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Abstract

Knowledge distillation (KD) has been widely explored
in unsupervised anomaly detection (AD). The student is as-
sumed to constantly produce representations of typical pat-
terns within trained data, named “normality”, and the rep-
resentation discrepancy between the teacher and student
model is identified as anomalies. However, it suffers from
the “normality forgetting” issue. Trained on anomaly-free
data, the student still well reconstructs anomalous repre-
sentations for anomalies and is sensitive to fine patterns in
normal data, which also appear in training. To mitigate this
issue, we introduce a novel Memory-guided Knowledge-
Distillation (MemKD) framework that adaptively modu-
lates the normality of student features in detecting anoma-
lies. Specifically, we first propose a normality recall mem-
ory (NR Memory) to strengthen the normality of student-
generated features by recalling the stored normal informa-
tion. In this sense, representations will not present anoma-
lies and fine patterns will be well described. Subsequently,
we employ a normality embedding learning strategy to pro-
mote information learning for the NR Memory. It constructs
a normal exemplar set so that the NR Memory can memorize
prior knowledge in anomaly-free data and later recall them
from the query feature. Consequently, comprehensive ex-
periments demonstrate that the proposed MemKD achieves
promising results on five benchmarks.

1. Introduction

Anomaly detection (AD) has attracted increasing atten-
tion in recent years for its wide applications, to name a few,
defect detection [23], medical diagnosis [34], and video
surveillance [10]. The lack of anomalous samples makes
it more challenging and it is usually formulated as an unsu-
pervised learning problem, only relying on normal data.
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Figure 1. Left: Current knowledge distillation based paradigms.
Right: Our method adopts the memory to strengthen the normality
of student-generated features and learns the normal information
via the normality embedding learning strategy (dotted lines).

Since anomalous data are unavailable in the training
phase, a straightforward choice is to compare the normal
data with the given target. To achieve this, memory bank
based techniques [6, 24, 32] are proposed. They exploit
the memory bank to store normal representations extracted
by the ImageNet [9] pre-trained network. These features
are then used to measure the normality distribution and out-
liers are considered to be anomalous. However, to compute
anomaly maps, they need to search the entire memory bank
through complex formulations, which increases the compu-
tational complexity as the size of the training set grows.

Reconstruction based methods [17, 11, 19] are conceptu-
ally simple and have been extensively explored for the task.
It is expected that the reconstruction error of normal sam-
ples is lower than that of abnormal samples and anomalies
can be detected by thresholding the difference between the
input and the retrieved one. Nevertheless, they may fail to
reconstruct subtle details from latent representations, result-
ing in large reconstruction errors for anomaly-free data.

Recent efforts tend to explore the Knowledge Distilla-
tion (KD) [13] and instead detect the anomaly at the feature
level (left part in Fig. 1) for unsupervised AD. The student is
assumed to constantly produce presentations of typical pat-
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Figure 2. “Normality forgetting” on MVTec AD [23]. As a refer-
ence, we show a similar image from the training set for each test
sample. Compared to RD [8], our MemKD accurately localizes
the ‘missing cable’ on ‘cable’ and also suppresses the response
to fine patterns in normal data (tiny dust on the ‘zipper’ and fine
textures on the ‘bottle’), which also appear in training data.

terns within trained normal data, which is called “normal-
ity”, and the discrepancies between features in the teacher
and student (T-S) network are used for anomaly detection.
However, the assumption is not always ensured and the stu-
dent suffers from the “normality forgetting” issue. For ex-
ample, the student still produces anomalous representations
for anomalies, resulting in slight feature discrepancy be-
tween the T-S. Finally, the model fails to detect the missing
of an axial in the triaxial cable (1st row of Fig. 2). Besides,
the capacity discrepancy between the T-S is more likely to
make the student unable to capture fine patterns in anomaly-
free data and gives inconsistent features to them, becoming
sensitive. As shown in the last two rows of Fig. 2, the tiny
dust and inessential textures are considered anomalous even
if similar patterns have appeared in normal training data.

To tackle the above problem, we consider how to inte-
grate normal information into student-generated features so
that anomalies will not be presented on the representations
and fine patterns can also be described. We take inspiration
from the memory process of humans that associate visual
cues with memorized knowledge to achieve this.

Following the above intuitions, we propose a novel
Memory-guided Knowledge Distillation (MemKD) frame-
work to handle the “normality forgetting” issue of the stu-
dent, as demonstrated in the right part of Fig. 1. Specifi-
cally, we design a normality recall memory (NR Memory)
to adaptively modulate the normality of student features. It
stores normal information and recalls it from query features
to strengthen the normality. Subsequently, we adopt a nor-
mality embedding learning strategy to guide the memory to
learn prior knowledge about anomaly-free data. This strat-

egy enables the NR memory to memorize the normality and
further integrate it into the query feature by dealing with
relevant information. Comprehensive experiments and vi-
sualization results validate the effectiveness of the proposed
MemKD. In summary, the main contributions are threefold:

• We identify the “normality forgetting” issue of the stu-
dent in knowledge distillation based anomaly detec-
tors, and propose a novel Memory-guided Knowledge
Distillation framework to address it.

• We design the NR Memory to recall normal informa-
tion for strengthening the feature normality in the stu-
dent network. Besides, we also devise a normality em-
bedding learning strategy to promote the memorization
of normal information from anomaly-free data,

• The proposed method outperforms its state-of-the-art
competitors on five widely used benchmarks, and ex-
tensive experiments further validate its effectiveness.

2. Related Work
2.1. Unsupervised Anomaly Detection

The scarcity of anomalous data makes anomaly detec-
tion an unsupervised learning problem. To this end, various
techniques are proposed where the most relevant methods
are based on knowledge distillation and memory bank.

Knowledge distillation based methods train the stu-
dent network via feature distillation from pre-trained teach-
ers with anomaly-free data and the generated features from
them are assumed to be discrepant for anomalies. To in-
crease their discrimination, US [1] ensembles several mod-
els trained on normal data at different scales and MKD [28]
distillates features at various stages of a pre-trained expert
network. To avoid the structural similarity of the T-S hin-
dering the representation capacity for anomalies, RD [8] in-
stead builds the student upon the teacher model’s output and
targets the teacher’s outputs from different stages. However,
KD-based methods face the “normality forgetting” issue of
the student network. Contrarily, we attempt to mitigate it by
introducing a novel normality recall memory module.

Memory bank based methods exploit representations
from pre-trained deep neural networks to model the distri-
bution of normality. To achieve this, SPADE [5] proposes
the semantic pyramid anomaly detection framework to es-
timate dense pixel-level correspondence between the target
and the normal to detect the anomaly. PaDiM [6] presents a
new paradigm for patch distribution modeling which makes
use of a pre-trained network for patch embedding and cor-
relations between different semantic levels are considered
as cues to identify anomalies. PatchCore [24] further con-
structs a memory bank to store nominal patch features for
comparison between the given target and normal features.
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Figure 3. Overview of the proposed MemKD framework. It consists of an anomaly detection path with solid line and a normality embedding
learning path with dashed line (used in the training phase only). We first design the NR memory module to strengthen the normality of the
query feature FS

i at the ith stage in the student. Then we construct a normal exemplar set E to guide the memorization of prior knowledge
from anomaly-free data for the memory module. ⊕ represents the concatenation operation. Best viewed in color.

Note that pre-trained models may overestimate the nor-
mality of abnormal features, CFA [18] proposes to adapt
patch representations to the target dataset and presents the
coupled-hypersphere feature adaptation framework. Differ-
ent from them storing features of training data, our method
distills the normality to the NR Memory, significantly re-
ducing the memory consumption for storage (see Tab. 3).

2.2. Memory Module for AD

The memory module [12] attracts much attention and
has been introduced into Auto-Encoder (AE) [17] to en-
code diverse normal patterns from normal training data.
MemAE [10] proposes the memory-augmented AE to sup-
press the model’s generalization capacity. Memory items
are set as part of the network to automatically learns normal
patterns for reconstruction. LMN [22] extends it and up-
dates memory items in both training and testing by aggre-
gating the information from the encoder. Rather than learn-
ing memory items via back-propagation, LND [20] designs
a lightweight prototype unit to adaptively generate the nor-
mal prototypes. DA [15] generalizes MemAE to block-wise
modules for maximizing the gap between the reconstruction
error. Compared to the above AE-based methods, we spe-
cially design a novel NR Memory based on the key-value
architecture and a normality embedding learning strategy
for knowledge distillation. With the learning strategy, the
NR Memory can efficiently memorize normal information
and recall them from query features.

3. Preliminaries
Assume that there exists a training set Strain with suf-

ficient anomaly-free samples and a test set Stest contain-

ing both normal and abnormal samples, which belong to the
same category and are sampled from the same distribution.
The goal of this task is to learn a model on Strain so that
anomalies in Stest can be detected and localized. In this
work, we adopt the knowledge distillation for unsupervised
AD and briefly depict it as follows.

3.1. Knowledge Distillation for Anomaly Detection

In the context of unsupervised AD, the student model ex-
posed to normal samples during training is expected to pro-
duce constantly anomaly-free representations and the dis-
crepancies between features in the teacher and student (T-S)
network provide essential evidence for anomaly detection.

Formally, given an input image I ∈ RC×H×W (C,H ,
and W is the channel, height, and width of I), a frozen
pre-trained teacher network T is exploited to extract fea-
tures for I from multiple levels, denoted as {FTi

}Ki=1 ∈
RCi×Hi×Wi , where the index i indicates the ith stage. Then
a learnable student network S is required to reconstruct
them. Let {FSi

}Ki=1 ∈ RCi×Hi×Wi be the reconstructed
features. To optimize the student, the cosine distance be-
tween FSi and FTi is measured [28]:

d(FSi
, FTi

) = 1− flat(FSi)

∥flat(FSi
)∥2

· flat(FTi
)T

∥flat(FTi
)∥2

, (1)

where flat(·) : RCi×Hi×Wi → RCiHiWi is the vectoriza-
tion function and ∥ · ∥2 is the l2 norm. Finally, the super-
vision for the knowledge distillation from the teacher to the
student is given by accumulating d(FSi

, FTi
):

LKD =

K∑
i=1

d(FSi , FTi), (2)
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where K is the number of stages used for distillation.
At test time, the anomaly map si ∈ RHi×Wi defined

as the pixel-wise similarity between FSi
and FTi

at the ith

stage is first calculated:

si(h,w) = 1−
Ci∑
c=1

Sim(FSi
(c, h, w), FTi

(c, h, w)), (3)

where Sim(·, ·) is the cosine similarity. si(h,w) is then up-
sampled to H ×W and pixel-wise accumulated to form the
finally anomaly map M ∈ RH×W for the input image:

M(h,w) = g(

K∑
i=1

Up(si(h,w))), (4)

where Up(·) denotes the bi-linear up-sampling and g(·) rep-
resents the Gaussian filter operation [24]. A larger score in
the anomaly map means a higher probability of anomaly
for that position, and the maximum in the anomaly map is
defined as the image-level anomaly score [28, 8, 24].

Although the student network merely trained on normal
data is expected to produce constantly anomaly-free repre-
sentations, it suffers from the “normality forgetting” issue
that still generates anomalous representations for anomalies
and is sensitive to fine patterns in normal data. Therefore,
we design the normality recall memory module to remit it.

4. Memory-guided Knowledge Distillation
The primary problems of KD-based methods for AD lie

in the lack of a mechanism that provides the student with
normal information as an inference to produce constantly
anomaly-free representations. Thus we consider how to in-
tegrate normal information into student-generated features.

The overall architecture of the proposed framework is
demonstrated in Fig. 3. When obtaining a query feature
FSi

generated by the student, the goal is to recall the normal
information via the normality recall memory (NR Memory).
Then FSi passes through the memory module to generate
the normalized feature FR

Si
, concatenated with query FSi

later to give FM
Si

. The student network of next stage encodes
FM
Si

to calculate similarity with FTi+1 via Eq. (1).
Moreover, we also employ a normality embedding learn-

ing (NEL) strategy to help the NR Memory learn prior
knowledge in normal data during training. A normal exem-
plar set E with N randomly sampled anomaly-free images
is first built. Then the teacher encodes E into the exemplar
features FE

Ti
= {FEn

Ti
}Nn=1, named normality embedding,

to train the memory module so that the learned knowledge
can be recalled from the query feature FSi

.

4.1. Normality Recall Memory Module

The purpose of the NR Memory module is to adaptively
modulate the normality of student features. To model the
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Figure 4. Structure of (a) the proposed NR Memory and (b) the
memory module in MemAE [10].

process that recalling the memorized prior knowledge from
the query feature, we design NR Memory as L key-value
pairs M = {(kl, vl)|kl ∈ RC , vl ∈ RC}Ll=1. The key items
are responsible for generating dynamical weights based on
the query in order to recall the normal information stored in
value items. Fig. 4 (a) illustrates its detailed structure.

Concretely, given the query feature FSi
∈ RCi×Hi×Wi ,

it is first flattened to F̂Si
∈ RCi×HiWi and the cosine sim-

ilarity between position F̂Si(:, j) and each key item kl is
calculated to give the similarity vector wkl,j ∈ RL:

wkl,j =
exp(d(F̂Si

(:, j), kl))∑L
l=1 exp(d(F̂Si(:, j), kl))

, (5)

where d(·, ·) is the cosine similarity. The weight wkl,j con-
trols how much relevant normality needed to be recalled for
integration at that localization. Then we aggregate value vl
by wkl,j to obtain the normalized feature F̄Si

∈ RCi×HiWi :

F̄Si
(:, j) =

L∑
l=1

wkl,j · vl. (6)

Finally, F̄Si is reshaped to FR
Si

∈ RCi×Hi×Wi , which is fur-
ther concatenated with FSi to form the input for the student
network of next stage.

Due to the different roles the key and value play, each ki
should be as independent as possible from each vj . There-
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fore, a pairwise orthogonal loss is proposed:

LOrth =
1

L2

L∑
i=1

L∑
j=1

d(ki, vj). (7)

4.2. Normality Embedding Learning

To ensure that the NR Memory is able to memorize and
recall normal information, we adopt a normality embedding
learning strategy to model the process. During training, we
randomly sample N normal images from the training set
at every iteration to construct the normal exemplar set E =
{E1, E2, . . . , EN}. Then the teacher T encodes them into
features of the ith stage as FE

Ti
= {FE1

Ti
, FE2

Ti
, . . . , FEN

Ti
},

where FEn

Ti
∈ RCi×Hi×Wi , named normality embedding.

By using exemplars, the essential information of normality
is preserved in vl and can be efficiently recalled.

Specifically, each exemplar feature FEn

Ti
is first flattened

to F̂En

Ti
∈ RCi×HiWi and the cosine similarity between po-

sition F̂En

Ti
(:, j) and vl is measured. With the similarity, we

obtain the weight wvl,j ∈ RL via the softmax activation:

wvl,j =
exp(d(F̂En

Ti
(:, j), vl))∑L

l=1 exp(d(F̂
En

Ti
(:, j), vl))

. (8)

The weight wvl,j decides how much stored normality needs
to be used for retrieving FEn

Ti
. Therefore, the reconstructed

F̄En

Ti
is given by aggregating vl with wvl,j :

F̄En

Ti
=

∑
l

wvl,j · vl. (9)

To make sure that the vl memorizes normal information
from those normality embedding, we employ the normal-
ity memorization loss to minimize their difference:

LNM =
1

N

N∑
n=1

∥FEn

Ti
− F̄En

Ti
∥22. (10)

Since the current sample is different from the N normal
samples, the prior knowledge of normality embedded in vl
is more general with the restraint from Eq. (10).

Finally, the overall loss function is formulated as:

L = LKD + λ1LNM + λ2LOrth, (11)

where λ1 and λ2 are balancing hyper-parameters.
Discussion. It should be emphasized that the proposed

memory is different from [10] (Fig. 4 (b)) in several aspects.
First, [10] is AE-based and ours is designed for KD. Sec-
ond, we define our NR Memory as the key-value structure
to model the recall process and specially devise the NEL
strategy to guide the learning of general prior knowledge
from normal data, which is more comprehensive than their
mechanism. Therefore, our method achieves better results.
Structural differences are demonstrated in Fig. 4 and exper-
imental comparisons are presented in Tab. 3 and Fig. 7.

5. Experiments
5.1. Dataset

To evaluate the effectiveness of the proposed method, we
perform state-of-the-art comparisons on five benchmarks,
i.e., MVTec AD [23], VisA [35], MPDD [16], MVTec 3D-
AD [2] and Eyecandies [4].

MVTec AD is a well-studied benchmark for anomaly de-
tection and contains more than 5000 images for 15 classes.
Anomalies are mainly in various structural changes.

VisA is the largest industrial anomaly detection dataset
to date, which is composed of 10,821 high-resolution color
images of 12 objects. The anomaly type covers both surface
and structural defects.

MPDD is specially collected for defects produced dur-
ing painted metal part fabrication and owns 6 classes of
about 1300 images. Objects have various spatial orienta-
tions, light intensities, and non-homogeneous backgrounds.

MVTec 3D-AD includes 4,147 scans captured by a 3D
sensor from 10 object categories, each of them providing
both RGB and point cloud data. Defects mainly lie in the
geometric structure.

Eyecandies owns 10 classes of 15000 synthetic images
and challenges like complex textures, self-occlusions, and
specularities are presented. It provides surface normal maps
and depth for each image.

5.2. Implementation Details.

Evaluation Metrics. The Area Under the Receiver Op-
erator Curve (AUROC) and Precision Recall (AUPR/AP)
are adopted to measure the ability of anomaly detection and
localization. For localization, PRO [1] is also calculated.

Implementation Details. All experiments are imple-
mented using Pytorch. For MVTec 3D-AD and Eyecandies
datasets, we only use color images for experiments. Dur-
ing training, images are resized into 256 × 256 and Adam
is used as the optimizer with a learning rate of 0.005. We
train the model for 100 epochs with batch size 16 and no
augmentations are applied. N , L, λ1 and λ2 are set 16, 50,
0.1 and 0.1, respectively. Unless otherwise specified, the
teacher network is an ImageNet [9] pre-trained WideRes-
Net50. Following the common practice [24, 8], features
from the first three stages are used for anomaly detection
and thus K = 3. We choose RD [8] as the baseline model
and insert three memory modules into the last three stages
of the student and randomly initialize them.

5.3. Main Results

Anomaly detection and localization. Tab. 1 shows the
comparison results of anomaly detection and localization
on (a) MVTec AD [23], (b) VisA [35] and (c) MPDD [16]
benchmarks. Since our MemKD recalls normal informa-
tion to strengthen the feature normality, it improves the
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Normalizing Flows Reconstruction Based Memory Based KD Based

Metric FastFlow [33] FAVAE [7] DRAEM [30] SPADE [31] PaDiM [6] CFA [18] PatchCore [24] ST [5] RD [8] Ours
I-AUC 90.5 79.3 98.1 85.4 90.8 98.1 99.2 92.4 98.4 99.6
I-AP 94.5 91.3 99.0 94.0 95.4 99.3 99.8 95.7 99.5 99.9

P-AUC 95.5 88.9 97.5 95.5 96.6 97.1 98.1 95.4 97.8 98.2
P-AP 39.8 30.7 68.9 47.1 45.2 53.8 56.1 51.8 58.0 59.6

P-PRO 85.6 74.9 92.1 89.5 91.3 89.8 93.4 87.9 93.9 94.5
(a) Anomaly detection and localization performance on the MVTec AD dataset.

I-AUC 82.2 80.3 88.7 82.1 89.1 92.0 95.1 83.3 96.0 97.6
I-AP 84.3 84.3 90.5 84.7 89.5 93.5 96.2 87.3 96.5 98.6

P-AUC 88.2 88.0 93.5 85.6 98.1 84.3 98.8 83.4 90.1 98.4
P-AP 15.6 21.3 26.5 21.5 30.9 26.8 40.1 16.9 27.7 44.1

P-PRO 59.8 67.9 72.4 65.9 85.9 55.1 91.2 62.0 70.9 94.9
(b) Anomaly detection and localization performance on the VisA dataset.

I-AUC 88.7 57.0 94.1 78.4 70.6 92.3 94.8 87.6 92.7 95.4
I-AP 88.1 70.5 96.1 81.5 78.4 92.2 97.0 91.4 95.3 97.3

P-AUC 80.8 90.6 91.8 98.2 95.5 94.8 99.0 98.1 98.7 98.4
P-AP 11.5 8.8 28.8 34.2 15.5 28.3 43.2 35.4 45.5 46.1

P-PRO 49.8 70.6 78.1 92.6 84.8 83.2 93.9 93.9 95.3 95.9
(c) Anomaly detection and localization performance on the MPDD dataset.

Table 1. Quantitative results for anomaly detection and localization on (a) MVTec AD [23], (b) VisA [35] and (c) MPDD [16] benchmarks.
We report Image AUC ↑, Image AP ↑, Pixel AUC ↑, Pixel AP ↑ and Pixel PRO ↑ for each method. Best results are highlighted in bold.

knowledge distillation-based methods (e.g., ST and RD) for
anomaly detection by 1.2%, 0.4% on MVTec AD, 1.6%,
1.1% on VisA and 2.7%, 2.0% on MPDD for image AUC
and AP, respectively. Besides, the MemKD also outper-
forms its memory bank based counterparts, e.g., CFA and
PatchCore. It is reasonable that the learned prior knowl-
edge from normal data is more general than that stored in
the memory bank and thus the resulting features can bet-
ter describe the normal distribution for detection. With-
out the mechanism to access normal information, normal-
izing flow and reconstruction-based methods give inferior
results. Besides, MemKD also achieves leading anomaly
localization performance on these benchmarks, especially
on the MPDD dataset. Although falling a little (0.4%) be-
hind PatchCore on P-AUC, it respectively outperforms the
second-best method on more challenging P-AP and P-PRO
by 4.0% and 3.9%, implying a better performance of local-
izing both small and large anomalies.

We also evaluate the MemKD on two 3D anomaly detec-
tion datasets: MVTec 3D-AD [2] and Eyecandies [4], where
some anomalies are imperceptible only from RGB images.
Color images are adopted and only image-level AUC is re-
ported. The quantitative results are listed in Tab. 2. Remark-
ably, the proposed method still outperforms other methods
and improves the baseline by 1.6% and 2.7%, respectively.
All these results show the effectiveness of our method and
indicate the essence of increasing the normality of student
features for KD-based anomaly detection.

Complexity analysis. We measure the model complex-
ity from the perspective of inference time (second on Intel
i7) and memory consumption (MB) of the memory bank
MPDD [16] dataset. Tab. 3 summarizes the results. Mem-

ory bank based methods store normal features from the
training set and compare them with representations of the
target at test time. Though owning fast inference speed and
good performance, they consume more memory. In com-
parison, our MemKD performs better depending only on
limited memory usage (0.3 MB) and the additionally con-
sumed time (0.02s) is neglectable.

Discussion. We focus on improving the effectiveness of
KD-based methods and the main time consumption lies in
the propagation of the S-T. How to efficiently reduce it is an
interesting problem and we leave it as our future work.

5.4. Ablation Study

We conduct comprehensive ablation studies to explore
the effectiveness of each component on MVTec AD. More
ablation studies can be found in the supplementary material.

Study on key components. The key elements of the
proposed method include the NR Memory module, the pair-
wise orthogonal loss LOrth, and the normality memoriza-
tion loss LNM . We investigate them and report the numeri-
cal results in Tab. 4 (a). The baseline (first row) owns infe-
rior performance relying on the vanilla knowledge distilla-
tion architecture. Simply employing the NR Memory with
LOrth gives slight improvement. Nevertheless, more per-
formance gains are derived from using LNM (0.7% versus
0.3% for I-AUC, 0.2% versus 0.1% for P-AUC, and 0.4%
versus 0.2% for P-PRO). Combining them all contributes to
the best results and they have more significant impacts on
image-level anomaly detection than pixel-level localization.

Study on the number of memory items. The number
of items controls the amount of normality to be stored from
normal data. Tab. 4 (b) studies its effects on different stages.
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Method Bagel Cable
Gland Carrot Cookie Dowel Foam Peach Potato Rope Tire Mean

GANomaly [14] 48.5 51.2 53.2 50.4 55.8 48.6 46.7 51.1 48.1 52.8 50.7
DifferNet [21] 85.9 70.3 64.3 43.5 79.7 79.0 78.7 64.3 71.5 59.0 69.6

PADiM [6] 97.5 77.5 69.8 58.2 95.9 66.3 85.8 53.5 83.2 76.0 76.4
CS-Flow [26] 94.1 93.0 82.7 79.5 99.0 88.6 73.1 47.1 98.6 74.5 83.0

AST [27] 94.7 92.8 85.1 82.5 98.1 95.1 89.5 61.3 99.2 82.1 88.0
PatchCore [24] 87.6 88.0 79.1 68.2 91.2 70.1 69.5 61.8 84.1 70.2 77.0

RD [8] 98.7 93.7 94.3 69.0 98.1 84.7 91.3 69.3 99.3 85.3 88.4
Ours 99.1 95.3 95.7 71.6 99.3 87.5 95.0 67.9 99.8 88.9 90.0

(a) Anomaly detection performance on the MVTec 3D-AD dataset.

Method
Candy
Cane

Chocolate
Cookie

Chocolate
Praline Confetto

Gummy
Bear

Hazelnut
Truffle

Licorice
Sandwich Lollipop Marsh. Peppermint

Candy Mean

ST [5] 55.1 65.4 57.6 78.4 73.7 79.0 77.8 62.0 84.0 74.9 70.8
PADiM [6] 53.1 81.6 82.1 85.6 82.6 72.7 78.4 66.5 98.7 92.4 79.4

PatchCore [24] 52.5 95.4 53.4 90.7 64.6 46.6 76.2 68.2 94.4 91.5 73.4
AST [25] 57.9 87.4 68.8 97.3 78.9 54.7 85.6 87.9 96.5 96.3 81.1

AE [4] 52.7 84.8 77.2 73.4 59.0 50.8 69.3 76.0 85.1 73.0 70.1
RD [8] 56.5 94.7 84.3 96.7 84.5 62.5 85.6 81.4 95.2 99.1 84.0
Ours 62.1 99.6 86.5 98.0 86.4 65.8 87.3 84.2 97.3 99.8 86.7

(b) Anomaly detection performance on the Eyecandies dataset.

Table 2. Quantitative results for unsupervised anomaly detection on (a) MVTec 3D-AD [2] and (b) Eyecandies [4] dataset. We report the
image-level AUROC (%) for RGB data. Methods achieving the top AUROC are highlighted.

Method Infer. Time Mem. Size I-AUC/ P-AP/P-PRO
PaDiM 0.95s 41.2M 89.1 / 30.9 / 85.9

PatchCore 0.22s 48.4M 95.1 / 40.1 / 91.2
CFA 0.31s 29.2M 92.0 / 28.3 / 83.2

Baseline 0.31s 0.0M 96.0 / 27.7 / 70.9
MemAE 0.32s 0.2M 96.5 / 32.8 / 86.2

Ours 0.33s 0.3M 97.6 / 44.1 / 94.9

Table 3. Comparison of mean inference time (second) and memory
consumption (MB) of memory bank on MPDD [16].

First of all, remembering and recalling the normality is ben-
eficial for both anomaly detection and localization. More
storage of normality contributes to better performance. In-
stead, a large number may introduce more parameters and
lead to optimization difficulty. Finally, we increase L1 and
decrease L3, resulting in a performance drop on I-AUC and
slight improvement on P-PRO. For the sake of higher I-
AUC, we set all of them 50 in this paper.

Study on the generalization of NR memory. Apart
from the reverse distillation paradigm [8], we also apply
the proposed framework to the forward distillation [28] ar-
chitecture. Accordingly, we exploit the WideResNet50 as
the teacher and the vanilla ResNet50 as the student. Spe-
cific architecture is included in the supplementary material.
Tab. 5 lists the results. Our method improves the overall per-
formance for different distillation paradigms and thus owns
the favorable generalization ability.

5.5. Visualization Analysis

Anomaly localization. To intuitionally illustrate the per-
formance of the proposed method, we visualize anomaly

NR Mem. LOrth LNM I-AUC P-AUC P-PRO
98.4 97.8 93.9

✓ ✓ 98.7 97.9 94.1
✓ ✓ 99.1 98.0 94.3
✓ ✓ ✓ 99.6 98.2 94.5

(a) Study on key components.
L1 L2 L3 I-AUC P-AUC P-PRO
0 0 0 98.9 97.9 94.0
10 10 10 99.3 98.1 94.2
50 50 50 99.6 98.2 94.5

100 100 100 99.4 98.1 94.3
100 50 10 99.4 98.2 94.6

(b) Study on the number of memory item.

Table 4. Ablation study on key components and the item number.

Distillation Type I-AUC P-AUC P-PRO
RD [8] 98.4 97.8 93.9

MemRD 99.6 98.2 94.5
MKD [28] 97.5 96.4 91.7
MemMKD 98.7 97.6 93.0

Table 5. Ablation study on the generalization of NR Memory. The
prefix ’Mem’ refers to methods with the NR Memory.

maps in Fig. 5 on (a) MVTec AD [23] and (b) MVTec 3D-
AD [3] benchmarks. Although abnormal data is unavail-
able during training, our MemKD still accurately localizes
anomalies of various sizes on anomalous images in both
datasets. However, as demonstrated in the last two columns
in Fig. 5 (b), anomalous images with geometrical anomalies
are difficult to detect with only RGB images. More modal-
ities may help tackle this issue. We will explore it later.
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(a) Visualization on MVTec AD [23]. (b) Visualization on MVTec 3D-AD [3]. The last two columns are failure cases.

Figure 5. Qualitative results for anomaly localization. From top to bottom: RGB image, ground truth, and the predicted anomaly map. The
proposed MemKD localizes tiny and conspicuous anomalies in both benchmarks. However, some anomalies can not be perceived only
from the RGB data (last two columns in (b)). Best viewed in color.

Recall the normality. The kl in the NR Memory are de-
signed to assign the weights for aggregating the normal in-
formation stored in vl. To comprehensively demonstrate it,
we show the statistics of feature distance before (B) and af-
ter (A) recalling the normality in Fig. 6. Before querying the
key, the averaged distance between anomalous and averaged
normal features (Anomalous-B) in the test set is larger than
that between normal and averaged normal ones (Normal-
B). Once performing the recall operation, these distance
coherently decreases and the averaged distance descent for
Anomalous-A remains larger, implying that through assign-
ing weights for recalling stored information, the feature nor-
mality of anomalous data indeed increases.

Learned normality. We also adopt the t-SNE [29] to
visualize normality learned on the MVTec AD [23] dataset,
as illustrated in Fig. 7. Each dot here represents the value
item vl. It can be observed that the distribution of normality
from MemAE [10] presents inter- and intra-category disor-
der. Contrarily, the NEL strategy promotes the learning of
normal information and makes the majority of value items
within each category compact. And a few items are spread
for dealing with diverse normal patterns in each category.

6. Conclusion
This paper presents a novel Memory-guided Knowledge

Distillation framework for unsupervised anomaly detection,
which handles the “normality forgetting” issue of the stu-
dent network. We first design a normality recall memory
to adaptively modulate the normality of student features by
recalling normal information from query features for both
normal and anomalous data. To guide the memory to mem-
orize prior knowledge about normal data, we adopt a nor-
mality embedding learning strategy, which enables the NR
memory to integrate normality by dealing with the relevant
information. Consequently, the proposed method achieves
promising results on five benchmarks.
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Figure 6. Statistics of feature distance before (B) and after (A) re-
calling the normality. The distance (y-axis) refers to the l2 norm
between the anomalous (or normal) features and averaged normal
features in the test set. The NR Memory increases the feature nor-
mality and consistently reduces the distance.

(a) Value from MemAE. (b) Value from our NR Memory. 

Figure 7. t-SNE visualization [29] on value items from (a) MemAE
and (b) the proposed NR Memory module. Items learned by the
normality memorization loss are compact within each category.
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