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Abstract

We tackle the problem of novel class discovery, which
aims to learn novel classes without supervision based on
labeled data from known classes. A key challenge lies in
transferring the knowledge in the known-class data to the
learning of novel classes. Previous methods mainly focus
on building a shared representation space for knowledge
transfer and often ignore modeling class relations. To ad-
dress this, we introduce a class relation representation for
the novel classes based on the predicted class distribution of
a model trained on known classes. Empirically, we find that
such class relation becomes less informative during typical
discovery training. To prevent such information loss, we
propose a novel knowledge distillation framework, which
utilizes our class-relation representation to regularize the
learning of novel classes. In addition, to enable a flexi-
ble knowledge distillation scheme for each data point in
novel classes, we develop a learnable weighting function
for the regularization, which adaptively promotes knowl-
edge transfer based on the semantic similarity between the
novel and known classes. To validate the effectiveness and
generalization of our method, we conduct extensive experi-
ments on multiple benchmarks, including CIFAR100, Stan-
ford Cars, CUB, and FGVC-Aircraft datasets. Our results
demonstrate that the proposed method outperforms the pre-
vious state-of-the-art methods by a significant margin on
almost all benchmarks. Code is available at here.

1. Introduction

The recent development of deep learning has achieved

remarkable success in a broad range of visual recognition

tasks [14, 13, 22]. However, most traditional methods focus

on the closed-world setting, in which all the visual classes

are pre-defined. As a result, it is usually difficult to de-

ploy the learned models in realistic settings with potential

novel classes. In contrast, human visual systems can ef-
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Figure 1. In the upper panel, we apply the encoder and the known

class classifier to a novel sample of Palm tree, obtaining a class-

relation representation. This representation encodes the relative

distances between the representations of novel and known cate-

gories. The triangles indicate a novel class, while the circles show

known classes. The lower panel shows the averaged class-relation

representation for all Palm Tree samples and displays the 5 nearest

known classes for both the known class Supervised Trained Model

and the Baseline Model [9]. We observe that the predictions from

a trained model on novel class data indicate meaningful class rela-

tion (e.g. maple tree, forest), which is lost in the Baseline Model.

ficiently acquire new concepts without supervision based

on learned knowledge. Inspired by such an ability, several

studies [12, 16] propose the task of Novel Class Discovery

(NCD) which aims to discover novel categories from unla-

beled data based on known-class data.

A key strategy for discovering novel classes is to trans-

fer knowledge in known classes to promote the learning of

novel classes. To achieve this, most existing NCD meth-

ods [11, 31, 9] involve two training stages, including a

supervised training stage followed by a discovery train-

ing stage. In the supervised training stage, they typically

initialize representation by learning from known classes.

In the discovery training stage, they transfer the learned

knowledge to novel classes via sharing the feature repre-

sentation space. While they have shown promising results,

they are less effective in capturing the relationship between

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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known and novel classes, which limits the scope of shared

knowledge and potentially leads to inferior representations

of novel classes. Nonetheless, it is difficult to model the se-

mantic relationship between the known and novel classes in

the NCD setting as the novel classes are unknown.

To tackle this challenge, we introduce a class-relation

representation for a novel class based on its similarity with

the known classes. In particular, we leverage a well-known

phenomenon of “dark knowledge” [15] and adopt the pre-

dicted distribution of a well-trained model to encode the

inter-class relationship. To that end, we first train a model

on the known classes using supervised learning and then

apply the trained model to the data of novel classes. In

Fig. 1 top and bottom-left, we visualize our class-relation

representation and the average predictive distribution of a

novel class, palm tree, respectively. Interestingly, we ob-

serve that the distribution often focuses on related or co-

occurred classes and hence properly reflects its class rela-

tionship. For example, the palm tree class is closer to the

maple and forest classes. However, a typical NCD baseline,

which fine-tunes the pre-trained model, is unable to main-

tain such a similarity structure, as indicated by the example

shown in Fig. 1 bottom-right. Here the palm tree class is

more similar to the house class, which is less reasonable.

Motivated by the above observation, we propose a novel

class-relation knowledge distillation framework for the task

of novel class discovery. Our framework utilizes the class

relation represented by the supervised trained model to reg-

ularize the learning of novel classes in the discovery training

stage, thus preserving the meaningful class relation knowl-

edge and promoting knowledge transfer. Moreover, to pro-

vide a flexible knowledge transfer scheme for each data

sample, we develop a simple but effective learnable weight

function for the regularization, which allows us to adap-

tively transfer knowledge based on the similarity between

a novel class sample and known classes.

Specifically, we instantiate our framework with a two-

head network architecture that includes an encoder and two

classifier heads for the known and novel classes, respec-

tively. We first initialize the feature representation through

supervised learning on the known classes and then discover

novel classes by minimizing a hybrid learning loss. Our loss

consists of three terms: 1) a standard cross-entropy loss on

the labeled data, which extracts semantic knowledge from

the known classes; 2) an unsupervised clustering loss on the

novel class data; and 3) a weighted Kullback–Leibler (KL)

regularization term for distilling the class relation knowl-

edge from the supervised trained model into the discovery

of novel classes. Here the strength of each KL regulariza-

tion term is controlled by a weight measuring the similarity

between a novel sample and the known classes, which is de-

rived from the predicted distribution on the known classes

by the model in the discovery training stage.

To validate the effectiveness of our method, we con-

duct extensive experiments on four datasets, including CI-

FAR100, Stanford Cars, CUB, and FGVC-Aircraft. The re-

sults show that our performances surpass the previous state

of the art by a large margin in most cases, demonstrating

the efficacy of our novel design of learning framework. In

summary, our main contributions are three-fold:

• We propose a simple and effective learning frame-

work to facilitate knowledge transfer from the known

to novel classes, which provides a new perspective to

tackle novel class discovery problems.

• We propose a novel regularization strategy to capture

class relation between known and novel classes via the

classifier output space, and develop a simple but ef-

fective learnable weight function to adaptively transfer

knowledge based on the strength of class relation.

• Our method significantly outperforms previous works

on various public benchmarks, illustrating the efficacy

of our design.

2. Related Work
Novel class discovery: The idea of novel class discovery

was initially explored in [16, 17], which performs transfer

learning across domains and tasks, and utilizes predictive

pairwise similarity as the knowledge for clustering. The

standard NCD problem was formalized by [12], aiming to

cluster novel classes with the help of known classes. Most

NCD methods attempt to transfer knowledge from known to

novel classes by learning a shared representation, and can

be categorized into two groups according to their cluster-

ing methods. The first group [16, 12, 31, 32, 30] typically

explores pair-wise similarity for clustering. For example,

KCL [16] learns a pair-wise similarity network to predict

the similarity of two instances. RankStats [11] propose ro-

bust rank statistics to measure the similarity of two data

in their representation space. Furthermore, DRNCD [30]

presents dual rank statistics that focus on local part-level

information and overall characteristics. In addition to pair-

wise similarity objective, NCL [31] and Openmix [32] uti-

lize contrastive learning and mixup strategy to promote

the representation learning of novel classes. The second

group [12, 31, 28] introduces self-labeling for clustering

novel classes. Especially, DTC [12] utilizes deep embed-

ding clustering to discover novel classes. UNO [9] adopts

the Sinkhorn-Knopp algorithm to generate pseudo labels.

Unlike above, [5] solves novel class discovery from a meta-

learning perspective. Recently, several works[3, 25] have

expanded the conventional novel class discovery problem

to more practical scenarios where unlabeled data sets con-

sist of known and novel classes.

Although these methods have achieved some success,

few of them consider the potential relationship between the
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Figure 2. The overview of our class relation knowledge distillation framework. We first train a model by supervised learning on the known

classes. Then we discover novel classes by jointly learning known and novel classes. To maintain meaningful relation information, we

utilize the class relation represented by the supervised trained model to adaptively regularize the learning of novel classes in the discovery

stage. η represents the semantic similarity between the novel class sample and known classes, and g(η) is the learnable weight function.

And the supervised trained model is omitted in the inference.

known and novel classes in the label space during model

learning. In this paper, we model the relations between

known and novel classes based on model predictions, and

propose a novel knowledge distillation method to transfer

class-relation knowledge, thus improving the representation

learning of novel classes.

Knowledge distillation: Knowledge distillation [15, 10,

21, 27] aims to transfer knowledge from a teacher model to

a student model. Typically, it can be categorized into two

groups based on whether knowledge is transferred in the

model prediction space or the representation space. In the

first group [15, 29], the methods often assume that the prob-

ability distribution produced by the teacher model provides

more information about which classes are more similar to

the predicted class than the one-hot ground truth. Therefore,

they use the semantically meaningful probability distribu-

tion produced by the teacher model to supervise the learning

of the student model. The second group of methods [1, 23]

instead argue that the representation learned by the teacher

network contains rich structural information. These meth-

ods propose to distill knowledge from the teacher to the

student in the representation space by maximizing mutual

information. We refer the readers to [27] for a more com-

prehensive survey.

In contrast to the aforementioned works, where the

teacher and student networks share the same category

space, our approach involves knowledge distillation be-

tween known and novel classes, which are in separate cat-

egory spaces. Specifically, we distill knowledge from a

model trained on known classes to a model trained on

both known and novel classes, with the goal of transferring

knowledge from known classes to novel classes.

3. Method
As shown in Fig.2, our model training is divided into

two stages. In the supervised training stage, we train our

model with known class data to obtain an initial feature

representation, which contains meaningful semantic infor-

mation, thus providing a good initialization for clustering

novel classes. In the discovery training stage, we train the

model with both known and novel class data, and adopt the

typical cross-entropy loss and self-labeling loss to learn the

known and novel classes, respectively. In addition, to better

transfer knowledge, we propose a novel adaptive regular-

ization term to distill relation knowledge from the known

classes pretrained model. We will discuss the learning of

our framework in detail in the following.

In this section, we first introduce our novel class relation

distillation framework in Sec. 3.1. Then we describe the

losses on the labeled data for the known classes and unla-

beled data for novel classes in Sec. 3.2. Finally, we present

our novel relation knowledge distillation loss in Sec. 3.3,

which is the core design of our method.

3.1. Class Relation Distillation Framework

To introduce our framework, we first present the problem

setting of NCD and notations. The training dataset consists

of two parts: a labeled known classes set Dl = {xl
i, y

l
i}|D

l|
i=0

and an unlabeled novel classes set Du = {xu
j }|D

u|
j=0 . Here

x, y represent the input data and the corresponding label,
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respectively. We use Y l = {1, 2, ..., Cl} and Y u = {Cl +
1, Cl + 2, ..., Cl + Cu} to represent the category space of

known and novel classes, respectively.

We adopt a common model architecture for NCD, con-

sisting of an encoder, denoted by f , along with two co-

sine classifier heads: hl for known classes and hu for novel

classes. The encoder can be a standard convolutional net-

work (CNN) or Vision Transformer (ViT) [8]. Given an

input image from a known or novel class, we first project it

into an embedding space through the shared encoder. Then

we normalize the embedding and feed it to the known and

novel class head. Note that no matter whether an input is

known or novel, it will go through two heads to generate

two outputs. Finally, we concatenate the two outputs as the

final prediction. The forward process can be written as:

p(y|x) = Softmax((hS
l (f

S(x))⊕ hS
u(f

S(x)))/τ) (1)

where superscript S denotes the model in discovery training

stage, p(y|x) ∈ R
Cl+Cu

is the model predictive distribu-

tion, and τ is the temperature of the softmax function.

To discover novel classes, we begin by initialize our rep-

resentation ability using supervised learning with known

classes, then discover novel class by training on known and

novel class data jointly. In the discovery training stage, our

objective function consists of three terms: 1) a supervised

loss for known class data, 2) an unsupervised loss for novel

class data, and 3) a class-relation Knowledge Distillation

loss for novel class data. The overall loss can be written as:

L = Ll + αLu + βLrKD (2)

where Ll is the standard supervised loss on known classes

data, Lu is the unsupervised clustering loss for novel classes

data, and LrKD is our relation Knowledge Distillation loss.

Here α, β are the weighting factors.

3.2. Loss for known and novel classes

We now present the first two loss terms for the known

and novel class data in the discovery training stage, re-

spectively. For the supervised loss on the known classes,

we adopt the standard cross-entropy loss. For the unsuper-

vised clustering loss on the novel classes data, we adopt the

widely used self-labeling loss [2, 9], which assigns pseudo

labels for novel classes data by solving an optimal transport

(OT) problem, then utilizes the generated pseudo label to

self-train the model.

Specifically, such a self-labeling process assumes that

the data of novel classes are equally partitioned into clusters

and utilizes Sinkhorn-knopp algorithm to find an approx-

imate assignment. We denote yq = q(yu|xu) as pseudo

label, yp = p(yu|xu) as model’s prediction, and yp,yq ∈
R

Cu×1. Let Q = [yq
1,y

q
2, , ,y

q
B ]

1
B , P = [yp

1,y
p
2, , ,y

p
B ]

1
B

be the joint distribution of B sampled data. We estimate Q

by solving an OT problem:

〈Q,− logP〉F
s.t. Q ∈ {Q ∈ R

Cu×B
+ |Q1B =

1

Cu
1Cu ,Q�1Cu =

1

B
1B}

where 〈, 〉F is the Frobenius inner product. We refer readers

to [6, 2] for the details of optimization. The optimal Q is the

pseudo label of unlabeled data and we denote the optimal

pseudo label as q∗(yu|xu). The self-labeling loss is:

Lu =
1

B

B∑

i=1

−q∗(yui |xu
i ) log p(y

u
i |xu

i ) (3)

To transfer knowledge between known and novel classes,

previous methods [12, 30, 3] couple the learning of known

and novel classes by sharing the encoder fS . The models

are typically learned by optimizing the supervised cross-

entropy loss on labeled data and the self-labeling loss on

unlabeled data. This parameter sharing and the jointly-

optimized model allow them to learn representations help-

ful for novel class clustering. However, such an implicit

knowledge transfer method is incapable of fully utilizing

the knowledge contained in known classes for the clustering

of novel classes. Below, we introduce a novel class relation

knowledge distillation term to constrain the model learning

in the discovery training phase, resulting in a better repre-

sentation and learning of the novel classes.

3.3. Class-relation Knowledge Distillation

For more effective knowledge transfer, we introduce a

class-relation representation based on the output distribu-

tion of a model on the known classes classifier. Such a dis-

tribution encodes the similarity structure between a novel

class data and the known classes. However, current meth-

ods transfer knowledge by sharing an encoder, which is

less effective in capturing class relations for novel classes.

In particular, as shown in Fig. 1, we find that there is a

meaningful class relation contained in the supervised pre-

trained model, but the class relation is less meaningful for

the baseline model. We speculate that such a class rela-

tion is important for learning a good representation of novel

classes, while the conventional discovery training stage in-

advertently changes the representation space and weakens

the relations between known and novel classes.

Therefore, we propose a novel relation Knowledge Dis-

tillation (rKD) loss to distill the knowledge contained in

the supervised trained model to enhance the learning of

novel classes. Our rKD loss regularizes the model learn-

ing process in the discovery stage, preventing the model

from losing meaningful class relations. Moreover, since the

class relation may vary for different novel class samples,

we consider an adaptive regularization scheme based on the

strength of the class relation. For instance, for novel class
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samples that are more similar to known classes, we impose

a larger regularization weight. To achieve this, we propose a

simple but effective learnable weight function to control the

regularization effect for different novel samples. In the fol-

lowing section, we formally introduce our novel rKD loss

and weight function.

Knowledge Distillation: In the discovery training stage,

for novel classes, we encourage the model to learn discrim-

inative representation while maintaining the relations to the

known classes. To this end, we keep the supervised trained

model and feed each novel-class sample into the model to

compute an initial relation representation. Similarly, we use

the model fS to obtain the current class relation. This pro-

cess can be written as follows:

pT = softmax((hT
l (f

T (xu)))/t) ∈ R
Cl

(4)

pS = softmax((hS
l (f

S(xu)))/t) ∈ R
Cl

(5)

where pT , pS denotes the relation representation of the su-

pervised and discovery-stage model respectively. t is the

temperature used to soften relation representation. A higher

value in pT means the novel class sample is semantically

closer to the corresponding known class. To regularize the

model learning in the discovery training stage, we propose

a novel knowledge distillation (KD) loss term based on the

KL divergence between pS and pT :

Lu
rKD =

1

B

B∑

i=1

KL(pTi ||pSi ) (6)

pT is fixed in the discovery training stage. The loss Lu
rKD

regularizes the learned representations to maintain relative

relation between novel class samples and known classes

represented by the supervised trained model.

Learnable weight function: Typically, novel-class sam-

ples have varying semantic similarities and for the semantic

dissimilar samples, the relation represented by pT is rela-

tively noisy. This requires an adaptive regularization for

the novel-class data. To tackle this, we propose a simple

but effective learnable weight function to control the reg-

ularization strength for different novel class samples. For

a novel class sample, we first utilize the sum of known

classes’ probability in Eq.1 to represent the relation strength

to the known classes. Formally, the relation strength for the

ith sample in a batch is:

ηi =

Cl∑

k=1

pi,k(y
u
i |xu

i ) (7)

where pi,k(y
u
i |xu

i ) denotes the sample xu
i probability on

class k. Higher η indicates a stronger semantic relation with

the known classes. Then, we develop a learnable weight

Table 1. The details of dataset split.

Dataset
Known Novel

Images Classes Images Classes

CIFAR100-20 40.0k 80 10.0k 20

CIFAR100-50 25.0k 50 25.0k 50

Stanford Cars ≈4.0k 98 ≈4.1k 98

CUB ≈3.0k 100 ≈3.0k 100

FGVC-Aircraft ≈3.3k 50 ≈3.3k 50

function g as a positive correlation function about η. In this

work, we adopt a simple design that computes a normalized

relation strength over the batch:

g(ηi) = Norm(ηi) = B
ηi∑B
j=1 ηj

(8)

In our experiments, the batch size is large enough to ensure

that the statistics of the mean are stable. With our learnable

weight function, the adaptive relation knowledge distilla-

tion loss for novel classes can be written as:

LrKD =
1

B

B∑

i=1

g(ηi)KL(pTi ||pSi ) (9)

With our novel adaptive class relation knowledge distilla-

tion regularization term, our model can cluster novel classes

and maintain the semantic meaningful representation struc-

ture simultaneously.

The utilization of this proposed design confers three ad-

vantages. Firstly, the function g(η) exhibits a positive cor-

relation with η, thereby directing the model to prioritize the

KL loss of samples that share a higher similarity with the

known classes. Secondly, given that the mean value of η
may vary across datasets, the normalization procedure en-

sures that the weight values g(η) remain uniform across

datasets, leading to a more consistent application of the

hyperparameter of LrKD. Finally, the learnability of our

weight function allows the weight function to adapt dynam-

ically based on the relation’s learning dynamics. In partic-

ular, for samples with a higher KL divergence, we optimize

relations by simultaneously decreasing the KL divergence

term and weight function to downweight the learning on

challenging examples. Conversely, for samples with a lower

KL divergence, we relatively increase the weight function,

empowering the model to learn shared semantic information

between the novel and known classes more effectively. We

ablate the design of the weight function in the experiments.

4. Experiments
4.1. Experimental Setup

Datasets: To evaluate the effectiveness of our method,

we first conduct tests on the typical CIFAR100 dataset

[19]. Specifically, we divide CIFAR100 into two cate-

gories: 80/20 known/novel classes and 50/50 known/novel
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Table 2. Comparison with the SOTA methods on the unlabeled training set of the CIFAR100, Stanford Cars, CUB, and Aircraft datasets.

Method CIFAR100-50 CIFAR100-80 Stanford Cars CUB Aircraft

Kmeans 28.3±0.7 56.3±1.7 13.1±1.0 42.2±0.5 18.5±0.3
DTC[12] 35.9±1.0 67.3±1.2 - - -

RankStats+[11] 44.1±3.7 75.2±4.2 36.5±0.6 55.3±0.8 38.4±0.6
NCL[31] 52.7±1.2 86.6±0.4 43.5±1.2 48.1±0.9 43.0±0.5

ComEx[28] 53.4±0.7 85.7±1.3 - - -

UNO[9] 60.4±1.4 90.4±0.2 49.8±1.4 59.2±0.4 52.1±0.7
GCD[25] - - 42.6±0.4 56.4±0.3 49.5±1.0

Ours 65.3±0.6 91.2±0.1 53.5±0.8 65.7±0.6 55.8±0.9

classes, with the latter being more challenging. As the re-

sults on CIFAR10 [19] and ImageNet[7] datasets are nearly

saturated [9], we turn to evaluate our method on three

fine-grained datasets - Stanford Cars [18], CUB [26], and

FGVC-Aircraft [20] - which are more demanding for novel

class discovery. We divide these datasets into two halves,

with one comprising known classes and the other consist-

ing of novel classes. The details of the dataset splits are

presented in Tab.1.

Metric: Following [9], we evaluate our method in the

transductive learning setting and inductive learning setting.

In the transductive learning setting, we employ ClusterAcc

to evaluate the train novel datasets. The formula for Clus-

terAcc is as follows:

ClusterAcc = max
perm∈P

1

N

N∑

i=1

1{yi = perm(ŷi)} (10)

where yi and ŷi denote the ground-truth and predicted la-

bels, respectively, while P represents the set of all permu-

tations. We use the Hungarian algorithm to find the best

permutation. In the inductive learning setting, we use the

task-agnostic evaluation protocol [9] to evaluate model per-

formance. The accuracy of the labeled data is calculated by

using the standard accuracy metric. For unlabeled data, we

use ClusterAcc to measure the performance of class discov-

ery. This protocol is applied to a test set that includes both

known and novel class data. As this evaluation does not re-

quire any prior knowledge of whether the data is novel or

known, it is more suitable for real-world applications than

the first type of evaluation.

Implementation Details: For the CIFAR100 dataset, fol-

lowing previous work [11, 9], we use ResNet18 as our

backbone network. First, we pretrain the network on the

known classes for 100 epochs, and then we jointly train our

network on the known and novel classes for 500 epochs,

which is similar to UNO [9]. The optimizer is SGD, and

the learning rate first grows linearly and then cosine decays.

We implement NCL [31] on the CIFAR100-50 setting, and

other results are mostly cited from their papers. For Stan-

ford Cars, CUB, Aircraft datasets, we utilize DINO [4] pre-

trained ViT as our backbone, and we only finetune the last

block of ViT by Adamw optimizer. For a fair comparison,

we adopt the same training setting to implement RankStats

[11], NCL [31] and UNO [9] on those datasets based on

their released code, and the training is all converged. Spe-

cially, we first pretrain the network on the known classes for

50 epoch, and then jointly train the network on the known

and novel classes for 100 epochs. Regarding hyperparam-

eters, we adhere to the settings outlined in [9] and [15],

assigning a value of 0.1 to τ , 1 to α and 0.4 to t for all

datasets. Additionally, we set β to 0.1 for most datasets,

except CIFAR100-80, which we set to 0.02. Furthermore,

we analyze its sensitivity in the experiments. More compre-

hensive details are in Appendix.

4.2. Results

Comparison with SOTA: We compare our method with

currently state-of-the-art, including UNO [9], ComEx [28],

NCL [31] and RankStats+ [11] in Tab.2. Following them,

we first present the results on the typical CIFAR100 dataset.

Our result on the CIFAR100-50 dataset significantly outper-

forms SOTA. In particular, we outperform UNO by 4.9%.

On three challenging fine-grained datasets, our experimen-

tal results demonstrate that our proposed approach outper-

forms UNO [9] by 3.7%, 6.5%, and 3.7% on Stanford Cars,

CUB, and Aircraft datasets, respectively.

In addition, as shown in Tab.3, we report the results on

the test dataset with task-agnostic evaluation metric. Over-

all, our method outperforms previous methods by a signif-

icant margin on both known and novel classes. Specifi-

cally, on the typical CIFAR100-50 dataset, we achieve 3.6%

and 1.8% improvement on known and novel classes, re-

spectively. On three challenging fine-grained datasets, our

method outperforms the previous state-of-the-art (UNO) by

3-5% on novel classes, while also obtaining 1-2% gains on

known classes. We hypothesize that our method enhances

the learning of novel classes by leveraging class relation-

ships, resulting in a direct improvement in the clustering ef-

fectiveness of novel classes, as well as a reduction in noise

during the learning process. This, in turn, enhances repre-

sentation learning and indirectly improves the performance
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Table 3. Comparison with state-of-the-art methods on CIFAR100, Stanford Cars, CUB, and Aircraft datasets under the inductive setting,

using task-agnostic evaluation protocol. GCD [25] is not applicable to the test set.

CIFAR100-50 Stanford Cars CUB Aircraft

Method Known Novel All Known Novel All Known Novel All Known Novel All

RankStats+ [12] 69.7 40.9 55.3 81.8 31.7 56.3 80.7 51.8 66.1 66.4 36.5 51.5

NCL [31] 72.4 25.7 49.0 83.5 24.4 53.4 79.8 13.1 46.3 62.8 26.5 44.6

UNO [9] 75.0 57.6 66.3 81.7 46.7 63.9 78.7 62.1 70.3 71.2 52.4 61.8

Ours 78.6 59.4 69.0 83.9 51.3 67.3 81.1 67.5 74.2 72.2 55.2 63.7

of known classes. In conclusion, the strong performance of

our method on those challenging datasets demonstrates the

effectiveness of our approach.

The number of clusters is unknown: The above exper-

iments assume that the number of novel classes is known.

However, this is unrealistic in practice. Therefore, in or-

der to further validate the effectiveness of our method in

practical scenarios, we conduct experiments in the case of

an unknown number of classes. We assume that the devi-

ation between the estimated classes and the true classes is

between -20% and 20%. For the case where there are 100

novel classes, -20% means that the estimated classes are 20

less than the true classes, and +20% means that the esti-

mated classes are 20 more than the true classes. We report

the results on the train novel dataset. As shown in Fig.3, in

most cases, our method performs better than previous meth-

ods. Moreover, the more accurate the class estimation, the

more obvious the advantage of our method. We speculate

that when the class estimation error is relatively large, mul-

tiple novel classes may merge or split, making the relation-

ship between the novel and known classes noisy and not

conducive to learning relations.

Visualization: We conducted a qualitative analysis of the

learned feature space using t-SNE [24]. As depicted in

Fig.4, the supervised pre-trained model is noisy and some

classes produced by UNO [9] are entangled, making it diffi-

cult for a linear classifier to distinguish the samples. In con-

trast, our proposed method generates more compact feature

representations that tightly group samples of the same class.

We also present the class relationships produced by our

model on CIFAR100-50. Fig.5 illustrates the averaged pre-

dictions for instances of the novel “ray” class on the known

class head. It shows that the baseline method fails to capture

the “dolphin > flatfish” relation order of “ray”, and while

our proposed method preserves this order. Additionally,

our approach exhibits superior performance in filtering out

background noise, such as “cloud” and “mountain”, and dis-

covering innovative relationships between categories, such

as “aquarium fish” and “lizard”. More visualizations are

available in the appendix.

Overall, our findings demonstrate the effectiveness of

our approach in learning feature representations and class

relationships.

Table 4. Ablation study. Lu
rKD stands for adding KD loss on

the unlabeled data, and g(η) is the learnable weight function on

Lu
rKD . All results are evaluated on the unlabeled training set.

Lu
rKD g(η) Stanford Cars CUB Aircraft

49.1 59.2 52.1

51.9 63.7 53.4

53.5 65.7 55.8

Table 5. Ablation the design of our learnable weight function g(η).
SG and Norm denote Stop Gradient and Normalization, respec-

tively. All results are evaluated on the unlabeled training set.

g(η) Stanford Cars CUB Aircraft

1 51.9 63.7 53.4

η 32.1 58.5 58.5
SG(η) 51.2 64.3 54.7

SG(Norm(η)) 51.9 64.6 54.2

Norm(η) 53.5 65.7 55.8

4.3. Ablation study

Component Analysis: As shown in Tab. 4, we conduct

an ablation study to evaluate the effectiveness of our novel

class relation knowledge distillation regularization (Lu
rKD)

and learnable weight function (g(η)). With Lu
rKD, we see

improvements of 2.8%, 4.5%, and 1.3% on the Stanford

Cars, CUB, and Aircraft datasets, respectively, demonstrat-

ing that the class relation helps guide the learning of novel

classes. Furthermore, the incorporation of the learnable

weight function leads to even further improvement in all

datasets, confirming the effectiveness of both modules.

Learnable weight function: Our goal is to apply con-

straints with different intensities to samples that have vary-

ing semantic relationships. Specifically, we apply stronger

constraints to samples with higher semantic relationships.

In Table 5, we investigate several simple designs for the

weight function and analyze them from the perspectives of

stop gradient (SG) and normalization (Norm). For instance,

SG(η) involves using g(η) = η without backpropagating

gradients. We compare Norm(η) with SG(Norm(η)), yield-

ing significant improvement on all three datasets, indicating
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Figure 3. The x-axis in these plots represents the error rate of the estimated number of novel clusters. For the CUB dataset, which has 100

novel classes, -20% and 20% denote underestimated and overestimated 20 classes, respectively.

Figure 4. t-SNE visualization of unlabeled training set on

CIFAR100-50.

Figure 5. Visualization of quantified relative relationships. The

bar labels represent the known classes in the CIFAR100-50 set-

ting. Each plot shows average predictions for instances of the

novel “ray” class on the known class head.

the superiority of the learnable characteristics. Moreover,

Norm(η) is more stable than η, and outperforms η on Stan-

ford Cars and CUB datasets, validating the effectiveness of

normalization. Although there is theoretically a degenerate

solution in our weight function, which assigns the maxi-

mum weight to the sample with the smallest KL loss term.

In practice, due to the randomness of batch samples, the

model is difficult to optimize towards this degenerate solu-

tion. More analysis is in the Appendix.

Hyperparameter β: Our proposed approach is simple

and effective, utilizing a single hyperparameter β to regu-

late the impact of the class relation regularization term. As

shown in Tab.6, our experiments on the unlabeled training

dataset (Train-Novel) demonstrate that various values of β
result in significant improvements over the baseline model

with β = 0. Furthermore, we observe that as the value of β
increases, the relative gains become increasingly conspicu-

ous. However, it is important to note that excessively high

Table 6. Analysis of hyperparameter β. “Train-novel” refers to

the evaluation of an unlabeled training dataset, whereas the other

results are evaluations of the test set.

β
CUB

Train-Novel Known Novel All

0 59.2 78.7 62.1 70.3

0.01 62.1 80.5 63.1 71.8

0.02 62.0 80.4 64.0 72.2

0.05 63.6 81.0 66.5 73.7

0.1 65.7 81.0 67.5 74.2
0.2 65.1 80.3 65.8 73.0

0.5 67.3 78.3 67.4 72.8

1 67.9 77.2 68.4 72.8

values of β may produce a model that overemphasizes novel

class learning at the expense of weaker performance in the

known classes. This, in turn, can lead to lower overall per-

formance during testing. Based on our results, we suggest

using a default value of β = 0.1, which achieves a better

balance between known and novel class learning.

5. Conclusion

In this paper, we propose a novel class-relation knowl-

edge distillation learning framework, which provides a new

perspective to transferring knowledge from known to novel

classes in the NCD problem. Instead of transferring knowl-

edge only by sharing representation space, we utilize class

relations to transfer knowledge. Specifically, we observe

that the prediction distribution of novel classes on a model

trained on known classes effectively captures the relation-

ship between the novel and known classes. However, this

relationship is disrupted during the discovery training stage.

Therefore, to maintain this meaningful inter-class relation-

ship, we propose a simple and effective regularization term

that constrains the model in the discovery training stage.

Additionally, we propose a learnable weight function that

dynamically assigns more weight to semantically similar

samples, enabling the model to learn the shared semantic in-

formation. Our method achieves significant improvements
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on several general datasets and fine-grained datasets, vali-

dating the effectiveness of our approach. Furthermore, we

hope our findings will shed more light on future work to ex-

plore the relationship between known and novel classes and

enhance the model’s transferbility for knowledge transfer.
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