64.67 52.00
k=5 62.16 64.45 51.70
k=10 61.92 66.16 51.98
k=15 61.44 64.46 50.60

Table 6. Ablation study for the object discovery task.

takes place using an Adam optimizer with a batch size of
36. The learning rate of h is 1e-5, while the learning rates
of gh and fh are 1e-7 and 5e-7, respectively. The optimizer
weight decay regularization is 1e-4. For the first 3000 iter-
ations, network h is optimized, where gh/fh is fixed. Then,
for the rest of the training (10k iterations), h is fixed while
gh/fh is optimized.

Metrics Phrase grounding tasks are evaluated with respect
to the accuracy of the pointing game[62], which is calcu-
lated based on the output map by finding the location of the
maximum value, given a query, and checking whether this
point falls within the object’s region.

The “BBox accuracy” metric extracts a bounding box,
given an output mask, and compares it with the ground-truth
annotations. A prediction is considered accurate if IOU be-
tween the boxes is larger than 0.5. To extract the bounding
box from an output map M , the procedure of Shaharabany
et al. [43] is employed. First, M is binarized using a thresh-
old of 0.5, then contours are extracted from M using the
method of Suzuki et al. [51]. Based on the contours, a set of
bounding boxes is derived by taking the smallest box con-
taining each contour. These bounding boxes are scored by
summing the values of M within the contour while ignoring
boxes with low scores. Next, a non-maximal suppression
process is applied and the minimal bounding box that con-
tains the remaining bounding boxes is chosen.

The WWbL task is an open-world localization task, with
only an image as input (no text input). Using this image,
the goal is to both localize and describe all of the elements
in the scene. To solve this task, a multi-stage algorithm
was introduced by Shaharabany et al. [43], starting with ob-
taining object proposals using selective search [52]. Next,
BLIP is used to caption these regions. Captions that are sim-
ilar to each other are removed using the Community Detec-
tion (Cd) clustering method [6]. Using the learned phrase
grounding model g, heatmaps are generated according to
the extracted captions.

Similarly to the phrase grounding task, the WWbL task
is evaluated using the same two metrics: pointing game ac-
curacy and bounding box accuracy). For each ground-truth
pair of bounding box and caption, the closest caption in
CLIP space is selected from the list of automatically gen-
erated captions. The associated output map of the phrase
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grounding method is then compared to the ground truth
bounding box using the pointing accuracy metric. In addi-
tion, bounding boxes are extracted for the output heatmaps
M , as described above.

For single object discovery we use the Correct Localiza-
tion (CorLoc) metric as used by [19, 54, 55, 53, 59, 15, 50].
A predicted bounding box is considered as correct if the
IOU score between the predicted bounding box and one of
the ground truth bounding boxes is above 0.5. We evaluate
our model on the same datasets as [58, 47, 5].

Results Tab. 1 lists the results for Flickr30k, ReferIt,
and VG for the weakly-supervised phrase grounding task.
Evidently, our method is superior to all baselines, whether
training takes place over VG or MS-COCO. In addition to
the pointing game results, Tab. 2 presents bounding box ac-
curacy for the phrase grounding task (this data is not avail-
able for most baselines). Here, too, our method outperforms
the baseline methods by a wide margin.

Phrase grounding samples are provided in Fig. 3, com-
paring the results after the refinement process (those with
gh) to the results of the baseline g. As can be seen, our
method encourages the localization maps to match the typi-
cal shape of image objects. As a result, the predicted bound-
ing box after refining the model is often closer to the actual
objects in the image.

The WWbL results are listed in Tab. 3, which depicts
the performance obtained by our gh, WWbL [43], and a
baseline that employs the phrase grounding method MG [1]
as part of the WWbL captioning procedure described above.
Out of the three models, our refined model gh achieves the
best scores, for all benchmarks and both metrics.

Tab. 4 summarize the results on the VOC07, VOC12,
and MS-COCO20K datasets for the single object discov-
ery task. When utilizing the MOVE [5] model, our method
achieves superior performance compared to all other mod-
els across all datasets. This superiority holds true when
comparing all methods without CAD and when com-
paring all methods with CAD. Furthermore, our method
consistently outperforms other approaches when refining
the DINO model f using both TokenCut [58] boxes and
LOST [47] boxes on all datasets.

Fig. 4 depicts typical samples of our results for the unsu-
pervised object discovery task, when combining our method
with either LOST [47] or TokenCut [58]. Evidently, our re-
fining process improves object and background separation
and produces a denser output mask, which covers the ob-
ject more completely. Furthermore, the extracted bounding
boxes become more accurate.

Ablation study In order to validate the individual compo-
nents of our approach, we conducted an ablation study.

For the phrase grounding task, this study is reported in
Tab. 5. The first ablation replaces the loss LhBU

with the
loss Lh, i.e., no union of the detection boxes is performed.

Network Phrase Grounding Object discovery
LOST TokenCut

f or g 28 x [4] 72.6 x [16] 72.6 x [16]
h 0.5 x [1] 0.5 x [1] 2.5 x [1]
fh or gh 3.2 x [4] 5.3 x [1] 20.5 x [1]

Table 7. Training time (hours) for phrase grounding and unsuper-
vised object discovery. Within brackets is the number of GPUS
used during training.

The second ablation employs only the loss of h, LhBU
, and

disregards the loss terms that were used to train network g.
The third ablation employs a single detection box (k = 1)
instead of the default of k = 10. As can be seen, these
three variants reduce performance across all metrics and
datasets. The exact reduction in performance varies across
the datasets.

To extensively explore the task of unsupervised object
discovery, we conducted a comprehensive ablation study by
varying multiple values of k, see Tab. 4.1. This ablation
was performed using LOST, which is quicker than Token-
Cut and without the extra overhead of training CAD. Evi-
dently, removing the regularization term, leaving only the
loss Lh (there is no box union in this task, since both LOST
and TokenCut return a single box) hurts performance. How-
ever, as can be expected, using k = 1, instead of the value
of k = 10 that is used throughout our experiments, better
fits this scenario and leads to better performance on VOC07
(and virtually the same on MSCOCO20K).
Training time The time it takes to train our method on
medium-sized datasets is reported in Tab. 7. For both orig-
inal networks, f and g, we use pretrained networks and re-
port the published values. Training h, fh, gh reflects our
runs on GeForce RTX 2080Ti GPUs (f which is DINO,
was trained on much more involved hardware, while g was
trained on similar hardware). As can be seen, training h and
refining f or g to obtain fh or gh is much quicker than the
training of the f and g baselines. The difference in training
time between LOST and TokenCut stems from the inference
done during training, which is much quicker for LOST.

6. Conclusions
We present a novel method, in which a primary network

is used in a symbiotic manner with a detection network.
The first network is used to extract a feature map and de-
tection boxes, which are used as the input and output of the
second. The second network is then used to allow the first
network to be refined using the boxes extracted from its out-
put. All training phases are performed on the same training
set, within the bounds of the allowed level of supervision.
Tested on a wide variety of tasks and benchmarks, the pro-
posed method consistently improves localization accuracy.

16051



References
[1] Hassan Akbari, Svebor Karaman, Surabhi Bhargava, Brian

Chen, Carl Vondrick, and Shih-Fu Chang. Multi-level multi-
modal common semantic space for image-phrase grounding.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 12476–12486, 2019.
2, 5, 6, 8

[2] Assaf Arbelle, Sivan Doveh, Amit Alfassy, Joseph Shtok,
Guy Lev, Eli Schwartz, Hilde Kuehne, Hila Barak Levi,
Prasanna Sattigeri, Rameswar Panda, et al. Detector-free
weakly supervised grounding by separation. In Proceedings
of the IEEE/CVF International Conference on Computer Vi-
sion, pages 1801–1812, 2021. 5

[3] Yutong Bai, Xinlei Chen, Alexander Kirillov, Alan Yuille,
and Alexander C Berg. Point-level region contrast for object
detection pre-training. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
16061–16070, 2022. 2

[4] Adam Bielski and Paolo Favaro. Emergence of object seg-
mentation in perturbed generative models. Advances in Neu-
ral Information Processing Systems, 32, 2019. 2

[5] Adam Bielski and Paolo Favaro. Move: Unsupervised
movable object segmentation and detection. arXiv preprint
arXiv:2210.07920, 2022. 1, 2, 4, 5, 7, 8

[6] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lam-
biotte, and Etienne Lefebvre. Fast unfolding of communities
in large networks. Journal of statistical mechanics: theory
and experiment, 2008(10):P10008, 2008. 7

[7] Federico Bolelli, Stefano Allegretti, Lorenzo Baraldi, and
Costantino Grana. Spaghetti labeling: Directed acyclic
graphs for block-based connected components labeling.
IEEE Transactions on Image Processing, PP:1–1, 10 2019.
4

[8] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas
Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-to-
end object detection with transformers. In Computer Vision –
ECCV 2020: 16th European Conference, Glasgow, UK, Au-
gust 23–28, 2020, Proceedings, Part I, page 213–229, 2020.
3

[9] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou,
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