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Abstract

Neural fields, which represent signals as a function pa-

rameterized by a neural network, are a promising alterna-

tive to traditional discrete vector or grid-based represen-

tations. Compared to discrete representations, neural rep-

resentations both scale well with increasing resolution, are

continuous, and can be many-times differentiable. However,

given a dataset of signals that we would like to represent,

having to optimize a separate neural field for each signal is

inefficient, and cannot capitalize on shared information or

structures among signals. Existing generalization methods

view this as a meta-learning problem and employ gradient-

based meta-learning to learn an initialization which is then

fine-tuned with test-time optimization, or learn hypernet-

works to produce the weights of a neural field. We instead

propose a new paradigm that views the large-scale training

of neural representations as a part of a partially-observed

neural process framework, and leverage neural process

algorithms to solve this task. We demonstrate that this

approach outperforms both state-of-the-art gradient-based

meta-learning approaches and hypernetwork approaches.

1. Introduction

Neural fields, also known as neural implicit represen-
tations or coordinate-based neural networks, have shown
great promise as an alternative to traditional discrete repre-
sentations. Neural fields consider signals and other objects
as functions (fields) mapping coordinates to values, and ap-
proximate these functions with neural networks. They have
been used to represent a myriad of signals including 3D ob-
jects/scenes [25, 34], CT scans [35], and 3D human mo-
tion [36]. This approach has several advantages over dis-
crete representations, including being continuous and hav-
ing non-zero derivatives [32] (depending on the choice of
neural network architecture), and scale much more effi-
ciently than traditional grid-based representations with in-
creasing resolution [1, 4, 15, 23, 28, 29, 34].

Typically, the field quantities are not themselves directly

observable, but partial sensor observations are available.
The function relating the field quantities to sensor obser-
vations is called the forward map. The most common algo-
rithm for training neural fields is thus follows the following
paradigm [37]: first, coordinates are sampled and passed
through a neural network to predict the corresponding field
quantities. Then the forward map maps the field quantities
to the sensor domain, where we can calculate a reconstruc-
tion loss between the neural network’s predictions and our
ground-truth partial observations in the sensor domain. This
reconstruction loss is then used to supervise the training of
the neural field (see Figure 1).

However, one of the major drawbacks of this neural field
training paradigm is that it is computationally expensive
for a large dataset of signals, since a separate neural net-
work must be trained from scratch for each signal, requir-
ing a large amount of memory and computation [20], which
we will henceforth refer to as the neural field generaliza-
tion problem. Previous approaches to this problem include
conditioning, hypernetworks [3], and gradient-based meta-
learning [20, 35]. The first two approaches [11, 31, 32]
seek to directly learn some or all of the parameters of a
neural field. The third approach views the problem as a
meta-learning problem, where each individual signal is con-
sidered a different task [20, 31, 35], and apply standard
gradient-based meta-learning algorithms such as MAML
[9] or Reptile [26] to find a parameter initialization that
can be quickly fine-tuned for any specific signal. Previ-
ous results are mixed: [31] finds that gradient-based meta-
learning can outperform concatenation and MLP hypernet-
works, whereas [3] finds that hypernetworks with a vi-
sion transformer [6] encoder can outperform gradient-based
meta-learning [35] on tasks where the available partial ob-
servations are 2D images.

However, gradient based meta-learning suffers from
many problems, such as underfitting on large datasets and
hyperparameter sensitivity. Recent research [12] finds that
neural processes, another meta-learning framework, are
more flexible and efficient for complex visual regression
tasks, which we hypothesize will carry over to the neural
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field domain. Additionally, one of our key observations
is that the encoder-decoder structure of neural processes is
an extension of the hypernetwork approach, making a neu-
ral process-style framework a natural choice for the neu-
ral field generalization problem. However, the usual neural
process framework can not be applied directly to most neu-
ral field tasks, since in most neural field tasks the training
of the neural field is supervised by partial sensor observa-
tions, whereas neural processes generally assume that we
have direct observations of the field available. Therefore,
we propose a simple partially-observed framework to adapt
the neural process framework to the neural field domain that
incorporates the forward map relating field observations to
sensor observations.

In this work, we propose neural processes as an alterna-
tive to the traditional gradient-based meta-learning and hy-
pernetwork approaches for neural field generalization. Our
contributions are as follows:

1. We propose to use neural processes to tackle the neural
field generalization problem. In particular, we adapt
the traditional neural process framework to the com-
mon neural field setting where only partial observa-
tions of the field are available, and our framework is
agnostic to the neural process architecture, allowing us
to incorporate new advances in neural processes.

2. We show that neural processes can outperform both
state-of-the-art gradient-based meta learning and state-
of-the-art hypernetwork approaches on typical neural
field generalization benchmarks, including 2D image
regression and completion [3, 35], CT reconstruction
from sparse views [35], and recovering 3D shapes
from 2D image observations [3, 35].

2. Related Works

Fitting neural fields for multiple signals There are three
main approaches to efficiently train neural networks for a
large dataset of signals. The first two approaches are latent
variable approaches where a latent representation is lever-
aged to produce the weights of the neural field. The latent
code can be learned through an encoder or through auto-
decoding [37]. The first approach is to concatenate a latent
representation of the signal to the input coordinates. This
has been shown to be equivalent to defining an affine func-
tion  that maps the latent code to the biases of the first
layer of the neural representation [8, 22, 31, 37]. Hypernet-
works [5, 27, 32–34] generalize the concatenation approach
by seeking to predict the complete set of weights of a neu-
ral field. The third major approach is to use gradient-based
meta-learning in order to learn a prior over the signals,
which is specialized to the final neural field for any par-
ticular signal by test-time optimization, and previous work
has shown this approach to be superior to the hypernetwork

approach [31]. Recent work [3] has returned to the hyper-
network idea by proposing to use vision transformers [6] as
the encoder of the hypernetwork, and show that it can out-
perform gradient-based meta-learning methods. However,
this approach is limited to settings where the partial ob-
servations or sensor data are 2D images. Neural processes
were included as a baseline to the proposed meta-learning
method in [31], but otherwise has not been explored in the
literature. We show that advances in neural process archi-
tectures [16, 19] allow their performance to exceed that of
gradient-based meta-learning, and that this persists when
moving to more complex forward maps.

Gradient-based Meta-learning Gradient-based meta-
learning algorithms such as MAML [9] or Reptile [26] have
been the dominant approach [20, 31, 35] used to efficiently
train neural fields over many signals. This approach takes
the view that for a dataset of neural fields, each neural field
is a specialization of a meta-network [37]. [31] finds that
using the gradient-based meta-learning of neural fields for
signed-distance functions outperform concatenation, hyper-
networks, and conditional neural processes. [35] applies
standard gradient-based meta-learning algorithms (MAML
and Reptile) to image regression, CT reconstruction, and
view synthesis tasks. Our work instead proposes to use
a new partially-observed NP framework to perform these
tasks. [20] proposes using MAML in conjunction with
pruning techniques to learn sparse neural representations.
This method tackles a problem that is orthogonal to the gen-
eralization problem and could possibly be adapted to work
in conjunction with our method.

Neural Processes Neural processes is a meta-learning
framework that aims to learn a distribution over models
by modelling a stochastic process. Architecturally, Neu-
ral processes are encoder-decoder models that are trained
with probabilistic inference. There are two major classes of
neural processes: conditional neural processes [7, 13, 16]
and latent neural processes [10, 14, 19], which are latent
variable models. Latent variable neural processes can of-
fer better modelling at the cost of having intractable train-
ing objectives [7]. There are three major architectures for
neural processes: MLP [13, 14], where both the encoder
and decoder are MLPs and the an aggregate representa-
tion is produced via taking the mean, attention-based [19],
where the aggregator is an attention module, and convolu-
tional [10, 16], which uses a discrete version of the con-
volution operator in order to give the network translation
equivariance. MLP-based models tend to underfit compared
to the other two classes of models, and convolutional mod-
els tend to create smoother samples compared to attentive
models [7, 19]. Neural processes have been used for low-
dimensional regression [10, 13, 14, 16, 19], image comple-
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tion [10, 13, 14, 16, 19], Bayesian optimization [10, 14],
and visual regression tasks [12]. There is concurrent work
[17] that proposes a Versatile Neural Process (VNP) archi-
tecture, based on attentive neural processes [19], for neural
field generalization. In contrast, our work proposes a neu-
ral process framework that is both encoder and neural-field
agnostic.

3. Method

In this section, we will first introduce necessary notation
and give an overview of neural processes (Section 3.1). We
then relate neural processes to neural fields and present our
proposed neural process-based framework for neural field
generalization (Section 3.2). Finally, we will describe the
training of our neural process framework in Section 3.3.

Notation In the meta-learning setting, we have a set of
tasks M = {Di}Ntasks

i=1 . Each task Di is a dataset with a
training set, which we will call the context set and denote
by C, and a test set, which consists of target inputs (de-
noted xT ) and target outputs (denoted yT ). Our goal is
to train a function f(·; C) such that given the context C of
some new task, we get a predictor fC(·) that maps the target
inputs to the target outputs with low error.

When discussing neural fields, we follow the terminol-
ogy of [37]: data points or signals are viewed as a field

� : X ! Y . that assigns to all coordinates x 2 X some
quantity y 2 Y . A neural field parameterizes�with a neu-
ral network with parameters ⇥, which we will denote �⇥.
The goal is to find ⇥ such that �⇥(x) ⇡ �(x), 8x 2 X .”
As discussed above, typically we only have partial observa-
tions from a sensor domain. The sensor data is related to the
field quantities via a forward map, which we formally view
as an operator F (�; ✓) that takes in a neural field � and
sensor parameters ✓ and produces an output in the sensor
domain, which is typically much lower-dimensional. Ex-
amples of sensor parameters ✓ are the projections angles in
CT reconstruction or the camera parameters for NeRFs. We
will assume that F is differentiable, allowing the use of gra-
dient descent optimization.

3.1. Neural Processes

Neural processes [14] are a class of latent-variable neu-
ral network models that aim to learn distributions over func-
tions. This makes them a natural meta-learning algorithm,
as they can be viewed as a probabilistic model over task
predictors. Neural processes seeks to parameterize the dis-
tribution p(yT |xT , C) with a neural network. The basic
structure of a neural process consists of three main com-
ponents [14]: 1.) a permutation-invariant encoder that en-
codes the context set C, 2.) an aggregator that produces a
representation z of C, and 3.) a decoder that takes as in-
put both the representation z as well as the target inputs xi

and outputs p(yT |xT , C). Training a NP proceeds as fol-
lows: first a dataset Di 2 M is chosen, and then a context
(training) set C is chosen from Di. C is then encoded into
a global representation z = A(E(xC ,yC)). The decoder
takes as input the test inputs xT , is conditioned with z, and
outputs p(yT |xT , C) = D(xT ; z). The true log likelihood
L = log p✓(yT |xT ; C) is then computed analytically or es-
timated. The gradient rL is used to optimize the parame-
ters of the NP via stochastic gradient optimization.

Conditional NPs vs Latent NPs There are two main
ways to model the distribution p(yT |xT , C): the first as-
sumes conditional independence with respect to C and are
known as conditional neural processes (CNPs), and the
second, which models the distribution with a probabilitic
latent vector z in the same manner as a variational autoen-
coder (VAE), known as latent neural processes (LNPs).
Implementation-wise, CNPs resemble autoencoder whereas
LNPs resemble VAEs. CNPs can be trained with maxi-
mum likelihood estimation, but for LNPs, as with VAEs,
the true likelihood is intractable. To get around this, the
true likelihood can be estimated either using Monte-Carlo
integration, called NPML [10], or with variational inference
(NPVI) [14]. LNPs trained with NPML often outperform
those trained with NPVI but require more computation in
the form of additional Monte-Carlo samples [10].

3.2. Our Partially-Observed Neural Process Frame-

work

Connection between neural processes and neural fields

To illustrate the connection between neural processes and
neural fields, we examine one of the tasks frequently bench-
marked in the neural process literature: image completion
[10, 13, 14, 16, 19], where a subset of the pixels of an im-
age and their color values are provided as the context inputs
and outputs, and the goal is to predict the color values of
all the pixels of the image. The target inputs are the coordi-
nates of pixels, and the desired target outputs are the color
values of those pixels. Our key observation is that this is a
neural field task, with the forward map being the projection
map onto the seen context pixels. Recall that in the neural
process framework (Section 3.1), the decoder of the neural
process takes as input coordinates as well as a representa-
tions of the context set, and returns their color values, so the
neural process decoder is equivalent to a conditional neural
field (Figure 1). In this example, the neural process encoder
also encodes the partial sensor observations (output of the
forward map).

Our neural process framework Based on the observa-
tions of the previous section, we propose our partially-
observed neural process framework (PONP) for training
neural fields (see Figure 1): 1.) a task-specific encoder,
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Figure 1: An example of PONP using NeRF [24]. (a) The typical neural field training framework with forward map F , which
is essentially the bottom branch of (b). (b) Our proposed PONP framwork. First, ground truth partial sensor observations are
encoded into a representation z, possibly with sensor parameters (not shown). Second, z is used to condition a neural field
decoder, and we generate a prediction for the field quantities and apply F . Third, we supervise the network with probabilistic
inference (e.g. maximum likelihood). Unlike (a), the networks are shared across all signals (not shown).

which takes as input partial sensor observations and aggre-
gates them into a representation z, (red box) 2.) a decoder,
which consists of a conditional neural field decoder, which
is conditioned on z and designed to take as input field co-
ordinates, and whose output is fed through the forward map
F , producing a distribution (green box), and 3.) is trained
with probabilistic inference (blue box). Note that with our
framework we are able to leverage both existing neural
process architectures (MLP, attention-based, and convolu-
tional) and latent variables approaches (i.e., LNPs). Details
on how we define the distribution are deferred to Sec. 3.3.

Conditioning the neural field In order to produce differ-
ent neural fields for different input signals, we need to con-
dition our neural field decoder using the learned representa-
tion extracted from our context set. The simplest approach
for doing this is to concatenate the representation with the
input to the neural field [31]. However, since concatenation
is equivalent to predicting the biases of the first layer of a
neural network, concatenation is only suitable for datasets
with very similar signals, such as the 2D CT reconstruction
dataset [35]. To learn more diverse signals, more power-
ful approaches are required. Hypernetworks [18] general-
ize concatenation by having the encoder learn to produce
the complete set of weights for the neural field, at the cost
more parameters. This approach has been used by previous
methods [3, 31, 33] as a way to learn more complex struc-
tures. Our choice of conditioning varies based on the task
structure.

3.3. Probabilistic inference

Recall that neural processes are trained with a maximum
likelihood objective. For our neural process-inspired frame-
work, there are two choices of how to define the distribu-
tion: either over the field space or over the sensor space.
As discussed previously, these spaces are typically not the

same, as the sensor space is generally lower dimensional.
Since we only have groundtruth observations in the sensor
domain, defining our distribution over the field space has the
disadvantage that we need to use the change-of-variables
formula for probability distributions on the forward map F
to compute the likelihood of groundtruth observations as
required by maximum likelihood training. Since the for-
ward map F may be very complex and thus not bijective or
even injective, we cannot use the typical (bijective) change-
of-variables formula but instead need to use a more gen-
eral change-of-variables formula, which are much harder to
compute or estimate. Defining the distribution on the sensor
space avoids these problems.

Our framework In our framework, we define our distri-
bution as an independent Gaussian distribution at each coor-
dinate in the sensor domain. Practically, this is implemented
as follows: given a conditional neural field as the first stage
of the decoder, we modify the last layer to have two heads,
producing outputs M,⌃. The output of both heads are then
fed separately through the forward map F to produce µ,�,
which become the mean and standard deviation of our dis-
tribution, respectively.

4. Experiments

4.1. Experimental Setup

We adapt the following experimental setup, which con-
sists of two steps: 1.) meta-learning and 2.) test-time opti-
mization, if necessary. Meta-learning consists of training a
model on all signals in order to find a good initialization for
the neural fields, and test-time optimization specializes the
weights of the neural field to a particular signal. In order
to make a fair comparison, we allow the same number of
test-time optimization steps, if necessary, for all methods,
and use comparable neural field architectures. For all tasks,
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reconstruction quality is measured by peak signal-to-noise
ratio (PSNR).

4.2. Baselines

We use the following baselines: standard neural field
initialization, with test-time optimization, the method of
[35], which applies a standard gradient-based meta-learning
algorithm (either MAML [9] or Reptile [26]) and then
fine-tunes with test-time optimization, and where applica-
ble the Transformer INR method [3], which uses a vision
transformer-based hypernetwork approach that uses a vision
transformer to learn the weights of a neural field from 2D
image sensor data. The use of a vision transformer encoder
means that the Transformer INR method is not suitable for
all tasks. Unlike the previous two baselines, this method
does not require test-time optimization.

4.3. Tasks

In order to directly compare our neural process approach
against previous methods, we test our method using four
benchmarks, three of which were first proposed by [35].
More details about the tasks can be found in Appendix A.

Table 1: Forward maps F for our three tasks.
Task F Input & Output

Image Masking Pixel Location ! RGB value
CT Integral projection 2D image ! 1D sinogram
NVS Volume rendering Radiance field ! 2D image

2D image regression and completion In the image re-
gression task, a neural field is trained to represent a 2D im-
age by taking as input 2D pixel coordinates and outputting
the corresponding RGB color values [35]. We use the
CelebA [21] dataset, which consists of over 200K images
of human faces. We downsample each image to 32 ⇥ 32.
For the 2D image completion task, the groundtruth RGB
values are known at some percentage of the pixels and the
rest of the pixels are masked. As discussed earlier, this is
a neural field task where the forward map is the indicator
function on the pixels for which we have groundtruth (see
Table 1).

2D CT reconstruction The CT reconstruction task is to
reconstruct a 2D CT scan given a sparse set of 1D projec-
tions of the CT scan. The CT reconstruction dataset consists
of 2048 randomly generated 256⇥ 256 Shepp-Logan phan-
toms [30]. The projections are generated from the CT scans
by the forward map F given by 2D integral projections of
a bundle of 256 parallel rays from a given angle (see Ta-
ble 1). At test time, we are given 1, 2, 4, and 8 projections
(views) with which to reconstruct the phantom. We are al-

Table 2: Comparison of neural field generalization methods
on the 2D image regression task. The best PSNRs in the
whole table are shown in bold and the second-best PSNRs
are underlined. Parameters refers to the total number of pa-
rameters for the model, including the neural field itself. The
TTO column is checked if test-time optimization was used.

MODEL TTO PSNR PARAMS

RANDOM INIT. 3 10.87 50K
REPTILE [35] 3 25.27 50K
MAML [35] 3 32.36 50K
TRANSFORMER INR [3] 7 48.36 44.3M

PONP (OURS) 7 78.87 340K

Table 3: Comparison of neural field generalization methods
on the 2D image completion task. The best PSNRs in the
whole table are shown in bold and the second-best PSNRs
are underlined. Parameters refers to the total number of pa-
rameters for the model, including the neural field itself. The
TTO column is checked if test-time optimization was used.

MODEL TTO PSNR PARAMS

RANDOM INIT. 3 10.23 50K
REPTILE [35] 3 14.65 50K
MAML [35] 3 13.35 50K
TRANSFORMER INR [3] 7 18.09 44.3M

PONP (OURS) 7 23.24 340K

lowed 50, 100, 1000, and 1000 test-time optimization steps,
respectfully, for each of the four settings.

View synthesis for ShapeNet objects View synthesis is
the task of generating a novel view of a 3D object or scene
given some number of input views, and is typically tack-
led with neural radiance fields [3, 24]. Neural radiance
fields learn the radiance of a 3D scene with a neural field
and use the volume rendering forward map to generate 2D
views from a given viewing angle (see Table 1). For the
ShapeNet [2] view synthesis task, the data is created from
objects taken from one of three ShapeNet classes: chairs,
cars, and lamps. For each 3D object, 25 128⇥128 views are
generated from viewpoints chosen randomly on a sphere.
The goal is to generate given unseen views. The two dif-
ferent settings proposed in [35] are the multi-view setting,
where we are allowed to train with the full 25 training views
of each object, and the single-view setting, where we are
only allowed to train with a single view per object. Since
the Transformer INR baseline only reports results on the
single-view and 2-shot (2 view) versions of the task, we
only consider these tasks as well. We are allowed 1000-
2000 test-time optimization steps, depending on the class
of the object and the setting (multi-view or single-view).

5334



R
ep

til
e

N
P

N
P

(T
TO

)

1 View 2 Views 4 Views 8 Views Target

Figure 2: Examples of CT scan reconstruction from a sparse set of projections. The reconstructed scans learned by the neural
process models are much sharper than their counterparts generated by gradient-based meta-learning.

Table 4: Comparison of initialization methods on the CT Reconstruction task. The best PSNRs in the whole table are shown
in bold and the second-best PSNRs are underlined. The TTO column is checked if test-time optimization was used.

MODEL TTO 1 VIEWS 2 VIEWS 4 VIEWS 8 VIEWS

RANDOM INIT. [35] 3 13.63 14.15 16.31 21.49
REPTILE [35] 3 15.09 18.70 22.00 27.34
PONP (OURS) 7 16.39 20.39 22.13 22.60
PONP (OURS) 3 24.67 29.11 37.54 37.66

4.4. Results

2D image regression and completion For both the 2D
image regression and 2D image completion tasks, the field
space and sensor space are the same, so our PONP frame-
work coincides with the normal neural process framework.
We use a convolutional CNP architecture [7], as the convo-
lutional encoder is well-suited to handling 2D image data.
For both the image regression and image completion tasks,
we set the context and target inputs to be the 2D pixel co-
ordinates, and the context and target outputs as RGB color
values. For the image completion task, we randomly mask
between 10-30% of the pixels. For the Transformer INR
baseline, which requires 2D images as input, the masked
pixels are assigned a value of 0.

Quantitative results for the image regression and com-
pletion tasks can be found in Tables 2 and 3, respectively.
We find that even without the benefit of test-time optimiza-
tion, our PONP framework greatly outperform gradient-
based meta-learning methods and hypernetwork methods.
In particular, PONP greatly outperforms the state-of-the-art
Transformer INR hypernetwork method while using just a

fraction of the parameters. We also observe that, as in [3],
the Transformer INR method outperforms gradient-based
meta-learning methods on both tasks. We also find that
within gradient-based optimization methods, Reptile out-
performs MAML in partially-observed settings, whereas
the reverse is true in the fully-observed setting, as in [35].
Qualitative results can be found in the Appendix (Figure 5).

2D CT reconstruction For this task, we use an attention-
based encoder in our PONP framework (see Section 4.5).
We let the target inputs xT be the coordinates of the 2D
image, and the target outputs yT be the corresponding vol-
ume densities. We also set the context output be the volume
density, and we choose the context inputs to be the angles
used to produce the projections, since the image coordinates
do not add any extra information. We also drop the ran-
dom Fourier features used by the neural field in [35], as we
find that the performance of our method is much lower with
Fourier features. For this task, we do not compare against
the Transformer INR baseline [3], which is unsuitable to
handling the 1D partial information.
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Figure 3: Qualitative examples of our PONP framework for the ShapeNet view synthesis experiment.

Table 5: Comparison of neural field generalization and initialization methods on the ShapeNet view synthesis task. The best
PSNRs without test-time optimization and with test-time optimization are bolded.

MODEL VIEWS TTO CHAIRS CARS LAMPS

RANDOM INIT. [35] 0 3 12.49 11.45 15.47
MATCHED [35] 25 3 16.40 22.39 20.79
SHUFFLED [35] 25 3 10.76 11.30 13.88
REPTILE [35] 1 3 16.54 22.10 20.95
REPTILE [35] 25 3 18.85 22.80 22.35

TRANSFORMER INR [3] 1 7 19.66 23.78 22.76
PONP (OURS) 1 7 19.48 24.17 22.78

TRANSFORMER INR [3] 2 7 21.10 25.45 23.11
PONP (OURS) 2 7 21.13 25.98 23.28

TRANSFORMER INR [3] 1 3 20.56 24.73 24.71
PONP (OURS) 1 3 20.55 24.99 24.86

TRANSFORMER INR [3] 2 3 23.59 27.13 27.01
PONP (OURS) 2 3 23.73 27.49 27.04

Quantitative results can be found in Table 4 and qual-
itative results can be found in Figure 2. We observe that
our PONP method significantly outperforms Reptile. Visu-
ally, we also observe that the predicted CT reconstructions
are much sharper with our PONP method than with Rep-
tile. We also observe that even without test-time optimiza-
tion, our neural process method is able to outperform ran-
dom initialization (i.e., training a neural field from scratch)
and is able to outperform Reptile in the 1, 2, and 4 view
settings. This shows that with similar amounts of test-time
optimization, neural processes greatly outperform gradient-
based meta-learning, and in the test-time optimization free
setting neural processes are still competitive, especially in
setting with low amounts of partial information, while re-
quiring zero test-time computation.

Due to probabilistic nature of our method, we can use
the standard deviations learned post-forward map as a mea-

sure of uncertainty. The mean and standard deviation of re-
constructions from 100 latent z samples from our AttnLNP
CT model with 1 input view. Our model shows uncertainty
about the boundaries of the different regions of the CT scan.
See Figure 4.

View synthesis for ShapeNet objects For this task, we
also report the Matched and Shuffled baselines of [35].
Matched is an initialization that is trained from scratch
to match the output of the meta-learned initialization, and
Shuffled is an initialization that permutes the weights in the
meta-learned initialization [3, 35]. Since a key part of in-
stantiating our PONP framework for a given task is finding
a suitable encoder, we adapt the vision transformer [6] en-
coder of the Transformer INR method. This makes sense
since the vision transformer encoder can be thought of as
an attention-based neural process encoder that takes is de-
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Table 6: Comparison of different neural process architectures for our PONP method on the CT reconstruction task. In each
of the second and third sections of the table (corresponding to methods not using test-time optimization and methods using
test-time optimization, respectively), the best performing PSNRs are bolded and the second-best PSNRs are underlined. The
TTO column is checked if test-time optimization was used.

ARCHITECTURE TTO 1 VIEWS 2 VIEWS 4 VIEWS 8 VIEWS

RANDOM INIT. [35] 3 13.63 14.15 16.31 21.49

CNP [13] 7 16.39 20.39 22.14 22.60
LNP [14] 7 16.28 19.43 21.02 21.34
ATTNCNP [7] 7 16.24 20.12 22.60 23.60
ATTNLNP [19] 7 16.26 20.27 23.07 23.88

REPTILE [35] 3 15.09 18.70 22.00 27.34
CNP [13] 3 24.67 29.11 37.54 37.66
LNP [14] 3 24.66 26.92 29.22 29.34
ATTNCNP [7] 3 18.32 25.14 38.18 38.24

ATTNLNP [19] 3 18.10 23.42 32.47 32.94

GT Mean Var.

Figure 4: Visualizing uncertainty prediction by PONP.

signed for the 2D image sensor observations and conditions
a neural field via hypernetwork. To fully incorporate the
vision transformer encoder into our framework, we modify
the neural field to produce the mean and variance of a Gaus-
sian distribution and apply the CNP loss (see Sec. 3.2).

Quantitative results can be found in Table 5 and quali-
tative results can be found in Figure 3. Noting that PSNR
is a on a log scale, we find that our method is compara-
ble to or slightly outperforms the previous state-of-the-art
Transformer INR baseline, while being more widely appli-
cable. Our method also slightly improves over the Trans-
former INR method when the number of views increases
to 2. We also find that even with only 1 view, our method
clearly outperforms gradient-based meta-learning methods,
even without test-time optimization.

4.5. Ablations

Architecture In the absence of a specially-designed en-
coder, our PONP framework can leverage existing neural

process architectures. We examine the performance of dif-
ferent neural process architectures on the CT reconstruc-
tion task. We compare among the CNP [13], LNP [14],
AttnCNP [7], and AttnLNP [19] architectures. Quantitative
results on the CT reconstruction experiment can be found
in Table 6. We find that the more recent attention-based
architectures tend to outperform older MLP-based architec-
tures when no test-time optimization is allowed. With test-
time optimization, all neural process architectures outper-
form the Reptile and random initialization baselines. Unex-
pectedly, CNP architectures outperforms LNP architectures
by a wide margin, which is unexpected as both the pre-test-
time optimization results are similar and and LNP models
do not achieve significantly better likelihoods during train-
ing. We hypothesize that this is due to sampling from the
latent distribution required by LNP architectures. Without
test-time optimization, we find that all neural process archi-
tectures outperform the Reptile baseline when there are a
low amount of projections and test-time optimization steps,
with the best model (AttnLNP) outperforming all baselines
in the 1, 2, and 4 view settings.

5. Conclusion

In summary, we introduce a new framework for neural
field generalization that is inspired by neural processes. We
show that our framework outperforms both gradient-based
meta-learning and hypernetwork approaches for a variety of
different neural field problems. With this work, we demon-
strate the promise of neural process-based algorithms for
efficiently learning neural fields. In this direction, avenues
for future investigation include quantifying the predictive
uncertainty learned by neural process algorithms and appli-
cations of our method to applications such as biomedical
imaging and reconstruction.
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